AN EXISTENCE THEOREM FOR A VOLTERRA INTEGRAL EQUATION WITH DEVIATING ARGUMENTS'

K. Balachandran and S. Ilamaran Department of Mathematics Bharathiar University Coimbatore-641 046 Tamil Nadu, India

ABSTRACT

An existence theorem is proved for a nonlinear Volterra integral equation with deviating arguments.

Key words: Existence of solution, Volterra integral equation, Deviating arguments, Schauder fixed point theorem.

AMS subject classification: 45D05.

1. INTRODUCTION

The theory of nonlinear Volterra integral equations with deviating arguments and functional integral equations have been studied by many authors [1,2,5,6]. Banas [4] has proved an existence theorem for functional integral equations and Balachandran [1] has proved an existence theorem for a nonlinear Volterra integral equation with deviating argument. In this paper we shall derive a set of sufficient conditions for the existence of a solution of nonlinear Volterra integral equations with deviating arguments. This result is a generalization of the results in [1,4].

2. BASIC ASSUMPTIONS

Let p(t) be a given continuous function defined on the interval $[0,\infty)$ and taking real positive values. Denote $C([0,\infty), p(t):\mathbb{R}^n)$ by C_p , the set of all continuous functions from $[0,\infty)$ into \mathbb{R}^n such that

$$\sup \{|x(t)|p(t):\ t\geq 0\ \}<\infty.$$

It has been proved [7] that C_p forms a real Banach space with regard to the norm

$$||x|| = \sup \{ |x(t)|p(t): t \ge 0 \}.$$

If $x \in C_p$ then we will denote by $\omega^T(x,\varepsilon)$ the usual modulus of continuity of x on the interval [0,T], that is,

^{*} Received: October 1989, Revised: March 1990.

$$\omega^{T}(x,\varepsilon) = \sup \{ |x(t) - x(s)| : |t - s| \le \varepsilon, t,s \in [0,T] \}.$$

Our existence theorem is based on the following lemma.

Lemma (See [3].): Let E be a bounded set in the space C_p . If all functions belonging to E are equicontinuous on each interval [0,T] and

$$\lim_{T \to \infty} \{ |x(t)| p(t) \colon t \ge T \} = 0$$

uniformly with respect to E, then E is relatively compact in C_p .

Consider the nonlinear Volterra integral equation with deviating arguments

(1)
$$x(t) = G(x)g(t,x(h_1(t)), x(h_2(t)),...,x(h_n(t))) + \int_0^t K(t,s,x(H_1(s)),...,x(H_m(s)))ds$$

where x, H and K are n-vectors and G is a real-valued function. Assume the following conditions.

(i) Let $\Delta = \{(t,s): 0 \le s \le t < \infty\}$. The kernel $K: \Delta \times \mathbb{R}^{nm} \to \mathbb{R}^n$ is continuous and there exist continuous functions $m: \Delta \to [0,\infty)$, $a: [0,\infty) \to (0,\infty)$, and $b: [0,\infty) \to [0,\infty)$ such that

$$|K(t,s,x_1,x_2,...,x_m)| \le m(t,s) + a(t)b(s) \sum_{i=1}^{m} |x_i|$$

for all $(t,s) \in \Delta$ and $(x_1,x_2,...,x_m) \in \mathbb{R}^{nm}$.

In order to formulate other assumptions let us define $L(t) = \int_0^t a(s)b(s)ds$, $t \ge 0$; furthermore, let us take an arbitrary number M > 0 and consider the space C_p with $p(t) = [a(t)e^{ML(t)+t}]^{-1}$.

(ii) There exists a constant A > 0 such that for any $t \in [0,\infty)$ the following inequality holds.

$$\int_{0}^{t} m(t,s)ds \le Aa(t)e^{ML(t)}$$

- (iii) For i = 1, 2,...,n the functions h_i : $[0,\infty) \to [0,\infty)$ are continuous, $h_i(0) = 0$, $h_i(t) \le t$ for $t \ge 0$ and there exists a positive real number B_i such that $a(h_i(t)) \le B_i a(t)$.
- (iv) G: $C_p \to [0,\infty)$ is continuous and bounded. Assume $|G(x)| \le k_1$ where k_1 is a positive constant.
 - (v) The function g: $[0,\infty) \times \mathbb{R}^{n^2} \to \mathbb{R}^n$ is continuous and satisfies the conditions

$$|g(t,x_1,x_2,...,x_n) - g(t,y_1,y_2,...,y_n)| \le \sum_{i=1}^n \alpha_i(t)|x_i - y_i|$$

where $\alpha_i(t)$ is continuous such that

$$\alpha_i(t) \le e^{M[L(t) - L(h_i(t))]}$$
 for $t \ge 0$, for $i = 1, 2, ..., n$ and $|g(t, 0, ..., 0)| \le a(t)e^{ML(t)}$.

(vi) For i = 1, 2, ..., m, the functions H_i : $[0, \infty) \to [0, \infty)$ are continuous and satisfy the following conditions:

$$L(H_i(t)) - L(t) \le N_i$$

where N_i is a positive constant, and

$$a(H_i(t))/a(t) \leq (M/m)[1 - k_1(1+B) - A]e^{-MN_i}$$

where B = $\sum_{i=1}^{n} B_i$ and we assume $k_1(1+B) + A < 1$.

3. EXISTENCE THEOREM

Theorem: Assume that the hypotheses (i) through (vi) hold; then equation (1) has at least one solution x in the space C_p such that $|x(t)| \le a(t)e^{ML(t)}$ for any $t \ge 0$.

Proof: Define a transformation F in the space C_p by

(2)
$$(Fx)(t) = G(x)g(t,x(h_1(t)), x(h_2(t)),...,x(h_n(t)))$$

$$+ \int_0^t K(t,s,x(H_1(s)),...,x(H_m(s)))ds.$$

From our assumptions we observe that (Fx)(t) is continuous on the interval $[0,\infty)$. Define the set E in C_p by

$$E = \big\{ x \in \ C_p \colon |x(t)| \le a(t) e^{ML(t)} \big\}.$$

Clearly E is nonempty, bounded, convex, and closed in C_p . Now we prove that F maps the set E into itself. Take $x \in E$. Then from our assumptions we have

$$\begin{split} |(Fx)(t)| &\leq |G(x)| \ |g(t,x(h_1(t)),...,x(h_n(t)))| + \int_0^t |K(t,s,x(H_1(s)),...,x(H_m(s)))| ds. \\ &\leq k_1 |g(t,x(h_1(t)),...,x(h_n(t))) - g(t,0,...,0)| + k_1 |g(t,0,...,0)| + \int_0^t m(t,s) ds \\ &+ a(t) \int_0^t b(s) \sum_{i=1}^m |x(H_i(s))| ds \\ &\leq k_1 \sum_{i=1}^n \alpha_i(t) |x(h_i(t))| + k_1 a(t) e^{ML(t)} + Aa(t) e^{ML(t)} \\ &+ a(t) \int_0^t b(s) \sum_{i=1}^m a(H_i(s)) e^{ML(H_i(s))} ds \\ &\leq k_1 \sum_{i=1}^n e^{M[L(t) - L(h_i(t))]} a(h_i(t)) e^{ML(H_i(t))} + k_1 a(t) e^{ML(t)} + Aa(t) e^{ML(t)} \end{split}$$

$$+ a(t)([1 - k_1(1+B) - A]/m) \sum_{i=1}^{m} e^{-MN_i} \int_{0}^{t} Mb(s)a(s)e^{MN_i} e^{ML(s)}ds$$

$$\leq k_1Ba(t)e^{ML(t)} + k_1a(t)e^{ML(t)} + Aa(t)e^{ML(t)} + a(t)[1 - k_1(1+B) - A]e^{ML(t)}$$

$$= a(t)e^{ML(t)},$$

which proves that FE is a subset of E.

Now we want to prove that F is continuous on the set E. In order to do this we take $F = F_1 + F_2$, where

$$(F_1x)(t) = G(x)g(t,x(h_1(t)),...,x(h_n(t)))$$
 and
$$(F_2x)(t) = \int_0^t K(t,s,x(H_1(s)),...,x(H_m(s)))ds.$$

We shall prove the continuity of F_1 and F_2 separately. Let us fix $\varepsilon > 0$ and take $x,y \in E$ such that $||x-y|| \le \varepsilon$. We have

$$\begin{split} &||F_{1}x - F_{1}y|| \leq k_{1} \sup\{|g(t,x(h_{1}(t)),...,x(h_{n}(t)))\\ &- g(t,y(h_{1}(t)),...,y(h_{n}(t)))| \cdot [a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sup\{|g(t,y(h_{1}(t)),...,y(h_{n}(t)))| \cdot [a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &\leq k_{1} \sum_{i=1}^{n} \sup\{\alpha_{i}(t)|x(h_{i}(t)) - y(h_{i}(t))|[a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sup\{|g(t,y(h_{1}(t)),...,y(h_{n}(t))) - g(t,0,...,0)| \cdot [a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sup\{|g(t,0,...,0) \cdot [a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &\leq k_{1} \sum_{i=1}^{n} B_{i} \sup\{|x(h_{i}(t)) - y(h_{i}(t))|[a(h_{i}(t))]^{-1}e^{M[L(t)-L(h_{i}(t))]}e^{-ML(t)-t} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sum_{i=1}^{n} \sup\{\alpha_{i}(t)|y(h_{i}(t))|[a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sup\{e^{-t} \colon \ t \geq 0\}\\ &\leq k_{1} \sum_{i=1}^{n} B_{i} \sup\{|x(h_{i}(t)) - y(h_{i}(t))|[a(h_{i}(t))e^{ML(h_{i}(t))} + h_{i}(t)]^{-1} \colon \ t \geq 0\}\\ &+ ||G(x) - G(y)| \sum_{i=1}^{n} \sup\{a(h_{i}(t))e^{ML(t)}[a(t)e^{ML(t)+t}]^{-1} \colon \ t \geq 0\} + ||G(x) - G(y)|\\ &< k_{1} B ||x-y|| + B ||G(x) - G(y)| + ||G(x) - G(y)||. \end{split}$$

This implies that F_1 is continuous in view of (iv).

Now we prove that F_2 is continuous on the set E. For this let us fix $\varepsilon > 0$ and $x, y \in E$ such that $||x - y|| \le \varepsilon$. Further, let us take an arbitrary fixed T > 0. In view of (i) and (vi) the function $K(t, s, x_1, \ldots, x_m)$ is uniformly continuous on

$$[0, T] \times [0, T] \times [-r(H_{1}(T)), r(H_{2}(T))] \times ... \times [-r(H_{m}(T)), r(H_{m}(T))]$$

$$where \ r(T) = max\{a(s)e^{ML(s)}_{t} : s \in [0, T]. \ Thus, we have for \ t \in [0, T]$$

$$/(F_{2}x) \ (t) - (F_{2}y) \ (t) / \leq \int_{0}^{t} K(t, s, x(H_{1}(s)), ..., x(H_{m}(s)))$$

$$-K(t, s, y) \ (H_{1}(s)), ..., y(H_{m}(s)) / ds$$

$$\leq \beta(\varepsilon)$$

where $\beta(\varepsilon)$ is some continuous function such that $\lim_{\varepsilon \to 0} \beta(\varepsilon) = 0$. Further, let us take $t \ge T$. Then we have

$$| (F_2 x) (t) - (F_2 y) (t) | \le | (F_2 x) (t) | + | (F_2 y) (t) |$$

$$\le 2a (t)e^{ML(t)}$$
and
$$| (F_2 x) (t) - (F_2 y) (t) | p(t) \le 2e^{-t}.$$

Hence for sufficiently large T we have

(4)
$$/(F_{2}x)(t) - (F_{2}y)(t)/p(t) \le \epsilon.$$

By (3) and (4) we get that F_2 is continuous on the set E. Hence $F = F_1 + F_2$ is continuous on E.

Now we prove that FE is relatively compact. For every $x \in E$ we have $Fx \in E$ which gives $|(Fx)(t)|p(t) \le e^{-t}$. Hence $\lim_{T\to\infty} \sup\{|(Fx)(t)|p(t):t \ge T\} = 0$ uniformly with respect to $x \in E$.

Furthermore, let us fix $\varepsilon > 0$ and T > 0; and let $t, s \in [0, T]$ such that $|t-s| \le \varepsilon$. Then for $x \in E$, we have

$$| (Fx) (t) - (Fx)(s) | \le |G(x)| | g(t, x(h_{I}(t)), ..., x(h_{n}(t)))$$

$$- g(s, x(h_{I}(s)), ..., x(h_{n}(s)) |$$

$$+ | \int_{o}^{t} K(t, u, x(H_{I}(u)), ..., x(H_{m}(u)) du$$

$$- \int_{o}^{t} K(s, u, y(H_{I}(u)), ..., y(H_{m}(u)) du |$$

$$\leq k_1 \ \omega^T(g, \varepsilon) + / \int_o^t K(t, u, x(H_1(u)), ..., x(H_m(u)) \ du$$

$$- \int_o^s K(t, u, x(H_1(u)), ..., x(H_m(u))) \ du /$$

$$+ / \int_o^s K(t, u, x(H_1(u)), ..., x(H_m(u))) \ du$$

$$\begin{split} & - \int_{o}^{s} K(s, \, u, \, x(H_{I}(u)), ..., \, x(H_{m}(u))) \, \, du \, / \\ \leq k_{I} \, \, \omega^{T}(g, \, \varepsilon) + \int_{s}^{t} / K(t, \, u, \, x(H_{I}(u)), ..., \, x(H_{m}(u))) \, / \, \, du \\ & + \int_{o}^{s} / K(t, \, u, \, x(H_{I}(u)), ..., \, x(H_{m}(u))) \\ & - K(s, \, , \, x(H_{I}(u)), ..., \, x(H_{m}(u))) \, / \, \, du \end{split}$$

$$\leq k_1 \omega^T (g, \varepsilon + \varepsilon \max\{ m(t, u) + a(t)b(u) \sum_{i=1}^m / x(H_i(u) / : o \leq u \leq t \leq T \} + T \omega^T (K, \varepsilon).$$

This tends to zero as $\varepsilon \rightarrow 0$. Thus FE is equicontinuous on [0, T].

Therefore from the lemma FE is relatively compact. Thus the Schauder fixed point theorem guarantees that F has a fixed point $x \in E$ such that (Fx)(t) = x(t). Hence the theorem holds.

EXAMPLE: Consider the following nonlinear integral equation:

(5)
$$x(t) = (1/8) t \sin x (t/2) + \int_{0}^{t} [ts + (t^{3} + (1/4)) x(s/3)] ds.$$

This is clearly of the form (1) and satisfies all the conditions (i) to (vi) with

$$m = n = 1, G(x) = 1/8, g(t, x) = t \sin x,$$

$$K(t, s, x) = ts + (t^{3} + (1/4)) x,$$

$$m(t, s) = ts, a(t) = t^{3} + (1/4), b(s) = 1,$$

$$\alpha_{1}(t) = t, h_{1}(t) = t/2, H_{1}(t) = t/3,$$

$$M = 16, A = 1/2, B = 1, k_{1} = 1/8, N_{1} = 1/16.$$

Therefore from our existence theorem the equation (5) has at least one solution x in the space C_D such that

$$|x(t)| \le (t^3 + 1/4)e^{4(t^4 + t)}$$
 for any $t \ge 0$.

REFERENCES

- [1] Balachandran, K., Existence of Solution for Nonlinear Volterra Integral Equation with Deviating Argument, J. Math. Phy. Sci., 23(1989), 201-205.
- [2] Banas, J., An Existence Theorem for Nonlinear Volterra Integral Equation with Deviating Argument, Rendiconti del Circolo Mathematico di Palermo, Series 2, 35(1986), 82-89.
- [3] Banas. J. and Goebel, K., Measure of Noncompactness in Banach Spaces, Marcel Dekkar Inc., New York (1980).
- [4] Banas, J., On Solutions of Some Functional Integral Equations, Bull. Inst. Math. Acad. Sinica, 12(1984), 23-30.

- [5] Brauer, F., A Nonlinear Variation of Constant Formula for Volterra Equations, Math. Systems Theory, 6 (1972), 226-234.
- [6] Burton, T.A., Volterra Integral and Differential Equations, Academic Press, New York, (1983).
- [7] Corduneanu, C., Integral Equations and Stability of Feedback Systems, Academic Press, New York (1973).
- [8] Kartsatos, A.G., Existence of Bounded Solutions and Asymptotic Relationships for Nonlinear Volterra Integral Equations, Math. Systems Theory 8, (1974), 266-275.
- [9] Lakshmikanthem, V. and Leela, S., Differential and Integral Inequalities, Vol. I, Academic Press, New York (1969).