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1. INTRODUCTION

The theory of nonlinear Volterra integral equations with deviating arguments and
functional integral equations have been studied by many authors [1,2,5,6]. Banas [4] has
proved an existence theorem for functional integral equations and Balachandran [1] has
proved an existence theorem for a nonlinear Volterra integral equation with deviating
argument. In this paper we shall derive a set of sufficient conditions for the existence of a
solution of nonlinear Volterra integral equations with deviating arguments. This result is a
generalization of the results in [1,4].

2. BASIC ASSUMPTIONS

Let p(z) be a given continuous function defined on the interval [0,0) and taking real
positive values. Denote C([0,0), p(z):R") by C,, the set of all continuous functions from
[0,00) into R” such that

sup {lx()lp@): 120 } <eoo.
It has been proved [7] that C, forms a real Banach space with regard to the norm
lixll = sup { x(®lp(r): t=0}.

If x e C, then we will denote by @7'(x,€) the usual modulus of continuity of x on

the interval [0,T], that is,
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@l (x,€) = sup {Ix(¢) - x(s)l: It - sl < & 1,5 € [0,T]}.
Our existence theorem is based on the following lemma.
Lemma (See [3].): Let E be a bounded set in the space C,. If all functions
belonging to E are equicontinuous on each interval [0,T] and

%ig“{lx(t)lp(t): 12T} =0
uniformly with respect to E, then E is relatively compact in C,.

Consider the nonlinear Volterra integral equation with deviating arguments
t
(D x(®) = G()g(tx(hy (1)), x(ha(D)),...x(h,(2))) + JK (8,5, X(H 1 (5)),... . X(H ,,(5)))ds

where x, H and K are n-vectors and G is a real-valued function. Assume the following
conditions.

(i) Let A= {(,s): 0<s5<t<oo}. The kernel K: A x R" — R™ is continuous and
there exist continuous functions m: A — [0,%), a: [0,%0) — (0,%0), and b: [0,00) — [0,0)
such that

m
IK (8,5, X0 X)) € m(2,5) + a(D)b(s) leil
i=1

for all (z,5) € 4 and (x1,%y,...,X,,) € R,

t
In order to formulate other assumptions let us define L(r) = [a(s)b(s)ds, t20;
0

furthermore, let us take an arbitrary number M > 0 and consider the space C, with
p(t) = [a()eMLO+]-1,

(ii) There exists a constant A > 0O such that for any t € [0,e) the following
inequality holds.

t
fm(t,5)ds < Aa(r)eML®)
0

(iii) For i =1, 2,...,n the functions A;: [0,0¢) — [0,%) are continuous, #;(0) = 0,
h(t) <tfor t 2 0 and there exists a positive real number B; such that a(h(?)) < B;a(?).

(v) G: C = [0,00) is continuous and bounded. Assume IG(x)l <k, where k; is a
positive constant.

(v) The function g: [0,.0) x R"* — R" is continuous and satisfies the conditions

n
lg(£.X1,X9,....xp) - 8(1,Y1,Y2,- ¥l € Zai(t)lxz -yl
i=1

where o;(?) is continuous such that
a;(r) < eMILO L)) for ¢ 2 0, for i = 1,2,...,n and 1g(2,0,...,0)l < a(r)eML®),
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(vi) Fori =1,2,....m, the functions H;: [0,ee) — [0,e0) are continuous and satisfy
the following conditions:
L(H(®)-L(@) <N;
where N; is a positive constant, and
a(H()/a@®) < (M/m)[1 - ky(1 + B) - AleMN:

n
where B = ¥ B; and we assume k1(1 +B) +A < 1.
1=1

3. EXISTENCE THEOREM

Theorem: Assume that the hypotheses (i) through (vi) hold; then equation (1) has
at least one solution x in the space C,, such that Ix(r) < a(®)eML®) for any t 2 0.
Proof: Define a transformation F in the space C, by

(2) (Fx)(t) = G(x)g(t.x(hy(1)), X(ho(D)),....x(h, (1))
t
+ JK(t,s,x(Hl(s)),...,x(H,,,(s)))ds.

From our assumptions we observe that (Fx)(¢) is continuous on the interval [0,e2). Define
the set E in C, by

E={xe Cp: x(®l £ a(r)eMLo},
Clearly E is nonempty, bounded, convex, and closed in C,. Now we prove that F* maps
the set E into itself. Take x € E. Then from our assumptions we have

t
IFx)() < 1GEON 1g(t,x(y (O),... x(h (D)) + JIK(t,s,x(Hl(s)),...,x(Hm(s)))lds.

t
< Ky lg (6 (0 K () - 8100 + rlg(£0,... O + Im(e.)ds
t
+ () J'b(s)zﬂi _ x(H(s)\ds
0
n
<k D 05(Ox(hiO) + kja@)eML® + Aa(r)eML()
i=1

t
+a(?) Jb(s)Z'} _ a(H {s)emiinds
0

n
<k, ZeM[L(t) - LN (h(1))eMLAHI®) + kya(r)eMLO + Aa(r)eMLE®

=1
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m t
+a()([1 - ky(1+ B) - A)/m) Ze'MN-’OIMb(s)a(s)eMN.' eML()s

=1
<k;Ba()eML®) + k,a(neML®) + Aa(H)eML® + a(n)[1 - ki (1 + B) - AleML®)
= a(r)eMLO),
which proves that FE is a subset of E.

Now we want to prove that F is continuous on the set E. In order to do this we
take F =F| + F,, where

(F1x)(@) = G(x)g (0, x(hy(9)),.... X (A, (1))
t
and (Fox)(0) = jK(r,s,x(Hl(s)),...,x(Hm(s)))ds.
0

We shall prove the continuity of F; and F, separately. Let us fix € > 0 and take
x,y € E such thatllx - yll <& We have
WFx - Fiyll < ky sup{lg(.x(hy(2)),....x(h,(2)))
- 81y (1 ()),....y(h, (D)) [a(B)eMLO+]1: ¢ > 0}
+ 1G(x) - G(y)lsup{lg(t,y(hy(®),...y(h,(ON-[a()eML)+]-1: 1> 0}
n
< kY sup{aOlx(ho) - yh)a@eMLOL: £ 2 0)

1= 1
+1G(x) -G)! sup {Ig(t,y(h;()),....y(h,(1))) -8(2,0,...,0)l-[a(t)eMLO)+]-1: ¢t > 0}
+1G(x) -G()! sup{lg(t,0,...,0)-[a()eMLO+]-1: >0}
<k iB sup{x(h (1)) - y(h())[a(h(£))]-1eMILO-L]e-MLO-t .1 > 0}

i= 1
+G(x) - G(y)! % sup{ o) ly(hy(0))! [a(t) eML(®) + 111 : ¢ > ()
i=1
+1G(x) - G(y)l sup{e*:t 20}
<k iB,-sup{lx(h,-(t)) - y(h(O)[a(h(r)) eML(Ai®) + hit)]-1 : ¢ > ()

i=1

+1G(x) - G(y)| % sup{a(h;(1))eML®)[a(r) eML)+E)1: ¢ > 0}+ IG(x)-G(y)l
i=1

1=

<k; Bllx-yll + BIG(x) - G(y)l +1G(x) - G(y)I.

This implies that F; is continuous in view of (iv).

Now we prove that F is continuous on the set E. For this let us fix €> 0 and x, y
€ E such that Il x -yl <& Further, let us take an arbitrary fixed T > O. In view of (i)
and (vi) the function K(¢, 5, x;, . . ., X,,) is uniformly continuous on
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[0, TT [0, T1 x [-r(H (D)), r(H ,(T)1x...d-r(H ,,(T)), r(H ,(T))]
where r(T) = max{a(s)eMtL(s) . 5€[0, T]. Thus, we have for t€[0, T]
3) I @) - Fpy) ()] < f/ K(t, 5, X(H (5)),.s X(Hp(5))
" KG, 5,y H () YH(s)) ] d
<Be)

where B(g) is some continuous function such that th:) B(e) =0. Further, let us take

t>T. Then we have

[ (F) (1) - (F,3) ()] S| (F) (1)) + [ (Fy) (1)]
<2a( t)eML(‘)

and  [(Fx)(t)-(F,y) (1) p(t) S2e ™.

Hence for sufficiently large T we have

4) [CF,x)(@0)-(Fy) @)/ p@) <€ .

By (3) and (4) we get that F is continuous on the set E. Hence F = F; + Fp is
continuous on E.
Now we prove that FE is relatively compact. For every x € E we have Fx € E which

gives I(Fx)(1)lp(t) Set. Hence ™ sup(I(Fx)(1)p(1):t2T } =0  uniformly with

respect to xe E.
Furthermore, let us fix € >0 and T>0, and let t, s€[0, T] such thatlz-s | <€ Then for
xeE, we have

[ (Fx) (1) - (Fx)(s) | SIG(x) | | §(t, x(h(1)),..., X(hy(1)))
- g(s’ X(hI(S)),..., x(hn(s)) /

t
+//K(t, U, x(Hl(u)),..., x(H,(u))du

: / K(s, tt, Y(H (1)),..., Y(H,p(w))du |
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¢
Sk o' (g9 +/ f K(t, u, x(H ()),.... X(H ,(u)) du
o
s
i _[ K, t, X(H ()., x(H (1)) dd
o

y f K, 1, XCH ( )),very X(H (1)) it

i f K(5, tt, X(H (W)),..., X(Hp() dt |
t
<k, wlg e+ / | K(t, , X(H ()),.... X(Hp(w)) | du

" / I Kty X(H (0)),.... 5(Hy(4)))

-K(s, , x(H, (w)),..., x(Hp(w))) | du

<k o7 (g, e+ emax{ m(t,u) + a(0b(w) Y, [ x(H{w) : oSusi<T)
i=1

+Tw T(K, £).
This tends to zero as €é—0. Thus FE is equicontinuous on [0, T].
Therefore from the lemma FE is relatively compact. Thus the Schauder fixed point

theorem guarantees that F has a fixed point xe E such that (Fx) (t) = x(t). Hence the
theorem holds.

EXAMPLE: Consider the following nonlinear integral equation:

t
&) x(t) = (1/8) tsinx (/2) + /[ts + (t3+ (1/4)) x(s/3) ] ds.

This is clearly of the form (1) and satisfies all the conditions (i) to (vi) with
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m=n=1,G(x)=1/8, g(t,x) = tsinx,
K(t,5,x)=ts+ (F +(114)) x,
m(t,s)=ts,a(t) =€ + (1/4), b(s) = I,
a,t)=1t h1) = 12, Hz(’) =13,
M=16A=112B=1k=18N, =116

Therefore from our existence theorem the equation (5) has at least one solution x in the
space Cp such that

4
[x(0)] <2 + 14" Y forany 1 20.
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