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ABSTRACT

In [4] and [5], the author studied strong maximum principles for nonlinear parabolic
problems with initial and nonlocal inequalities, respectively. Our purpose here is to extend
results in [4] and [5] to strong maximum principles for nonlinear parabolic problems with
nonlocal inequalities together with integrals. The results obtained in this paper can be
applied in the theories of diffusion and heat conduction, since considered here integrals in
nonlocal inequalities can be interpreted as mean amounts of the diffused substance or mean
temperatures of the investigated medium.
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1. INTRODUCTION

In this paper we give a theorem on strong maximum principles for problems with a
diagonal system of nonlinear parabolic functional-differential inequalities and with nonlocal
inequalities together with integrals. The diagonal system of the inequalities considered here
is of the following form"

(1.1) u(t,x) <_ f(t,x,u(t,x) ,Ux(t,x),Uxx(tx),u) (i = 1 ,...,m),

where (t,x) D c (to,to + T] x Rn and D is one of six relatively arbitrary sets more general
than the cylindrical domain (to,to + 7] x DO c R’/. The symbol u denotes the mapping

U" J (t,X) U(t,X) = (ul(t,X),...,um(t,X)) . Rm,

where 13 is an arbitrary set contained in (-oo, to + T] x Rn such that c 13. The fight-hand

(t,x) = gradxui(t,x)sides fi (i = 1,...,m) of system (1.1) are functionals of u; ux

(i = 1,...,m) and Uxx(t,x) (i = 1,...,m) denote the matrices of second order derivatives

with respect to x of ui(tx) (i = 1,...,m).

The nonlocal inequalities together with integrals, considered here, are of the form:
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T2i
(1.2) [uJ(t0,x) gJ] + 2hi(x) Z l"r IuJ(’f,x)d’- gJ <_ 0

ie I, [ 2i’’2i- 1 T 2

for x . Sto (j = 1,...,m),

where KJ (j = 1,...,m) are some constants, I, is a subset of a countable set I of natural

indices, to < T2i. < T2i < t0 + T (i I), hi: Sto -.-) (-,x,,0] (i e I,) are some functions and

Sto" = int{ x Rn: (tO, x) D}.

The results obtained in this paper are a continuation and direct generalizations of those
given by the author [5] and [4]. Moreover, some results obtained here are direct
generalizations of results given by Chabrowski [7]. Finally, some results obtained in the
paper are indirect generalizations of those given by Chabrowski [6], Walter [15] and [ 16],
Besala [2], Szarski [ 14], and Redheffer and Walter [13]. The method of the proof of the
main theorem in this paper is similar to the method used in [5], and for ease in comparison
of these methods we use in this article similar notation as in [5]. If the nonlocal inequalities
considered here are initial inequalities, then the results obtained in this paper are reduced to
those from [4] and are based on the publication of the author [3].

Parabolic problems with nonlocal conditions together with integrals were also
investigated by Day [8], Friedman [9], Nakhusheva [12] and Kawohl [11]. However,
considered in publications [8], [9], [12] and [11] both the nonlocal conditions and the
integrals in those conditions are different from the nonlocal conditions (1.2) and the
integrals in these conditions, respectively.

2. PRELIMINARIES

The notation and definitions given in this section are valid throughout this paper. We
use the following notation: R = (-oo,oo), R_ = (-oo,0], N -- {1,2,... }, x = (x,...,xn)
(nN).

For any vectors z = (;l,...,zm) Rm, " = (’ ,...,m) Rr we write

z <_ " if z < ’i (i = 1,...,m).

Let to be a real finite number and let 0 < T < ,,,,. A set D c {(t,x)" t >t0, x Rn}
(bounded or unbounded) is called a set of type (P) if:

1. The projection of the interior ofD on the t-axis is the interval (to,to+T).
2. For every (7",) s D there is a positive r such that

n

{(t,x)" (t- "{)2 + (xi. "i)2 < r, t < 7"} C D.
i=



Byszewski: Strong Maximum Principles for Parabolic Nonlinear Problems 67

For any t [to,t0+ T] we define the following sets"

and

int {XRn:R’: x) } for t= t0,St = {x (t, x(’ D} for t t0

int [n({ to} xRn)] for t = to,
6, = L n(ttlx .) for t to.

It is easy to see, by condition 2 of the definition of a set of type (P), that S and 8 are open
sets in Rn and R/, respectively.

Let 13 be a set contained in (_oo, to + T] x Rn such that
following sets:

=ci r: o.

)C: 1. We introduce the

For an arbitrary fixed point (’,)e D we denote by S’(7",) the set of points (t,x)e D
that can be joined with (7’,.)by a polygonal line contained in D along which the

t-coordinate is weakly increasing from (t,x) to (7,).

By Zm(13) we denote the space of continuous in mappings

w: fJ (t,x) ---) w(t,x) = (wl(t,x),...,wm(t,x)) Rm.

In the set of mappings bounded from above in ][3 and belonging to Z,,,(13) we define the
functional

[wit_ max sup{0,wi(’,x): (’,x) 13, 7< t} where t < to + T.i= 1...m

By X we denote a fixed subset (not necessarily a linear subspace) of Zm()) and by
Mnxn(R) we denote the space of real square symmetric matrices r = [rj]nxn.

(i = 1,...,m)A mapping u X is called regular in D if u, Uix = gradxui, Uixx = [Uxix]nxn
are continuous in D.

Let the mappings

ji: D x Rm x Rn x Mnxn(R) X Zm()) (t,x,z,q,r,w) ---) ji(t,x,z,q,r,w)e R (i = 1,...,m)

be given and let the operators Pi (i = 1,...,m) be defined by the formulae

Piu(t,x) = u[(t,x) .3d(t,x,u(t,x) ,Uxx(t,x)i u,Ux(t,x) ,u), X, (t,x) e D (i = 1,...,m )
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A regular mapping u in D is called solution of the system of the functional-differential
inequalities

(2.1) Piu(t,x) <_ O, (t,x) D (i = 1,...,m)

in D if (2.1) is satisfied.

For any set Z c I3 and for a mapping u X we use the symbol max u(t,x) in the sense"(t,x)z

( max ul(t,x), max um(t,x))(t,x) Z (t,x). Z

Let us define the following set:

where I is a countable set of all such mutually different natural numbers that:

(i) to < Z2i.1 < Z2i l0 + T for i e i and T:zi. T2j., T:z , T2j for ij e I, i j,

(ii) To: = inf{T2i.1" i e I} > to if card I = R0,

(iii) St Sto for every t /eL)/[T2i. 1 ,T2i],

(iv) St Sto for every t e [T0,t0 + T] if card I = 80-

An unbounded set D of type (P) is called a set of type (Psr) (see Fig. 1) if:

(a) ,5 # ,
(b) Fc3

Let ,5, denote a non-empty subset of,5. We define the following set:

A bounded set D of type (P) satisfying condition (a) of the definition of a set of type
(Psr) is called a set of type (Psi).
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Figure 1. The set D of type (Psr) if D = (int D) w tSto / r, I = 1,2,3,4 and to<T <T2<T3<T4 = o + T
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It is easy to see that if D is a set of type (Psi), then D satisfies condition (b) of the
definition of a set of type (Psr). Moreover, it is obvious that if DO is a bounded subset
[Do is an unbounded essential subset] of Rn, then D = (t0, to+ T] x Do is a set of type
(Psi) [(Psr), respectively].

3. STRONG MAXIMUM PRINCIPLES WITH NONLOCAL INEQUALITIES
TOGETHER WITH INTEGRALS IN SETS OF TYPES (Psi’) AND (PSI3).

Our main result is the following theorem on strong maximum principles with nonlocal
inequalities together with integrals in sets of types (Psr) and (Psa):

Theorem 3.1" Assume that:

(1)
(2)

D is a set of type (Psr) or (Psa).
The mappings3‘/(i = 1,...,m) are weakly increasing with respect to
Z1,...,zi’I,zi+I,...,Zm (i = 1,...,m). Moreover, there is a positive constant L such
that the inequalities

fi(tx,z,q,r,w) fi(tc,’,’,7,v)

< L( max izg 7:1 + IxIZ IqJ Jl + lxl2 Z Irjk 7jkl + [w ]/)k=l...m
j=l j;k=l

are satisfiedfor all (t,x) D, z,7 Rm, q,’ Rn, r,7 Mnxn(R), w,v X,
su (i 1,..,m)(t,x)PD [w(t,x)- (t,x)] < oo =

(3) The mapping u belongs to X and the maximum ofu on F is attained. Moreover,

(3.1)

and Ke X.

K = (K ..,Kin): = rn a u(tz)

(4) The inequalities

(3.2) [u/(to,X)- KJ] +
T2

hi(x) 2’i--2i i T2i’l
uJ(v,x)d’ KJ] <_ Oforx Sto (j = 1,...,m)

are satisfied, where hi: Sto ----) R_ (i I,) are givenfunctions such that-1 < Zhi(x) < Ofor
ieI,

hi(x) T2i
uJ(’r,x)d’cx S,o and; additionally, if card I, = N o, then the series ii,T2i-2i. T 1

(j = 1,...,m) are convergentfor x Sto.
(5) The maximum of u in is attained. Moreover,



Byszewski: Strong Maximum Principles for Parabolic Nonlinear Problems 71

(3.3)
and M X.

m (t,x)M = (M1,...,Mm): (t.x)ea u

(6) The inequalities

are satisfied.
(t,x,M,O,O,M) < 0 for (t,x) D (i = 1,...,m)

(7) The mapping u is a solution ofsystem (2.1) in D.

(8) The mappings ji (i = 1,...,m)are parabolic with respect to u in D and uniformly
parabolic with respect to M in any compact subset ofD (cf. [3] or [4]).

Then
(3.4) max.. u(t,x)= max

(t,x) D (t,x) r u(t,x)

Moreover, if there is a point (’{)D such that u(7) = max_ u(t,x), then(t,x)e D

u(t,x)= max u(t,x) for (tc)e S’(’{2)(t,x)e l"

Proof’. We shall prove Theorem 3.1 for a set of type (Psr) only since the proof of this
theorem for a set of type (Psi) is analogous.

Since each set of type (Psr’) is a set of type (Pzr) from [5] then, in the case if

Y hi(x) = 0 for x Sto, Theorem 3.1 from this paper is a consequence of Theorem 3.1 of
ii,
[5]. Therefore, we shall prove Theorem 3.1 only in the case if the following condition
holds:

(3.5) -1 < hi(x) < 0 for x Sto.
iI.

Assume, so, (3.5) holds and, since we shall argue by contradiction, suppose

(3.6) MK.

But, from (3.1) and (3.3), we have

(3.7) K<M.

Consequently, by (3.6) and (3.7), we obtain

(3.8) K<M.

Observe, from assumption (5), that the following condition holds:

(3.9) There is (t*,x*) e i3 such that u(t*,x*) = M: = max_ u(t,x)(t,x)e D
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By (3.9), by assumption (3) and by (3.8), we have

(3.10) (t*,x*) /3 \/" = D tt0.
An analogous argument as in the proof of Theorem 4.1 from [4] yields

(3.11) (t*,x*) D.

Conditions (3.10) and (3.11) give

(3.12) (t*,x*) tto.
Simultaneously, by the definitions of sets I and I,, we must consider the following cases:

(A) I, is a finite set, i.e., without loss of generality there is a numberp N such

that I, = 1,...,p }.

(B) card I, = :0.

First we shall consider case (A). And so, by (3.2) and by the inequality

u(t, x*) < u(tO, x*)
p

being a consequence of (3.9), (3.12), and of (a)(i), (a)(iii) of the definition of a set of type
(Psr), we have

P 1 T2i
0 _> [(t0,X*) KJ] + 2 hi(x*)[T2i.T2i,1i=1 T "1

uJ( "r,x* )d’r K]

P 1 T2i
>_ [uJ(to,X* ) KJ] + , hi(x*)[T-2i T2i. I ui(t’x*)d’" KJ]

i=1 1 T2i.1

P
= [uY(t0,x*) KJ]o [ 1 + , hi(x*)]

i=1
(/" = 1,...,m).

Hence

P
(3.13) U(to,X*) < K if 1 + 2 hi(x*) > O.

i=1

Then, from (3.8) and (3.12), we obtain a contradiction of (3.13) with (3.9). Assume now
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P
(3.14) 2 hi(x*)=-1.

i=1

By the mean-value integral theorem we have that for every j {1,...,m} and i 1,...,p}

there is [T2i.1 ,T2i] such that

(3.15) u/({, x*) = -1Ti. ui(z,x*)dz
T2i.1

Simultaneously, for every j 1,...,m} there is a number lj 1,...,p} such that

max uJ (, x*)(3.16) uJ ( ,x*) = i=l...p

Consequently, by (3.14), (3.16), (3.15) and (3.2), we obtain

uJ(to,X*) uJ (i,x*) = [ui(to,X* ) KJ] [uJ (i,x*) KJ]

= [//-/(to,X* ) KJ] + hi(x*)[llJ
i=1

P
_< [uJ(t0,X* } KJ] + Zhi(x*)[uJ (l’{,x*) KJ]

i=

Hence

= [td(to,X* ) KJ] +

_<0 (/’= 1,...,m).

[i=lhi(x*) r2i r2i.
T2i

T2i.1
uJ( Z,X * ) d r, KJ]

(3.17) u/(t0,x*) < td (.,x*) (j = 1,...,m) if
p

Zhi(x*) = -1.
i=1

Since, by (a)(i) of the definition of a set of type (Psr), > to Q" = 1,...,m), we get from

(3.12) that condition (3.17) is at a contradiction with condition (3.9). This completes the
proof of (3.4) if I, is a finite set.
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It remains to investigate case (B). Analogously as in the proof of (3.4) in case (A), by
assumption (4) and by the inequality

u(t,x*) < u(to, x*) for t il)/ [T2i.1, T2i],
being a consequence of (3.9), (3.12), and of (a)(i), (a)(iii) of the definition of a set of type
(Psr), we have

0 >_ [u,/(to,X*) + hi(x,)I T;i
1

iI,

> [u/(t0,x*) KJ] + ,hi(x*)[ T2
1

iI, k
uJ(to,x*)d’ KJ

T21.1

= [uJ(t0,x*) KJ]o [1+ Zhi(x*)]
ii,

(j’= 1,...,m).

Hence

(3.18) U(toCX*) <_ K if 1 + ,hi(x*) > O.
ieI,

Then, from (3.8) and (3.12), we obtain a contradiction of (3.18) with (3.9). Assume now

(3.19) hi(x*) = -1.
iI,

By the mean-value integral theorem we have that for every j e 1,...,m } and i I, there is

T [T:zi. ,T:zi] such that

1 Ta
(3.20) uJ ( ,x*) = T2i T2i. ui(r,x*)d’c.

T.
let

(3.21) 4, inf rJ= i I, i (] = 1,...,m).

Since u e C( D ) and since, by (3.12) and by (a)(iv), (a)(ii) of the definition of a set of type

(Psr), x* St for every t [To,to + T] if card I = o, it follows from (3.21) that for every

j e 1,...,m} there is a numbere [,,to + T] such that



Byszewski: Strong Maximum Principles for Parabolic Nonlinear Problems 75

(3.22) ^u’(?i.,x*)= max u(t,x*).
[o, o + TI

Consequently, by (3.19), (3.22), (3.20) and by assumption (4), we obtain

uJ( to ,x*) uJ( j, x*) = [uJ( tO, x*)- KJl- [u,/( j, x*)- KJ]

= [( tO, X*)- KJ] + hi(x*) [( j, x*)- KJ]
iI,

to, X*) KJ] + Zhi(x*) [uJ( ’, x*)- KJ]
i i,

= [uJ( tO, x*)- KJ] + Zhi(x*) T2 T2i, 1

<_0 (j = 1,...,m).

Hence

(3.23) uJ( t0, x*) < uJ( ’j, x*) (j" = 1,...,m) if Zhi(x*) =-1.
iI,

Since, by (a)(ii) of the definition of a set of type (Psr), ’j > to (/" = 1,...,m), we get from
(3.12) that condition (3.23) is at a contradiction with condition (3.9). This completes the
proof of equality (3.4).

The second part of Theorem 3.1 is a consequence of equality (3.4) and of Lemma 3.1
from [4]. Therefore, the proof of Theorem 3.1 is complete.

4. REMARKS

Remark 4.1. It is easy to see, by the proof of Theorem 3.1 from this paper and by the
proofs of Theorems 3.1 and 4.1 from papers [5] and [4], respectively, that if the functions h

(i I,) from assumption (4) of Theorem 3.1 satisfy the condition

Zhi(x) = 01 -1< Zhi(x) < 0
ii. iI.

for x Stom

then it is sufficient to assume in this theorem that [D is only an unbounded set of type (P)
satisfying condition (b) of the definition of a set of type (Psr’) or D is only a bounded set of
type (P), i.e., according to the terminology introduced in [4], D is a set of type (Pr’) or
(P), respectively] D is only an unbounded set of type (P) satisfying conditions (a)(i), (a)(iii)
and (b) of the definition of a set of type (Psr’) or D is only a bounded set of type (P)
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satisfying conditions (a)(i) and (a)(iii) of the definition of a set of type (Psr). Moreover, if
I, is a finite set and

1 < hi(x) <_ 0 for x Sto

then it is sufficient to assume in Theorem 3.1 that D is only an unbounded set of type (P)
satisfying conditions (a)(i), (a)(iii) and (b) or D is only a bounded set of type (P) satisfying
conditions (a)(i) and (a)(iii).

Remark 4.2. if D is a set of type (Psi) and if I3 = , then the first part of assumption
(3) of Theorem 3.1 relative to the maximum of u and the first part of assumption (5) of this
theorem are trivially satisfied since u,v C(D) and/"is the bounded and closed set in this
case.

Remark 4.3. Analogously as in [5] (cf. [5], Theorem 3.2) we can obtain a theorem on
strong minimum principles with the following nonlocal inequalities together with integrals:

(4.1) [vi( to, x)-
iI, I..

_vJ( "r,x)d 0
T.

in sets of types (Psr’) and (Psi3).

for x Sto (J’ = 1,...,m)

5. PHYSICAL INTERPRETATIONS OF PROBLEMS CONSIDERED.

Theorem 3.1 can be applied to descriptions of physical phenomena in which we can
measure sums of mean temperatures of substances or sums of mean amounts of substances
according to the following formulae:

uJ(to, X)+ Z
iI,

hi(x) Iuj(,,x)d,rT2i-T2i. 1Tz.
for x St0 (] = 1,...,m)

(h (i I,) are known functions). For example, Theorem 3.1 can be applied to the

description of a diffusion phenomenon of a little amount of a gas in a transparent tube, under
the assumption that the diffusion is observed by the surface of this tube. The measurement
U(toC) (m=l) of small .amount of the gas at the initial instant to is usually less precise than the
following measurement:
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where

hi(x) T2i
U(t0’X) + ii,T2i : ’2i-1 T2i.

1 T2i
Iu(r,x)d: forTi ’T2i. 1 T2i.

for xe Sto(m=l),

x e Sto (i e I,, re=l)

are the mean amounts of this gas on the intervals [T2i. ,T2i] (i I,), respectively.
Therefore, Theorem 3.1 seems to be more useful in some physical applications than
Theorem 4.1 from [4] on strong maximum principles with initial inequalities of the form:

U(to,X) <K for xe S
o

Let us observe that Theorem 3.1 from the paper is also more useful in some physical
applications than Theorem 3.1 from [5], since considered here inequalities (3.2) are more
sensitive to measurements than the following inequalities:

[uJ( tO, x*)-KJ] + hi(x*) [laJ(Ti, x) KJ] < 0 for x e Sto (j = 1,...,m)
ieI,

given by the author in [5].

If I, = { 1 }, T = to + T -At, 0 < zt < T, T2 = to + T, -1 < hi(x) = -h(x) < 0 for x e Sto
and m=l, then the nonlocal conditions:

Z2/
uJ( t’x) + ’ieI, T2li(x 2i- T2"iluJ(Tr’x)dT =0 for x Sto (/= 1,...,m)

are reduced to the following condition:

(5.1)
to+T

u(tO,x) =
h(x) fu(,x)d’ for x e Sto (m = 1)
At to+T.At

and this condition can be used to the description of heat effects in atomic reactors. It is easy
to see, by (5.1), that if u(to, x) is interpreted as the given temperature in an atomic reactor at

the initial instant t0, then the atomic reaction is the safest for 1 = h(x) < 1 and this reaction is

the most dangerous for 0 < h(x) = O. In the case if h(x) = 1 for x Sto, formula (5.1) is
reduced to the condition:
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to+T
U(to, X) =1 . u(,x)ct

At to+ At
for x Sto (m=l),

which is the modification of the periodic condition"

u(to, x) = U(to+T,x) for x Sto (m=l),

considered among other things by Beltramo and Hess [1] and Hess [10].

Remark 5.1. The considerations from Section 5 concerning Theorem 3.1 are also true for
the strong minimum principles with nonlocal inequalities (4.1) (cf. Remark 4.3).
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