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ABSTRACT
For weighted sums of independent and identically distributed
random variables, conditions are placed under which a general-
ized law of the iterated logarithm cannot hold, thereby extend-
ing the usua| nonweighted situation.
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I. INTRODUCTION.

Heyde [1] established the fact that partial sums of independent and identically distributed
(i.i.d.) random variables {X, Xn, n >_ 1} whose common distribution is of the form P{IXI >
z} = L(z)z- (0 _< c, < 2, c, # 1), where L(z) is slowly varying at infinity and where
EX = 0 if EIXI < oo, cannot be normalized in the sense that there exist constants 0 < ba T
with =1 X/ba 1 a.s. The purpose of this paper is to present similar results in the
weighted case.

Herein, we define Sn = ;=1 aZ where {an, n > 1} are constants and the random
variables {X, Xa, n > 1} are identically distributed with common distribution

L(z)z- z>_l,P{IXI > =} = i z < i,

where L(cz)/L(z) 1 as z --+ oo for all c > 0, and c, >_ 0.
A remark about notation is needed. Throughout, the symbol C will denote a generic

finite nonzero constant which is not necessarily the same in each appearance. Also, we let
ca = bn/lanl, n >_ I, where {bn, n >_ I} is our norming sequence.

It should be noted that the techniques involved with the main results (Theorems 2 and
3) follow a similar pattern to those that can be found in Heyde [1]. As usual, via the Borel-
Cantelli lemma, one need only consider a truncated version of the random variables {Xn,
n >_ 1}. Instead of truncating Xn at bn the trick, in the weighted case, is to cut off Xn at ca.
Then by classical arguments the remaining terms are shown to be almost surely negligible.
Also of particular interest is the discussion (Section 3) of the c, = 1 situation.
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2. RESULTS.

Our first theorem examines what happens when P{1X.I > c, i.o.(n)} = 1.
Theorem 1. Let {X, Xn, n > 1} be i.i.d, random variables. If {an, n >_ 1} and {bn,

.=x P{[X! > Cn} = CX), thenn 1} are constants satfying b. = O(b.+l), b. , and
lim SUpn_ IS.lib. = a.s.

Proof. If c. , then for I1 large M

= L(Mcn)(Mcn)-a

>_ C P{lXnl > c.} (for a suitably chosen no)

P{la.X.I > Mb.}
n----1

Otherwise, if lim infn--.oo cn < oo, then there exists a subsequence {n, k >_ 1} and a finite
constant B such that cm, _< B. Hence for all 0 < M <

P{IX[ > Men} >_ ZP{IX, > Mcn}
n=l

>_ P{IX[ > MB}

So in either case we conclude, via the Borel-Cantelli lemma, that

lim sup_ ..., = c a.s.

anXn Sn bn-l Sn-1<- -C + I
the conclusion follows, o

Note that in the next result independence is not necessary.
Theorem e. Let {X, Xn, n > 1} be identically distributed random variables. Let {an,

n >_ 1} and {bn, n >_ 1} be constants satisfying; 0 < bn Too and n__l P{IxI > c.} < c.
If 0 < a < 1, then Sn/b, 0 a.s.

Proof. Notice, via the Borel-Cantelli lemma, that

aXI(IXi > c) o(b.) .s.
k=l

Hence it remains to show that

(1)

_
aeXI(lXel <_ c) o(b.) a.s.

k=l

Since
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Since, for all large k

Ck

EIXlZ(IXI <_ c) < P{IXI > t}dt

= fooXdt+"L(t)t-"dt
< CL(c,)c;a+

(by Theorem lb of Feller [2, p. 2Sl]), it follows that

whence

c;EIXII(IXI <_ c) <_ c L(c)c"
k=l k=l

_< cP{IXI >
k=l

XlXlf(IXl c) < oo .s.
k=l

This, via Kronecker’s lemma, implies (1). Cl

Next, we examine the mean zero situation.
Theorem 3. Let {X, Xn, n >_ 1} be i.i.d, mean zero random variables. Let {an, n > 1}

and {bn, n > 1} be constants satisfying 0 < bn T oo and En__ e{IXl > c.} < o. If
1 < a < 2, then Sn/bn 0 a.s.

Proof. Again, note that

Since

a:Xt = a,[X. I(IX <_ c:) EXI(IX! _< c)]
k=l k=l

/ _, aENI(IXI <_ c) / _, aXI(IX > c)
k=l k=l

we need only show that the first two terms are o(b,). In view of the Khintchine-Kolmogorov
convergence theorem and Kronecker’s lemma, all that one needs to show, in order to prove
that the first term is o(bn) a.s., is that

() c?.EXI(IX <_ c) <

By integration by parts and Theorem lb of Feller [2, p. 281] we observe that

c-;2:zxI(IX.I <_ c) <_ 2 c- 2 tP{IXl > t}dt
k=l k=l
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<_

< CP(IXi>c}
<

Hence (2) holds. Finally, we need to show that

aEXI(IX[ < c,) o(b.).

Due to the fact that IEX!(IXI <_ e,)l _< EIXII(IXI > c,) it is sufficient to show that

(3) laIEIXII(IXI > c:) = o(b.).
k=l

However, since

c’EIXII(IXI > = P{IXi > c} + c; P{IXI > t}dt
k=l k=l

k=l

< O(1) + CE L(c)c’a (see Feller, [2, p.2811)
k=l

<_ 0(11 +cP{IX! > c}

= 0(1),

it is clear that (3) obtains.

3. DISCUSSION.

In this section we combine the previous theorems. The conclusion is that for all c E
[0, 1)U (1, 2) a law of the iterated logarithm cannot hold.

Theorem . Let {X, X,, n >_ 1} be i.i.d, random variables with

L(=)=- =>_1,P{IXI > =} = 1 :c < 1,

with EX 0 if c > 1. If {an, n >_ 1} and {bn, n >_ 1} are constants with 0 < bn T oo, then
for all a e [0, 1)t2 (1,2)

lim supn_oo -0 or ooa.s.
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depending on whether En__ P{IX[ > c,} converges or diverges.
Proof. In view of Theorems 1, 2, and 3 the conclusion is immediate. C1

Now, clearly if a law of the ierated logarithm does not exist, then a strong law of large
numbers (with limi one) is also not feasible.

Corollary. If the hypotheses of Theorem 4 hold, then

P{nli_..rn E a}X}/bn = 1} = O.

It is well known that if c > 2, then a classical law of the iterated logarithm can be
obtained provided suitable conditions are imposed on the constants {an, n >_ 1}. An
interesting question is what happens when c = 1. If we allow a = 1, then not only can a
law of the iterated logarithm obtain, but a strong law of large numbers can also occur where
the limit is one. The following example is of the flavor of those that can be found in Adler
[a].

Eample. If {Xn, n >_ 1} are i.i.d, random variables with common density f(z) =
z-I(,o)(z),-c < z < c, then

=1

(log n)
--+1 a.s.

Proof. Since
oo n(log n)2 oo

2.= P{IXI > 2 } -- 2 + .=a n(logn)= < c

[n(logn)2]2 k [ 2
2 j(lo j)2 = O(n)

we have, by Theorem 1 of Adler and Rosalsky [4],
2" o

(log n)2

where

EXI(IXI < n(lg,n’)
2

n(logn)/2

= z-ldz

log n.

Noting that
E=I " logk

(log n)
the proof is complete, rn

Here we exhibited a strong law in the nonintegrable case. One can obtain similar strong
laws for mean zero random variables when P{IXI > x} = L(x)/x (see, e.g., Adler and
Rosalsky [5]).
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