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We study a nonhomogeneous quasi-linear parabolic equation and introduce a

method that allows us to find the solution of a nonlinear boundary value problem

in "explicit" form. This task is accomplished by perturbing the original equation

with a source function, which is then found as a solution of some nonlinear

operator equation.
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1. INTRODUCTION

We need to f’md u(x, t) from the 1-D quasi-linear parabolic equation in the form:

U
(1) -- Au + A[u] = f(x,t), x>0, t >0,

(2) u(x, 0) = 0, x>0,

(3) u(0, t) = 7(t), t >0, (7(0) =0),
where A is some nonlinear operator (specified in [2] in more detail). Also note
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that a non-zero initial condition case is reducible to (2).
The general quasi-linear parabolic operator L in the form ([1])

3u
Lu = ai, (x, t, u, ux) HXiXj + a(x,t,u,ux)

requires a rather long list of properties for functions ai, and a to hold in order to

maintain the existence and the uniqueness of the solution of the problem (1)-(3). In
our case, i = j, aid 1 and a(x, t, u, ux) A[u] f(x, t). The complete set of

conditions is presented in [2]. Here we simply recollect that a (x, t, u, p) (p stays

for ux ) is presumed to be continuous in x, t, u, p for (x, t) [0, oo) x [0, T], II u I!

< M and arbitrary p, and continuously differentiable in x, u, p; ( t ) C[0,T].
We also require that A[v + w] A[v] + A[w] + N[v, w], where N is some operator

linear in v (w) separately, and either f(x, t) or A[0], or ( t ) #: 0; otherwise the

solution of (1)-(3) is -= 0, which is not of any interest.

2. OUTLINE OF THE METHOD

The met.hod is based on the perturbation techniques introduced in [2] and the heat

potentials [3]. Now, we consider a linear initial-boundary value problem induced by

(1)-(3)"
W
3---- Aw = F(x, t), x > 0, t> 0,

w(x, 0) = 0, x>0,

w(0, t) = 7(t),

with yet unlown source function F. Then, we can express w as a sum of a volume

potential and a double-layer potential concentrated on S { x = O, t > 0 }:

(4) w = E*F + E* -xx gtSs
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0 0 0
t0:) E(x- , t- x) l 0 dx.

Due to the "jump formula" for the double-layer potential W(x, t, la) (second integral

in (4)) as x 0/ the unknown density function l.t( t ) satisfies the following linear

Volterra integral equation of the second kind:

(5) y( t ) = dx F(, x) E(0- , t- ’) d + l.t( t ) + W(0, t, It),
0 0

where E is a fundamental solution of the standard linear 1-D heat operator. Since

W(0, t, l-t) = 0, (5) gives I.t( t ) explicitly as a linear operator of F, which we denote

by G( F ):

(6) l.t( t ) = G( F ) = 27( t ) + dx F(, ) e- 4(t- x) d.
o o /t-

Then, representing the solution of (1)-(3) in the form u w + v, we find that the

function v(x, t) has to satisfy the following equation (with zero initial and boundary

data):

(7)
v-- Av + A[v] + N[v, w] = f(x, t) F(x, t) A[w]

where w is defined by (4), (6) and N is a line operator with respect to v.

Since F is not yet known, we can try to find it so that right side of (7) becomes

identically equal to 0. After this is accomplished, we obtain a homogeneous problem

for v, which together with the uniqueness theorem [1] implies that v = 0. As a

result, u w, and the solution of the nonlinear problem (1)-(3) is found in explicit

form (4). Since W(x, t, G(F)) is a convolution in the time variable only
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W(x, t, G(F)) = E(x, t) * G(F))(t) 8s G(F)(x) -E(x , t x)[
0

= 41 G(F)(z> 3/2
(t-

2

e 4(t-x) dx,

the corresponding equation for F in the form

(8) F(x,t) = f(x,t) A[E*F + E*G(F) 8s]

is an operator equation, where A is some nonlinear operator applied to the linear

Volterra integral operator from (4). If (8), being expressed in the form B[ F ] F,

has a unique fixed point and, for example, Picard’s method is applied, then Fn ---) F,

f- Fn A[E,Fn]0, vn---)0, wn= un E*Fn ---)E*F u.

As in [2], stability analysis is based on convergence of the Picard method,

representation (4), and the fact that w in (4) continuously depends on F in the

following sense: if I! F F’ II -< e, then II w w’ II-< T e, where T defines the

thickness of the layer. Of course, the spaces and the norms will have to be chosen

depending on the method of solution we apply to (8), specific operator A, etc. In

general, the accuracy of our approximation of the solution u can be as good as we

wish, allowing a sufficient number of steps in the process of solving (8) for F.

It is also worth mentioning that the class of functions F may be quite arbitrary,

since F is not given as input data and depends entirely on our choice and ability to

solve the corresponding equation. For different choices of F we should expect

different types of solutions of (1) ranging from weak to classical.

3. EXAMPLE

Let A[u] u2(x, t), that is a (x, t, u, p) u2 f(x, t) in (1), and N in (7) has
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the form: N[v, w] 2 v w. Now, we consider (8) with operator B in the form:

(9) F = B[F] = f(x,t)

d’ F(, ) E(x- , t- ) d + G(F)(z)
/3 t- )! o d

R
3

Solving (9) means finding a fixed point of the operator B.

Let f e C([0, ,,,,) x [0, T]) the Banach space of continuous functions with

standard uniform norm. We seek solution of (9) in a closed ball UF { F: II F !! <-
M } in the Banach space C, centered at the origin and with radius M specified later.

It can be proved that B is a contraction on UF for sufficiently small T, since

II E, F1
E, F2 II -< il F F2 I! T,

II E*F1 + E*F2 il -< 2 MI:T,

II G(F1) G( F2) II -< 2 I! F F2 II T,

lie, (G(F1) G(F2))is II -< Ii F F2 I! T,

l! E * ( G(F1) + G( F2) ) t5s II <_ 2 MF T,

B[F] B[F2] = E,(F1-F2) + E,(G(F)-G(F2))15s

x E,(FI+F2) + E,(G(F1)+G(F2))15s

-< 8MT 2 I! F,-2
II,

and, finally,
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(10) II B[F1] B[F2] 1{ < 190 {I F -F2
II, where 190 8 M T

2
= < 1.

In addition, operator B satisfies the following condition at the center (see [5],
"contraction on a ball theorem"):

(11) II 0- B[0] I! I! f Ii < (1- P0) M,

which, together with (10), implies that UF remains invariant under the operator B,

and the method of successive approximations is convergent. The necessity to satisfy

(10) and (11) simultaneously, gives the basis for the proper choice of M and T. The

complete analysis is quite simple and thus we shall supply one example only"

M 3 !i f !i, T : 1/(48 II f I1), and P0 8 M T= 1/2.

Obviously, both (10) and (11) are satisfied.

Hence, the unique solution of (8) can be first found by the Picard method in some

sufficiently thin layer [0, 00) x [0, T1].
To extend this process onto the next [T, T] layer we solve (8) in the class of

functions that coincide with the just found F(x, t) in the layer from the previous step.

This, and the fact that M is an absolute constant, allow us to obtain the next estimate

for t IT2, T3] identical to (10), where T2 -T substitutes T1 That is, the

extension onto arbitrary [0,T] layer can be accomplished in a finite number of equal

"steps".
The method is stable in C-metric both at the stage of finding F and later, when

solution is calculated in the form (4), (6).

Remarks.
1. This method may be applicable to a wide range of cases with different

linear/nonlinear operators A (both for Cauchy and boundary value problems) that

comply with the assumptions mentioned in Sec.1. It should be noted that those

conditions are not related to equation (8) (the equation (8) itself is of a separate interest

and can be considered under a variety of assumptions on function F and operator A).

We need them exclusively to ensure that the only solution possible for the
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homogeneous equation (7) is v w_ 0. Any other set of conditions on coefficients ai,j,

a, and boundary data 7 will do as long as uniqueness in (7) can be maintained.

2. The method can be used separately as a constructive tool for proving existence

and uniqueness theorems in a variety of cases.

3. The method is not restricted to quasi-linear equations. It can be tried on some

other nonlinear and linear (including variable coefficients) cases.

4. For the case of A[u] u ux as in [2] the unique solvability of the

corresponding equation (8) can be proved, thus giving the solution of (1)-(3) in the

form (4).
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