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ON A PROBABILITY PROBLEM CONNED WITH RAILWAY TRAFFTCx

LAJOS TAKkCS
Case Western Reserve University

Cleveland, Ohio:

Let Fn(x) and Gn(z be the empirical distribution functions of two
independent samples, each of size n, in the case where the elements of the
samples are independent random variables, each having the same continuous
distribution function V(x) over the interval (0,1). Define a statistic 0n by

1

Onln = / [Fn(x) Gn(x)]dV(x) rain l[Fn(x) Gn(x)].
0

In this paper the limits of E{(On/’)r} (r = 0,1,2,...) and P{On/q’ < x}
are determined for n---,oo. The problem of finding the asymptotic behavior of
the moments and the distribution of On as n--.oo has arisen in a study of the
fluctuations of the inventory of locomotives in a randomly chosen railway
depot.
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1. INTRODUCTION

In the mid 1950’s Hungarian State Railway’s researchers proposed the following problem for

investigation to the Research Institute of Mathematics of the Hungarian Academy of Sciences where

the author had a position at that time. A timetable indicates that each day n trains arrive and also

n trains depart from a railway depot. There are numerous railway depots and we choose one at

random. Suppose that the arrival instants and the departure instants are considered to be

independent sequences of independent and identically distributed random variables. For each

departing train one locomotive should be provided, and each arriving train adds one locomotive to

the inventory of the depot. Let us suppose that the inventory of locomotives is managed in an

optimal way, that is, no more locomotives are kept in the inventory than the bare minimum

necessary to satisfy every demand. Denote by an the total time spent at the depot by all the
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2 LAJOS TAKCS

locomotives during the course of a day. The problem was to find the expectation, the variance and

possibly the asymptotic distribution of tn as n---,c.

Let us denote by V(z) the distribution function of an arrival (departure) time in the time

interval (0,1). Let F,(z) and Gn(x) be the empirical distribution functions of two independent

samples, each of size n, in the case where the elements of the two samples have a common

distribution function V(z). Then the random variable 8n is determined by the following formula

1

= / [G(,)- Gd-)].t./ [F.() G.()ldV() o < <_
0

If V(a) is a continuous distribution function, then the distribution of t, is independent of

V(x), and so in finding the distribution of On we may assume that V(a) = x for 0 < a G 1, that is,

the arrival times and the departure times are independent sequences of mutually independent

random variables, each having a uniform distribution over the interval (0,1).

K. Sarkadi [15] proved that

E(On} l_f 4n

2t(2n) II, (2)

and L. Takcs [18] proved that

E{O} -- E{On}.

In this paper an account is given of some recent progress in the solution of the

aforementioned problem. The main results are stated in the following two theorems.

Theorem 1: If r = O, 1,2,..., then

exists and

where Ko= -1/2, K1=1/8 and

for r = 2, 3,

rnE{(u/2)r} = Mr (4)

4q’r! (5)Mr=Kr
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Theorem : There ezists a distribution function W(z) such that

ld m e{o./q’ <_ =

and W(z) = 0 for z <_ O. The distribution function W(z) is nniqnely determined by its moments

:rdW(z) = Mr

0

(8)

for r = O, 1,2,... where Mr is defined by (5) and (6). If z > O, we have

and

W(x) = e-Vkvk2/aU(1/6,4/3,vt)
k=l

(9)

W’() 2’ E e Vkvk2/3U( 5/6, 4/, Vk) (10)----" t:--1

where U(a, b, z) is the confluent hypergeometric function,

and z = -ak(k = 1,2,...)

O<al<a2<...<ak<

are the zeros of the Airy function Ai(z) arranged so that

For the definitions of the confluent hypergeometric function and the Airy function we refer

to L.J. Slater [16], J.C.P. Miller [13] and M. Abramowitz and I.A. Stegun [1].

We shall prove the above theorems in three stages.

First, we consider a Bernoulli excursion {r/o+ r/1
+ .., 02} in which r/+ and

for 0 < < 2n and define con for n > 1 by the following equation

rl

i=1

We shall prove that

ldrnE{(wn/q-)r} = Mr (13)

for r 0, 1,2,... where Mr is defined by (5) and (6), and that

ld ooP{ ./4 < (14)

where W(z) is defined in Theorem 2.
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Then we shall consider a tied-down random walk {r/0 r/z,-" r/2n} in which r/2n = r/o = 0 and

define Pn by the following equation

where

62n = rain(%, r/t," ", r/2n)"

We shall prove that

/n/inooE{(p./2q-2)r} ---- Mr (17)

for r 0,1,2,... where Mr is defined by (5) and (6), and that

ldlnooP{pn/q- <_ ) W(:) (18)

where W(z) is defined in Theorem 2.

Finally, we express On in the following way

where {r/0,/1,...,r/2n} is the tied-down random walk defined above and the random variables

o, 1,’", 2n are independent of the random walk {r/0, r/l,..., r/2n} and are defined in the following

way: We choose 2n points at random in the interval (0,1). We assume that the 2n points are

distributed independently and each point has a uniform distribution over the interval (0,1). These

2n points divide the interval (0,1) into 2n + 1 subintervals. Denote by 0,l,"’,2n their lengths.

The random variables 0, 1," 2n are interchangeable and obviously 0 + ’1 "t-... "1" 2n- 1.

We shall prove that

Thus

E{(On pn)21(2n)} = 1/(24n).

td  (o. p.)lq- = o

(20)

(21)

in probability. Consequently, (18) and (21)imply (7).

Also, we shall prove that

/n/in[E{0r} E{prn}]/nr/2 = 0 (22)
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for r = 1,2, Hence (4) follows from (17).

2. THE BEItNOULLI EXCURSION

Let us arrange n white and n black balls in a row in such a way that for every i = 1, 2,..., 2n

among the first balls there are at least as many white balls as black. The total number of such

arrangements is given by the n-th Catalan number,

t2n 1 (23)C. = n ,/ ’+ i"

We have CO = 1, C1 = 1, C2 = 2, C3 = 5, C4 - 14, C5 = 42,

Let us suppose that all the possible Cn sequences are equally probable and denote by r/+
the difference between the number of white balls and the number of black balls among the first i

bails in a sequence chosen at random. We have r/:n = r/0
+ = 0 and r/+ > 0 for = 1, 2, 2n. The

sequence {r/0+, r/1
+ ..,r/+2n) is called a Bernoulli excursion.

We can imagine that a particle performs a random walk on the x-axis. It starts at z = 0

and takes 2n steps. In the i-th step the particle moves either a unit distance to the right or a unit

distance to the left according as the i-th ball in the row is white or black respectively. At the end of

the i-th step the position of the particle is z = r/+ for = 1, 2, 2n.

As an alternative we can assume that the particle starts at time t = 0 at the origin and in

the time interval (i-1,i],i = 1,2,...,2n, it moves with a unit velocity to the right or to the left

according as the i-th ball in the row is white or black respectively. Denote by r/+n (t) the position of

the particle at time 2nt where 0 < t < 1. Then r/+ = +n (i/2n) for = 1, 2,..., 2n.

Define wn by the following equations

1 12n

/ 2+n /2nWn = .E rl +i = 2n O[ t]dt = 2n
=0 0 0

if n = 1, 2,... and w0 = 0.

+n (t)dt (24)

The random variable 2nwn is a discrete random variable with possible values n+ 2j

(j = 0, 1,..., ()). Denote by fn(n + 2j) the number of sequences {r/0+,r/+,...,r/$n} in which

2nwn = n + 2j. Then we have

P{2nwn = n + 2j} = fn(n + 2j)[Cn (25)
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The distribution of 2nwn is determined by the generating function

.() = s.( +/
j=O

(26)

which can be obtained by the following theorem.

Theorem 3: We have

O.(z) =

_
(z)O._ (z)z- x (7)

i=l

for n = 1, 2,... and Co(Z) = 1.

Proof:
representation

+If = 1,2,...,n is the smallest positive integer for which /2i "-O, then in the

+ (8)+1 + + 12n = 2i-1+ +1 -1) +’" + (rl2i+- I 1)+r/+i +

the sum (r/1+ 1) +... + (r/2it 1 1) has the same distribution as 2(i- 1)w 1 and the sum

07 + 0 +2i +"" + 2n) has the same distribution as 2(n-i)On_ and these two random variables are

independent. If we use the notation (26), then by (28) we obtain (27) which was to be proved. By

(27) we obtain that ff(z) = 1,2(z = 1 + z, 3(z = 1 + 2z + z + z3 and

4(z) = 1 + 3z + 3z2 + 3z3 +2z4 + zs + z6. (29)

Now let us define

(z,) = .()o-. (o)

Since .(z) _< .() = c. if ]z _< 1 and since

E Cnwn [i (i 4w)1/21/2
n--O

for w < 1/4, the series (30) is convergent if z < 1 and w < 1/4.

Multiplying (27) by wn and forming the sum for n = 1,2,... we obtain that

(31)

(, ) = i + w(, (32)
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fo I1 < 1 and Iwl < 1/4.

If we define

F(,w) = (z,zo) =w (33)

then by (32)

(z,w) = 1/[1 F(z,w)l (34)

and

F(z, w) = w(z, zw) = w/J1 F(z, zw)] (35)

or

F(z, w) = w + F(z, w)F(z, zw) (6)

for zl

_
and wl

_
1/4. The repeated application of (35) leads to the continued fraction

WF(z, w) i Zw.
1 z2w

1--o

(37)

The continued fraction (37) has been encountered by S. Ramanujan [14] in the theory of

partitions. (See e.g., G.H. Hardy and E.M. Wright [10] p. 295, and G. Szekeres [17].)

By (26)and (33) we have

()o 2

F(z, w) = w fn(n + 2j)zn + Jwn
n=O j=O

(38)

for Izl <_ 1 and Iwl _< 1/4.
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3. THE MOMENTS OF w,,

define

The equation (36) makes it possible to determine explicitly the moments of w,.

br(n) = (n +r J)fn(n "{" 2j)
3=0

Let us

(39)

for r = 0,1, 2,... and n >_ 0. Then the r-th binomial moment of (2nwn + n)/2 is given by

(4o)

for r 0, 1,2,..., where bo(n
readily be determined for r _< m.

If we know (40) for r _< m, then the moments E(wnr} can

The generating function

can also be expressed as

(42)cgrF(z, W)1() (
for r = 0,1,2,... and ]w] < 1/4. Moreover, we have

OrF(z, zw) r

; = 1 = . n,-)()’/i! (43)
i--0

for r, = 0, 1, 2,

If we form the first m derivatives of (36) with respect to z at z = 1, we can determine Br(w)
step by step for r = 1,2,..., m.

If we put z- 1 in (36), we obtain that

Bo(w w + [B0(w)]2 (44)

fo i _< 1/4. Hence

that is, bo(n) = Cn for n 0.

1 oo

Bo(w -[1-(1 4w)]/2 w C,w",
n--0

(45)

In what follows we shall use the abbreviation
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Then
1

Bo(w = [1- R2]/2. (47)

If r- 0, 1,2,... and if we form the r-th derivative of (36) with respect to z at z = 1, we

obtain that

3=0 1=0

where 5to = 1 for r = 0 and 5to = 0 for r > 0.

If r = 1 in (48), we obtain that

wBo(w)B(w) 1

(o) = i " Bo() = o(R- x )/ (49)

for wl < 1/4. Hence

bl(n = 1/214n- (2nn)].

If r = 2 in (48), we obtain that

B2(w = w(5R 5/2 4R 2 2R 3/2 4R 1 + 5//- 1/2)/16.
Hence

5n+7n+6/2n (n+2)
12 tn) 4

If we use the following expansions

(50)

(51)

(52)

R-s _, (n + s- 1)4nwn (54)

and

n--/ = ] (2)(e’,+,)(’n,+ z)...(- +-n 0 1.3...(2s 1) (55)

where s = 1,2,3,... and wl < 1/4, then step by step we can determine br(n) for every

r = 0, 1, 2,..., and the moments of wn can be obtained by (40).
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By the recurrence formula (48) we can draw the conclusion that Br(w)/(wR1/2) is a

polynomial of degree 3r in R- /2 if r >_ 1. Consequently, if r = 0,1, 2,..., then

K

where the neglected terms are constant multiples of R -:i/2 for -3 _< j _< 3r-2. If in (48) we

retain only those terms which contribute to the determination of Kr in (56), we obtain that

r--1

R1]2Br(w) = E Br- j(w)Bj(w) + BO(W)Br(I_)I(W)W +
3---1

(57)

for r >_ 2. Here w (1 R)/4, and if we form the coefficient of R- (3r- 2}/2 on both sides of (57),
we obtain that

r-1

(3.r.-.4) (58)Kr E KjKr .i KoKr- 1
3-1

for r _> 2. By (47) and (49) we have K0 1/2 and K1 -- 1/8. This proves (6).

By (56)

br(n _- Kr(n+ 1 +n+13(r- 1)/2)4n+l +... (59)

where the neglected terms are of smaller order than the displayed one as n--.oo. Hence

4" + ln3(r- 1)/2
br(n) gr’ 3r- 1r( )

for r = 0, 1,2,... as n---oo. Here we used that bo(n Ca and

Cnn,q’-ff"ff 4n

as n---o. This proves (13). Accordingly,

_mooE{(./2q)"} Mr

(60)

(61)

(62)

(63)

for r = 0, 1, 2,... where Mr is defined by (5) and (6).
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Alternatively, we can calculate Kr(r 1, 2,...) by the following recurrence formula

(6r + 1)
ajKrKr = 2"2 :" ’)cr

for r > 1 where

r(3j + 1/2) (2j + 1)(2j + 3)...(6j S1)
r(j + 1/2)(36)3j! (144)3j!

for j > 1 and a0 = 1.

Clearly,

(64)

(65)

(66)

for j >_ 1 and ao = 1.

To prove (64) let us introduce the formal generating function

y(z) (- 1)rKrzr.
rO

(67)

By (58) we obtain that

(68)

The appropriate solution of (68) is given by

y(z) = Ai’(z- 2/3)zl/3/[2Ai(z- 2/3)] (69)

where

0

(70)

is the Airy function which satisfies the differential equation

Ai"(z) = zAi(z). (71)

See J.C.P. Miller [13] and M. Abramowitz and I.A. Stegun [1]. The function (69) satisfies (68) and

has an asymptotic expansion in 1/z as zlc and argzl < rr. This expansion is in agreement

with (67). By equating coefficients of similar powers of z in both sides of the equatioa

2Ai(z- 2/3)y(z) = Ai’(z- 2/3)zl/3, (7)

we obtain (64).
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By (58)

(3r- 4) (-r2.l)K (73)Kr>- Kr-1 4 +2Kr-1 = r--1

if r >_ 2 and K1 = 1/8. Accordingly, (4/3)rKr/(r- 1)! (r = 2,3,...) is an increasing sequence. By

(64)

for r >_ 1 and by (65)

Thus

Kr _< [6r/(6r- 1)]ar (74)

lira (4_)r. cr 1 (75)r-3 (r-1)!=-"

"I)! 7 (76)

exists and 0 < 7 _< 1/(27r). Actually, we can prove that 7 = 1/(27r).

By (5) we have

27r- 6r 2rMr 7,3--) (77)

4. TIlE ASYMPTOTIC DISTRIBUTION OF w.
We shall prove the following result.

Theorem 4: There exists a distribution function W(x) such that

lrnooP{wn/q-ff’ < x} = W x (78)

in every continuity point of W(x). The distribution function W(x) is uniquely determined by its

moments

zrdW(z)-Mr
0

(79)

for r- 0,1,2,... where Mr is defined by (5) and (6).



On a Probability Problem Connected with Railway Traffic 13

Proof: It follows from (77) that

M r =c. (S0)
r=l

By (63) the sequence Mr(r = 0,1,2,...) is a moment sequence. Since the condition (80) is satisfied,

we can conclude from a theorem of T. Carleman [3], [4] that there exists one and only one

distribution function W(z) such that W(0)= 0 and (79) holds for r = 0,1,2, By the moment

convergence theorem of M. Frchet and J. Shohat [7], (63) implies (78). This completes the proof of

the theorem.

To determine W(z) let us define

= f
0

(8)

as the Laplace-Stieltjes transform of W(z). We have

(s) = (- 1)rMrsr/rt (82)
r--’0

and the series (82) is convergent on the whole complex plane. This follows from (77). in (5) we can

write

1 1 / (3r-
r(3r. 1)= -. eft )/dt (83)

c

for r = 0,1,2,... where C denotes integration along a contour which starts at infinity on the

negative real t-axis, encircles the origin counter-clockwise, and returns its starting point.

Accordingly,

Mr 4ff’Kr f etr-’-. = "2a’i (t21/3) (3r/2)t/2dt
C

(84)

for r = 0,1, 2, Now we shall sketch a heuristic proof for the determination of (s). If we use the

notation (69) and interchange summation and integration, then by (82) we obtain that

(t21/3 3/2)tl(s)= y(s /2etdt =
c

4fAi(2/3s 2/3t) 1
2rr---’ i(21138 Z2’]3t’) s /32 1/3etdt =

c
(85)
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s Ait(z)_z,2/3/21/3
-2ri /’Ai(z) dz

where we used the substitution z = ts-2/321/3 and C* is the new contour in the z-plane. The

function Ai(z) has zeros only on the negative real axis; z--ak(k=l,2,... where

0 < aI < a2 < By the theorem of residues we obtain from (85) that

o _ak213/21/3(s) = s2’E (86)
o a()> 0. . o. (9) d (0) -.o. mn o goo poo o
(86). We shall see that (s) can also be interpreted in several other ways and formula (86) can be

deduced either from the results of D.A. Darling [6] or from the results of G. Louchard [12].

We note that the process { +, (t)/2q’,0 <_ < 1}, where +n ()is defined at the beginning of

Section 2, converges weakly to the Brownian excursion {r + (t), 0 _< t _< 1 }. If we define

1

w + = /1 + (t)dt, (87)
0

then, because the integral is a continuous functional of the process, we can conclude that

lira P{wn/q- < x} = P{w + < x}.
ll--’O0

(88)

Thus by (78) it follows that

P{w + <_ x} W(x), (89)

by (79) E{(w + )r}_ Mr for r = 0,1,2,..., and by (81)
+E{e-’ }=(s) (90)

for Re(s) >_ 0.

The Laplace-Stieltjes transform (90) has been studied by lZ.K. Getoor and M.J. Sharpe [8],
J.W. Cohen and G. Hooghiemstra [5], Ph. Biane and M. Yor [2], P. Groeneboom [9] and G.

Louchard [111, [12]. G. Louchard [12] has found formula (86) for (90) and determined the moments

E{(w + )r}(r 0, 1, 2,...).

5. THE TIED-DOWN RANDOM WALK

Let us suppose that a box contains n white and n black balls. We draw all the 2n balls

from the box one by one at random without replacement. There are (2,n) possible results and they
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are supposed to be equally probable. Define r/i(i = 0,1,...,2n) as the difference between the number

of white balls and the number of black balls among the first i balls drawn (r/2n = r/0 = 0). We can

interpret the sequence {r/o r/x,..., r/2n} as a tied-down random walk on the real line.

Let us define Pn for n > 1 by

2n

i=l

where

62n = rain(%, rh,... r/2n), (92)

and write Po = 0.

The random variable 2nPn is a discrete random variable with possible values

n + 2j(j = O, 1 ..., (n2))" Denote by hn(n + 2j) the number of random walks {r/o,r/,...,r/2n} in which

2nPn = n + 2j. Then we have

P{2nPn n + 2j} hn(n + (93)

for j = 0, 1,..., (). The distribution of 2nPn is determined by the generating function

Cn(Z) hn(n q- 2j)zj.
j=0

(94)

This generating function can be obtained by the following theorem.

Theorem 5: We have 0(z) = 1, and

.(z) = x(z)._ x
i=l

for n = 1,2,... where Cn(z)(n = O, 1,2,...) are determined by the recurrence formula (27).

Proof: Let n >_ 1. In the random walk {r/0 r/x,’", r/2n} it may happen that 2. = 0, that is,

r/s >_ 0 for 0 _< s _< 2n. Then 2nPn simply has the same distribution as 2nwn. If 2n > 1, then let

s = be the first subscript for which r/s = -82n and let s = + 2(n- 1 k) be the last subscript for

which r/s -82n" Then i may be 0, 1,...,2k and k may be 0, 1,...,n- 1. Now let us consider a new

random walk defined by

{r/i + di2n,"" ", r/2n + 62n, r/O q" 62n"" "’ r/i + 2n}" (96)
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That is, in the original random walk we transfer the first i steps from the beginning to the end and

shift the zero level to -62,. For fixed and k, the random walk (06) has the same stochastic

properties as a Bernoulli excursion {r/0+ r/1
+ + l in which + 0 and 0 for"’" /2n / 2 (n- 1- k)

+ Under the2(n- 1 k) < s < 2n, and 2npn has the same distribution as /0
+ + /1

+ +... + /2n"
+aforementioned conditions r/o

+ +... + r/2. k) has the same distribution as 2(n 1 k)n 1 k

and r/+ 2(n 1 k) q" q- r/+ 2n- 1 has the same distribution as 2k + 1 + 2kwk and these two sums

are independent random variables. Obviously, r +2n = O. By the above considerations

n-1 2k n-1

.(z) = .(z) + x- = + x  (z)2
k=O i=0 k=O

for n >_. 1 where Cn(z) is defined by (26) and determined by (27).
completes the proof of (95).

By definition, 0(z) = 1. This

It is worthwhile to point out the significance of formula (95). To find the distribution of

2nwn we should determine the generating functions o(Z),l(z),...,r,(z). If these functions are

known, then the distribution of 2npn can immediately be calculated by (95). No extra calculations

are needed, although the random variable 2np, is much more complicated than 2n,.

By (95) we obtain that Co(Z) = 1, el(Z) ---- 2, 2(Z) ---- 2 -t" 4Z and

3(z) 2 + 6z + 6z2 + 6z3. (98)

Let us define
o ()

*(z,w) = Z Cn(z)zn = Z Z h(n + 2j)zJwn.
n=O n=O j=O

Since .(z) _< .() = (=) for z _< x, and since

(2nn)wn = (1 4w) -1/2

for w < 1/4, the infinite series (99) is convergent for z <- 1 and w < 1/4.

If we multiply (95) by wn and form the sum for n = 1,2,..., we obtain that

OF(z,g,(z, w) 1 + 2,:I)(z, w)(w)) I -l-" 2w OF(z,
1 F(z, up) Ow w))

(99)

(I00)

(101)

for z < 1 and w < 1/4 where @(z,w)is defined by (30) and F(z,w)is defined by (33) and

determined by (36).
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6. TIIE MOMENTS OF tn

define

The equation (101) makes it possible to determine explicitly the moments of Pn"

ar(rt) = Z (Jr)fn(II + 2j)
j=O

for r = 0,1, 2,... and n >_ 1. Then the r-th binomial moment of (2nwn -n)/2 is given by

for r 0, 1, 2,..., where ao(n) = Cn.

The generating function

can also be expressed as

forr=O, 1,2,...and Iwl <1/4.

By (34) we have

Let us

(102)

( o3)

(104)

(I)(z, w)[1 F(z, w)] = 1. (106)

If we form the r-th derivative of (106) with respect to z at z 1, we obtain that

At(w)- E Ai(w)Br-i(w) 6r0 (107)
i=O

for r >_ 0 where 00 = 1 and 6r0 = 0 for r > 0. From (107), wAo(w) = Bo(w) and Al(w),A2(w),...
can be determined step by step if Bo(w),Bx(w),... are already known. From (56) and (107) we can

conclude that

K

where Kr has the same meaning as in (56) and the neglected terms are constant multiples of R-

for -3 < j < 3r-2. Here R = 1-4w. To prove (108) we can use either (107) or the obvious

relation
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br(n) = Z (n)ar-
for r >_ 0 and n >_ 0. By(108) j=0 a

ar(n = Kr(n + 1 + 3(r- 1)/2
n+ 1 )4n+ +""

(109)

(110)

where the neglected terms are of smaller order than the displayed term as n-,oo. Accordingly,

.() ()

for r = 0,1,2,... as no. This follows also from (109).

The moments of Pn can be determined in the following way. By (101).

1 orq(z, w) r

Hr(w) = "ft..( Ozr )z 1 = 6,’0 + 2wZ A:i(w)B’r j(w)
=o

(112)

forr>_0and w] <1/4. On the other hand by (99)

= () =
H() = ({).(. + zj)- (.)E{((..- .)/2

n=O j=0 n=O
)}wn (113)

for ]w < 1/4. By (48), (107), and (113) we can determine Hr(w explicitly for every r -- 0,1,2,

If we use the notation (46), that is, R 1- 4w, then we obtain that

Ho(w = 1 + 2wAo(w)B(w = 1 + 2Bo(w)B(w R- i/2 = Z (2nn)wn
n-’O

(114)

for [w < 1/4, and

Hl(W = 2wAo(w)B(w) + 2WAl(w)BD(w = 2w(R- 2

(R 2 R 3/2 R + R/2)/2.

3/2)
(11,5)

By (115)

(2nn)E{2np, / n} = (ii6)

In a similar way we can determine Hr(w) for r = 2,3,... and if we use the expressions (53), (54) and

(55) we can determine

E{((2np, n)/2)} (liT)

for every r = 0,1,2,... and n = 0,1,2, The moments of Pn are completely determined by (117).
For example, if r -- 2, we obtain that
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E{(2nPn + n)2} = 2n2(5n + 1)/3. (118)

By (56)
2(3r- 1)KrBr(w) = (i" 4w)(3+ )/2 + (119)

for r = 0, 1,2,... where the neglected terms are constant multiples of R-j/2 for -1 < j <_ 3r.

r > 1, then in (112)

If

2wAo(w)B’r(w = 2Bo(w)B’,.(w = 2(3r- 1)KrR- (3r + a)/2 + (120)

and

2w Aj(w)Br ’_ j(w) = 2
R(3j ’:1)/2

213(r- j) 1]Kr j

/i3(r j)+ 1]/2 ’""
r 4(3r I)Kr (3r 2)(3r 4)Kr 1-3/2E KjKr- j[3(r j)- 11 + = 2R3r/2 +

(121)

where the neglected terms are of the form R -j/2 with j< 3r/2.
Accordingly,

In (121) we used (58).

2(3r- 1)Kr,.(w) = R(,. + )/ +...

where the neglected term is a polynomial of degree 3r in the variable R- /2.

Accordingly, if r >_ 1

(2nn)E{((2npnr-n)/2)} = 2(3r- 1)Kr(
n + (3rn- 1)/2)4n +

where the neglected term is of smaller order than the displayed term as n---,oo.

(123)

If r = 1,2,..., then by (123)

" 4KrXr 3r12E{((. )/)} = r(;:) +... (124)

and

E{(2npn)r} = Mr(2n)3r/2 +... (125)

where Mr is given by (5) and the neglected term is of smaller order than the displayed one. This

proves (17).
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7. THE ASYMPTOTIC DISTRIBUTION OF Pn

We have the following result.

Theorem 6: We have

ldrnP{pn/q’’ff < } = w z

where W(z) is the distribution function defined in Theorem

Proof: By (125) we have

ldrnE{(pn/q-)r} = Mr (127)

for r = 0, 1,2,... where Mr

the proof of Theorem 4.

is given by (5). The remainder of the proof is along the same lines as

The process {rl[2ntl/’,O <_ t < 1}

{r/(t), 0 _< t _< 1 } as n--,c. If we define

converges weakly to the Brownian bridge

1

p ] y(t)dt- min r/(t),
o<_t<_

0

( 28)

then from (126) and (127) we can conclude that

P{p _< x} = W(z), (129)

E{pr) = Mr for r = 0,1,2,..., and

E{e-sp} = (s) (130)

for/e(s) > O.

Accordingly, the random variables w + and p, defined by (87) and (128) respectively, have

exactly the same distribution function. For a direct proof of

P{p <_ z} = P{w + <_ z}

see W. Vervaat [20].

In 1983, D.A. Darling [6] proved that (130)is given by (86). He observed that p can also be

expressed as

P =0<t<max 1
(t) (132)
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where
1

0

In 1961, G.S. Watson [21] found that {(t),0 _< t <_ 1} is a Gaussian process for which E{((t)} = 0

for 0 < t < 1 and

forO<t<landO<u<lwhere

(134)

for Itl i.

r(t) = 1/2(Itl ..1/2)2 1___ (135)24

By using the representation (133) D.A. Darling [6] proved that (130)is equal to the

right-hand side of (86).

8. THE ASYMPTOTIC DISTRIBUTION OF tn

Now we are in a position to find the asymptotic distribution of an
the following result.

as n---,cx. We shall prove

Theorem 7: We have

where the right-hand side is given by (126).

Proof: If we assume that in (1), V(x) = : for 0 < z < 1, then (1) can also be expressed as

212

i=1

where {r/0 r/x," ", r/2n} is the tied-down random walk defined in Section 5, 82n is defined by (92) and

the random variables O,l,’",2n are independent of the random walk {r/0, Yl,...,r/2n} and are

defined in the following way: We choose 2n points at random in the interval (0,1). We assume

that the 2n points are distributed independently and each point has a uniform distribution over the

interval (0,1). These 2n points divide the interval (0,1) into 2n + 1 subintervals. The random

variables 0, 1,"-, 2n are defined as the lengths of these subintervals.

It is easy to see that

E{i} = 1/(2n + 1), ( 3s)
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and

E{} = 2/(2n + 1)(2n + 2)

for i = 0, 1,...,2n and

E{ij} = 1/(2n + 1)(2n + 2)

if 0 < < j _< 2n. Moreover, we have

and

E{,} = .(:= + )/a
i=1

By (91) and (137)

By the above formulas

E E{rtij} = (n- 1)n(2n + 1)/3.

E{en &} = 0

and

E{(e.- .)2} = 1/12.

Accordingly,

as noo. Thus

TR /--’0
,-,-,o- 12n

(lag)

(140)

(141)

(143)

(144)

(145)

(146)

(147)

in probability. Now, (126) and (147)imply (136) and (7).

9. THE MOMENTS OF On
In the representation (137), the joint

O < l < 2<...<ik <_ 2n and l<kg2n, is

density function of il’ fi2"’" fik’

if z1 k 0, x2 k 0,...zk >_ 0,zl + z2 +’" + Zk _< 1, and 0 otherwise. By (148)

where

(148)
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(149)

for ai = O, 1, 2,...(1 < i < k _< 2n).

We can write down that

li = X1 + X2 +... + Xi

for i = 1,2,...,2n where among the random variables X1, X2,’",X2n, n take the value + 1 and n

take the value 1, and all the possible (2nn) choices are equally probable. We have

P{r}i = 2k- i} = i2n-kx n n

for k = 0,1,..., i and by using the reflection principle we obtain that

P{2n >- k} (n2nk)/(2n (152)

for k = O, 1,..., n. Moreover, we have

(- =
E{X1XI...Xk} = -- (-1)J(7)(k_nj)/(n") = (

j=o Oifk= odd.

and

By using the above formulas, we can prove that

E{On} = E{62n} lr 4n l]= (154)

E{O2n}=-E{On). (155)

In a similar way, we can also determine, at least in principle, the higher moments of 0n, but

as the order of the moments increases, the actual calculations rapidly become unmanageable.

Theorem 7 suggests, and indeed we can prove that E{O} and E{p} show identical asymptotic

behavior for every r = 0,1,2,... as ncx. We shall prove the following theorem.

Theorem 8: We have

ldmE((O./T)} dmE((p./q-)’} = Mr

for r = 0, 1,2,... where Mr is given by (5).

Praaf: If r = 0, then (156) is trivially true. By (154) we obtain that

(156)
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(157)

as n---o, and by (155)

as n---c. Thus (156) is true for r- 1 and r = 2. Now we shall prove that (156) is true for every

r>_l. Ifr>l, we can write that

E{Snr ) El,o;) =. ()E((t/, pn)Jpnr- J}

and by the Schwar inequality

p ) pJ- _< [E{(t)n Pn)2J}E{Pn2(r- (t6o)

Now by (127)

E{pn2(r j)} (2n)r-/M2(r j)

as n--oo. We shall prove that

lrn+E{ On pn)2:i)/n:i 0

for j = 1, 2,... and this implies that

/n/mcc[E(0} E{p)]ln"l: = O, (163)

whence (156) follows.

Let kl, k2,... ]r be positive integers and introduce the notations

where (i:t, i2,...,i,. is a combination of size r of (1,2,...,2n) and the sum is taken over all possible

terms of the indicated form, and

By (143) we can write that

E{(On.--pn)2J} -- k1 + k2 +... 2j

k1 >_ 1, k2 >_ 1

(2j)!
kl [k2[. .Skl k2, .Wkl k2,. .. (166)

By (149) we obtain that if k1 + k2 +... = 2j, then
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Wkl,k2 = 0(1/n2j)

and, in particular, if k1 = k2 = = k2j = 1, then

Wkl, k2,...,k2j
"+1= O(l/n2J ) (168)

as n--,oo. Furthermore, by (150) and (153) we obtain that

ska, t2 = 0(nj + a) (169)

as n---.oo, where a is the number of ki’s > 1.

which case a = 2j. Accordingly, by (166)

Always a < 2j, except when kx = k2 =... = k2j = 1 in

E{(On pn)2J} = 0(nj 1) (170)

This proves (162). This also completes the proof of Theorem 8. Theorem 1 follows from

10. AFTER.WORD

In this paper we have demonstrated the appearance of the distribution function W(z) in the

theories of random walk, order statistics and Brownian excursion. In addition, W(z) appears also in

the solutions of problems connected with round-robin tournaments, queuing processes, branching

processes and random graphs. Let us mention briefly the case of random trees. A tree is a

connected undirected graph which has no cycles, loops or multipie edges. A rooted tree has a vertex,

the root, distinguished from the other vertices. The height of a vertex in a rooted tree is the

distance from the vertex to the root, that is, the number of edges in the path from the vertex to the

root. The total height of a rooted tree is the sum of the heights of its vertices. Let Tn be the set of

rooted trees with n vertices and possessing a certain characteristic property, such as labeled vertices,

unlabeled vertices, oriented branches, or trivalent branching. Let us choose a tree at random in the

set Tn assuming that all the possible choices are equally probable. Denote by r(n) the total height

of the tree chosen at random. It turns out that for various different models E{r(n)}/n3/ has a

finite positive limit as noo and

looP{4E{r(n)} <_ x} = W(x) (171)

where W(x) is given in Theorem 2. The various different models of trees require entirely different

mathematical analysis, but surprisingly the random variable v(n) has the same asymptotic behavior
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for each model.

Tables and graphs for W(x) and Wt(x) can easily be produced by using formulas (9) and

(10) and the remarkable program MATHEMATICA by S. Wolfram [22]. The forthcoming paper

[19] contains some tables and graphs for W(x) and
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