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ABSTRACT

Application problems are investigated for the Markov chains with quasitoeplitz
transition matrix. Generating functions of transient and steady state probabilities, first
zero hitting probabilities and mean times are found for various particular cases,
corresponding to some known patterns of feedback ("warm-up," "switch at threshold,"
etc.). Level-depending dams and queue-depending queueing systems of both M/G/1 and
GI/M/1 types with arbitrary random sizes of arriving and departing groups are studied.
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1. INTRODUCTION

in this paper we investigate the application problems for the general results of our

preceding papers [1] and [2] on the Markov chains with quasitoeplitz transition matrix,

elements of which depend on the difference of indices except for the first column and some

first rows.

We consider here some particular cases of this structure with various types of

relationships between the toeplitz part of the transition matrix and its first nontoeplitz rows.

These relationships correspond to some types of state-dependence known in literature:

"warm-up," with one row in the nontoeplitz part;

"Bailey type," with equal first rows;

"switch at a threshold," with the first rows of another toeplitz structure.

We refer, for example, to Abolnikov and Dukhovny [3, 4] and Neuts [5] for results

on transient and steady state probabilities and the ergodicity criterion in the case where

toeplitz rows have left or fight zero parts.

Here we proceed from the general results of [1] and [2] to specify formulas for the

generating functions (GF’s) of the transient and steady state probabilities, first zero hitting

(FZH) probabilities and mean times, and the ergodicity criterion for all mentioned patterns

of state-dependence, with no significant restriction put on the toeplitz part.
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We introduce here the model of a dam with additional irregular loss

("vaporization"), being significant only over some dam level, and we treat it as a particular

case of Markov chains with quasitoeplitz transition matrix with a switch at a threshold.

Bulk queueing systems M/G/1 and GI/M/1 are considered with no restriction put on

the size distributions of arriving and departing groups. They are also treated as a particular

case of the general quasitoeplitz model.

2. GENERAL RESULTS TABLE

To make this paper self-contained, we list here assumptions, denotations and

results of[l] and [2].
Let Markov chain {}have a quasitoeplitz transition matrix A = (aij), so that the

GF’s of its elements,

(1) aij zJ = Ai(z) = TO ziH(z), i > n > 1,
j =0

where operators T/, T-, and TO are defined as follows.
-1

j=0 j=-**

rO (z) = +
j=0

for any Laurent series K(z); H(z) .**hz.
(See section 3 for n = 0.)
Natural properties (see [ 1]) emerge-- conditions of descent and ascent (enabling

the chain to descend to zero from any other state, to stay at zero, to ascend from zero to

above n) and the existence of averages (.,j oiaij < o,,, for all i.)

(2) n’(1) < 0,
so {k} is ergodic and, as it was proved in [1],
(3) Indr [ 1 H(z)]ze(z) = O,

-iwhere e(z) = Z1Z /"." Izl = 1, /’’: Izl < 1, /"" Izl > 1.

Therefore, functions

(4) R+/-(x,z) = exp {-Te In [1 xH(z)] }, x (0, 1),

(5) R+/-(z) = exp {-T: In ze(z)[ 1- H(z)] }
and their reciprocals are analytical in/"+ and P, respectively, and continuous on F.

The GF W(x,z) = o j o zxof the transient state probabilities is

determined by
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(6)
n-1

W(X,Z) = ZUi(x) [z + xznR+(x,z)T+z’nAi(z)R’(x,z)]
i=0

where U0(x), UI(X), Un. l(X) form the only solution of the system of linear equations
n

(7) ., Uj(X) DJTO[zi- xai(z)]R’(x,z) = R’(x,a), j = 0, n- 1.
i=0

By definition, DjK(z) = kj for any Laurent series K(z).
The GF P(z) = ZopjTJ of the steady state probabilities is

n

(8) e(z) = Zpi[z + znR+(z)T+zl-ne(z)Ai(z)R’(z)]
i=0

where P0, P, ..., Pn-, and c form the only solution of the system of linear equations:
n

(9) JTiDJTze(z)[zi- ai(z)]R’(z) = co,j, j = O, 1, ..., n- 1
i=0

(where stands for Kronecker"s symbol),

n

(10) cR+(l) + i{1 g’(1)’l[Ai’(1) i]} = 1.
0

Let q , i > 0, k> 0, be the probability of FZH in k steps from i, q =

qi(x) = Z"*k= oqxk; Q(x,z) Zlqi(x)z. Then

(11) Q(x,z) = z1 "ne’(x,z)[(x- 1)R+(x,1)e(z) +
n-

Zqi(x)T+zn" "iR (x,z)- ]
i=

and qo(x), q(x),...,qn. (x) form the only solution of the system of linear equations

(i =0, 1, n 1):
n-1

(12) qi(x) x Zqj(x)Dn’IAi(z)R-(x,z)T+zn’I-j’R’(x,z)"1

j=

= (x- 1)[1 + xR/(x,1)Dn’Ai(z)e(z)R’(x,z)].
When i= 0 (12) is a formula for the qo(x)= x..--S"* q- 1 where the --’s are

the probabilities of the first return to 0.

The GF #(z) of FZH mean times #i = kqi is

(13) #(z) = zZ’e(z)R’(z)[R/(1)e(z) + .,liT+zn-i-2(z 1)R-(z)-,
i=

where #0, P,..., P- form the only solution of the system of linear equations

(i=0, 1,..., n 1),
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(14)
n-

#i ZjDn" 2Ai(z)R’(z)e(z)T+znq’2(z 1)R’(z)-I

j=

= 1 + R+(1)Dn" 2Ai(z)e2(z)R’(z).
When i = 0 (14) provides a formula for/.to, which is the mean time of the first

return to zero.

3. SIMPLE PARTICULAR CASES

(15)
(16)
(17)
(18)
(19)
(20)

In this section we consider some simple particular cases of the general model.

a) n = 0 homogeneous random walk with absorption in zero, no state-

dependence.

Combining corresponding results of [1] and [2] we have

W(x,z) = R’(x,1)R/(x,z) = (1 x)’lR/(x,1)’lR+(x,z),
e(z) = R/(1)-R+(z),
a(x,z) = (x 1)e(z)R/(x, 1)R’(x,z),
qo(x) = (x 1)R/(x,1)R+(x,O)"1,
#(z) = ze2(z)R/(1)R-(z),
/.to = R+(1)R+(0)-1.

Note that it follows from (15) and (16) that

Uo(x) = (1 x)’IR+(x,1)’IR+(x,O),

Po = R+(1)IR+(0),
(21) -Uo(x)qo(x) = pot.to = 1

in accordance with the renewal processes theory.
b) n = 1 ---"warm-up."
To provide the conditions of descent and ascent we only need that 0 < a00 < 1. All

the GF’s still may be derived explicitly from formulas (6) through (14):
(22)
(23)
(24)

(25)

(26)
(27)

W(x,z) = U0(x)[1 + xzR/(x,z)T/z’IAo(z)R’(x,z)];
U0(X)-1 = (1- x)[1 + xR+(x,1)DAo(z)e(z)R’(x,z)];
e(z) =P0[1 + zR+(z)T/e(z)Ao(z)R’(x)];
po- = 1 + R/(1)DAo(z)e2(z)R-(z).
Q(x,z) and #(z) are given by (17) and (19), so

qo(x) = (x- 1)[1 + xR/(x,1)OAo(z)e(z)R(x,z)],
Yo = 1 + R/(1)DAo(z)e2(z)R’(z).
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To obtain formulas for Uo(x)and P0, we have used normalizing equalities

W(x,1) = (1 x)"1 and p(1) = 1, respectively, and one simple identity for functions with

absolutely summable Laurent coefficients: if a(z) = _ajzi L, then

(28) [T+a(z)]lz=l = ., j = Oza(z)e(z).
j=

Hence, equality (21) also holds here.

In some applications, for example queueing systems with waiting server, the
system’s being empty may cause an additional input with GF, say, b(z)= o bjz., so

Ao(z) = Tb(z)H(z), and we can use the formulas above.

Let b(z) = z, then

(29) W(x,z) = (1-x)-lR+(x,1)’l[1- z + zR+(x,z)],

(30) e(z) = R+(1)-[1 z + zR+(z)].
The latter is a generalization of the Pollyatchek-Khinchin formula, that follows from

here when H(z) = K(z)z- = okiz so R/(z) = (z- 1)[z K(z)]-
4. PARTICULAR CASES WITH n > 1

c) For example, Ai(z) = A(z), i = 0, 1, n 1, is the generalization of the case that

takes place in Bailey’s bulk queue model.

In [5] Bailey’s model is treated by a method, depending on the server’s capacity
being finite, that is, there is some rn such that, for all j .< -m, hi = 0. In our study this

restriction is not necessary. The conditions of descent and ascent are guaranteed by

0<a00< 1. Denote
n-1 n-1

= Ui(x)zi; (z) = gizi; S(x) = if(x,1); S = (1).
0 0

Theorem 1. The GF ofthe transient and steady state probabilities, the FZH
probabilities and the mean timesfor the Markov chain with quasitoeplitz transition matrix of
"Bailey type" when Ai(z) = A(z), i = O, 1, n 1, are given by theformulas:
(31) W(x,z) = 1 + xS(x)[TznR’(x,z)’IT-z’nA(z)R’(x,z) + znR+(x,z)T+z"A (z)R’(x,z)],

(32) S(x)" = (1 x)DnA(z)R’(x,z)[e(z’i)R’(x,1)" + ze(z)R+(x,1)],
= n + +ln(33) P(z) S[Tzn’I(z-1)R’(z)’IT’zl’ne(z)A(z)R’(z) + z R (z)T z e(z)A(z)R’(z)],

(34)
(35)
(36)

S"1 = 1 + R/(1)Dn’2A(z)e2(z)R’(z),
Q(x,z) = zi"R’(x,z)[(x 1)R/(x,1)e(z) + qo(x)T/znle(z)R’(x,z)"]

qi(x) = [ 1 + xR+(x, 1)On-lA(z)e(z)R’(x,z)]"
[1 xDn’IA(z)R’(x,z)T+zn’ie(z)R’(x,z)’i], i < n,
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(37)
(38)

#(z) = z2-ne(z)R’(z)[R+(1)e(z) + #oT+zn-2R’(z)l],
#i = [ 1 + R/(1)Dn-aA(z)e(z)R’(z)]"

[1 Dn’:A(z)R’(z)e(z)T+zn’:ZR’(z)’l], < n.

Proof. When Ai(z) = A(z), for all i < n, then (7) becomes
DJT(x,z)R-(x,z) = jjR-(x,1) + xS(x)DJTA(z)R-(x,z), j < n. Due to the definitions of

l(x,z) and T- this yields

(39) T-z-nTOff(x,z)R’(x,z) = R’(x,1)z"n + xS(x)T’z-nTA (z)R’(x,z).
Two obvious identifies directly follow from the definitions of operators T/, T’, T.

Letf(z) and a’(z) both belong to L and a’(z) be analytical in F. Then

Ta’(z) = a-(l)
and hence

TOzna-(z)T-z-,TOf(z) = TOz,a-(z)T-z-,f(z),
asf(z) Tf(z) is analytical in and is 0 when z = 1.

Now we multiply both sides of (39) by znR-(x,z)-1, apply T, use these identities

and obtain
(40) TznR’(x,z)’IT’z’nff(x,z).R’(x,z) = 1 + xS(x)TOznR’(x,z)’IT’z’nA(z)R’(x,z).

T" does not change z’nff(x,z)R’(x,z) as it is analytical in F’, so the left side of (40)

is ff(x,z). Using (40) in (6), we obtain (30).
Using (31) in the equality W(x,1) = (1 x)-,we obtain (32) with the help of (28)

and obvious identities"

[Tf(z)]lz =f(1),
Dznf(z) = D’nf(z).

(33) and (34) are obtained by the same method.

Considering FZH problems we can see that for the Bailey type transition matrix,

(12) looks like
n-1

qi : x.qj(z)Dn"1A(z)R’(x,z)T+zn’I’jR’(X,z)"
j=l

+ (x- 1)[1 + xR/(x,z)Dn’A(z)e(z)R’(x,z)].
Since the right side of this doesn’t depend on i, then all qi(x), < n, are equal, so

(35) and (36) follow immediately, as
n-1

Zn- j = (Zn. 1)e(z), T/e(z)R’(x,z)"1 = O.
j=l

Formulas (38) and (39) are obtained in the same manner.
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b) Ai(z) = zi[21(z), i < n,--- a switch at a threshold n. To provide the conditions of

descent and ascent we assume that the Laurent expansion of /(z) contains positive and

negative powers of z with nonzero coefficients.
Formulas (6) to (14) give all the GF’s that we need if we replace Ai(z) by zit(z), i < n.

5. CALCULATION PROBLEMS

The efficiency of calculations based on the aforementioned formulas strongly

depends on the possibility of calculating effectively the functions R+/-(x,z) and R+/-(z) and the

effect of the operators Di, T+, T-, and T.
With all the models in applications being approximate, one can always design a

model in which H(z) is approximated with a function that is meromorphically extensible to

either F+ or. In fact, it is sufficient to replace either the negative-indexes part of hj}
(for ,r’+) or the positive-indexes part of it (for ) with respective parts of some suitable

function, or even simply to truncate these parts at some level. It can be done with all

necessary precision. (To retain the ergodicity criterion and provide the necessary proximity

between R+-(z).and +/-(z), corresponding to approximate (z), we must estimate such

approximation in terms of .**jhi jjl )

It must also be mentioned that this analytical property of H(z) arises in applications

in the most natural manner. In fact, no other cases were in study to date.

Lemma 1. Let the ergodicity criterion (2) be true and {hj} be an aperiodic

sequence.
1) IfH(z) is meromorphically extensible to F+, e1, eq,..., em being its poles in I"v (some of

them may be equal), then 1 xH(z) and z[ 1 H(z)]e(z) have exactly rn roots in F+,
eel(x) and cei, respectively, and

m

(41) R’(x,z) = H(z .i)(z ei(x))-1, R+(x,z)-1 = [1 xH(z)]e’(x,z),
i=

m

(42) R’(z) = H(Z- Ei)(Z" i)-1, e+(z)"1 = e(z)[1 H(z)]R’(z).
i=1

2) IfH(z) is meromorphically extensible to , e1, e2,..., em being its poles there (some of
them may be equal), then 1 xH(z) and 1 H(z) have exactly rn roots in/", cei(x)
and cei, respectively, and

m

(43) e/(x,z) = k(x)I’I(z ei)(z cei(x))", R’(x,z) "1 = [1 xH(z)]e/(x,z),
i=
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rn

(44) R+(z) = kH(z ei)(z ei)-1, R’(z)" = e(z)[1 H(z)]R+(z).
i=

where k(x) and k are .some normalizing coefficients.
Proof. It was proved in [1] that Indrof the functions 1 xH(z) and z[ 1 H(z)]e(z)

is zero, provided x (0,1) or H’(1) < 0, respectively. For the functions meromorphic in
/"+ or F’, Indr is the difference between the numbers of roots and poles in/"+ (F-), so

these numbers are equal.
It is known (see, for example, Gahov [6]) that if f(z) is continuous on F and

Indrf(z) = 0, then f+/-(z) = exp{-T:ln f(z)} are the only functions analytical and nonzero

in/’ and/ respectively, such that the factorization identity holds on/":

f(z)-1 =f+(z)f’(z); f’(,,) = 1.
Let us prove, for example, (41). With e and cei(x) belonging to iV’+, R’(x,z) given is

obviously analytical and nonzero in/", and R’(x,,) = 1. Due to the definitions of ei and

cei(x), R/(x,z) given by (41) has no roots or poles in/-% so it is analytically extensible to

/"% Equation (41) also ensures that the factorization identity holds for 1 xH(z).
The other parts of Lemma 1 have a similar proof, but in case 2) we introduce

normalizing coefficients k(x) and k to ensure R’(x,,) = 1 and R’(,,,,) = 1.

Given the aforementioned analytical properties of H(z), the following lemma makes

it possible for us to calculate the effect of operators T/ and T-.
Denote Lm. (Z) as the Lagrange polynomial, interpolating the functionf(z) values at

some points e,...,em.
Lemma 2.

1) Letf(z) be analytical in 1"+, e F+, i = 1,...,m.

(45)

(46)

m m

T’f(z) rI(z E )-1 _- Lm.l(Z) H(z Ei )-1,
l=l l=1

m m

T+f(z) H(z Ei )-1 = If(z) Zm.l(Z)] H(z E )-I
i=l i=1

2) Letflz) be analytical in I", ei , = 1,...,m.

(47)

(48)

where

(49)

m m

T’f(z) H(z- E )-1 = If(z)- Lm.l(Z)] H(z- E )-1 E.
i= i=1

m m

T+f(z) I’I(z ei )-1 = Lm.l(Z) H(z Ei )-1 + E,
i= i=1

m

E = zli. f(z)H(Z- e )" 1

l=l
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Proof. We must prove that formulas (45) to (48) provide functions Tf(z) that are

analytical in iv’+ and/", respectively, which readily follows from the definition of Lm.l(Z);
these formulas also insure that, on F,f(z) = T+f(z) + T’f(z).

The definition of T implies that ,lin. T’f(z) = 0, as it contains only powers of z

with negative exponents. In case 1) it is guaranteed by the fact that
m

lirn Lm.l(Z) H(z ei )" = 0

because the greatest power of z in Lm.l(Z) is m 1. In case 2) we introduce e to provide the

same limit property.

6. DAMS W1TH A LIMITED LEVEL DEPENDENCE

A classical model of a dam in discrete time with discretized content and infinite

capacity can be described by the Markov chain } such that

(50) g+l = max (0, + ct-/3)
where ct and/3 are the inflow and the outflow over the control time period (tk, tg/). As a

rule o and fl are considered independent random variables with their distributions not

depending on k. We consider here the model of a dam with a limited level dependence,
where and fl distributions over the interval (tt, t+)depend on the value of g in such a

way that beginning from some n their distributions don’t change.
With this assumption one can easily see that {:} has a quasitoeplitz transition

matrix and

(51) Ai(z) = Tziai(z)bi(z-1), i < n,

(52) Ai(z) = TziH(z), < n; H(z) = an(z)bn(z’),
where ai(z) = E{za; = i}, bi(z) = E{z#; = i}.

The natural properties of the transition matrix are guaranteed by the trivial

assumptions:
for each i, fl may exceed t (for descent);
for each i < n, tx may exceed fl (for ascent);

for each i, o and fl have finite means.

The ergodicity criterion (2) looks like

(53) an’(1) < bn’(1).
Thus we may apply all the formulas (4) through (14) in this case with respect to

(51) and (52). No significant restrictions must be put on the sizes of o and t, as they were
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before, so there is room for various complex models, with more features reflecting practical
problems.

Let’s introduce, for example, the model with "vaporization" that becomes

significant at some level n. This means that besides the regular release m there is also
additional irregular loss fit,. The data available may contain information sufficient to

estimate only the order of decline for probabilities of the higher values of fly, not the upper
bound of it. This makes it reasonable to simulate flu as not limited, with a GF bt,(z) that is

a rational function with the prescribed decline of coefficients.

Hence, here we have a switch at the threshold n, and

(54) J(z) = z’ma(z)
(55) H(z) = z’mbv(z’l)a(z).

The ergodicity criterion (53) herewith looks like
a’(1) < rn + by’(1).

As by(z-1 ) is a rational function with the poles in F+, we can calculate R+-(x,z),

R+-(z) and the effects of the operators T/, T’, and TO with the help of Lemmas 1 and 2.

7. QUEUEING SYSTEMS WITH A LIMITED QUEUE LENGTH DEPENDENCE

In this section we consider the queueing systems of M/G/1 and .GI/M/1 types with

operating modes depending on queue length at some special control moments.

Namely, let t: be the moments immediately following service completions in M/G/1

or preceding arrivals in GI/M/1, and let be the queue length at these moments. The

operating mode of the system results in 7’= ct- fl--- the difference between the numbers of

customers admitted to and taken from the waiting line between tg and tg+. Obviously

(56) + = max(0, + ).
Denote Hi(z) = E{zT’; = i}. We will refer to this dependence on as limited if

Hi(z) = H(z), i > n.

The definition of tg ensures that {g} defined by (56) is a Markov chain for both

M/G/1 and GI/M/1 types (imbedded chain); the limited dependence pattern provides a

quasitoeplitz structure of its transition matrix.

it is natural for queueing systems that ),take on both positive and negative values,

no matter how long the queue is, which provides the conditions of descent and ascent. The

existence of averages is also the common feature of all the models, so the "natural

properties" of the transition matrix are really natural.

Hence, no matter whether we have a M/G/1 or GI/M/1 type, or no matter what the

group size distributions might be, all the results of sections 2, 3, and 4 are valid here for
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various limited dependence patterns. The system’s nature influences only the expressions
for Hi(z), i = O, 1,

The ergodicity criterion (2) looks like

(57) nn’(1) < O.

Now let us take the M/G/1 system. Usually

(58) Hi(z) = bi(z-)Jexp [,itai(z) /it]dGi(t)

where Gi(t) is a distribution function of t:/l tg; ai(z) and bi(z) are the GF of the arriving

group size and server’s capacity, respectively, when the queue length at tg is i.

In all the previous investigations it was required that the server’s capacity be finite.

Obviously we don’t need it here. New queueing models may be investigated where this

capacity may be so large that it is better to treat it as inf’mite, but with a reasonably adjusted

distribution. Take, for example, an airport where neither the number of everyday flights

nor their capacities are constant.

Simulating capacity with a suitable rational GF bn(z), we can make use of Lemmas

1 and 2 and perform all the necessary calculations, provided the ergodicity criterion holds.

Due to (58) this criterion looks here like

(59) 3,naff(1)jtdGn(t) < bn’(1).

Now we consider a GI/M/1 system, where usually

(60) Hi(z) = ai(Z)ofeXp { vitbi(z"1) vit dGi(t)

with the same denotation. We are again able to expand the range of models, to include the

cases with indefinite arriving group size, especially with the rational GF.
The ergodicity criterion (2) here looks like

(61) an’(1) < vnbn’(1) ItdGn(t).
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