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Let 𝑁 be a positive integer, 𝑐 a positive constant and (𝜉
𝑛
)
𝑛≥1

be a sequence of independent identically distributed pseudorandom
variables. We assume that the 𝜉

𝑛
’s take their values in the discrete set {−𝑁, −𝑁 + 1, . . . , 𝑁 − 1,𝑁} and that their common

pseudodistribution is characterized by the (positive or negative) real numbers P{𝜉
𝑛
= 𝑘} = 𝛿

𝑘0
+ (−1)

𝑘−1

𝑐 (
2𝑁

𝑘+𝑁
) for any

𝑘 ∈ {−𝑁, −𝑁 + 1, . . . , 𝑁 − 1,𝑁}. Let us finally introduce (𝑆
𝑛
)
𝑛≥0

the associated pseudorandom walk defined on Z by 𝑆
0
= 0

and 𝑆
𝑛
= ∑

𝑛

𝑗=1
𝜉
𝑗
for 𝑛 ≥ 1. In this paper, we exhibit some properties of (𝑆

𝑛
)
𝑛≥0

. In particular, we explicitly determine the
pseudodistribution of the first overshooting time of a given threshold for (𝑆

𝑛
)
𝑛≥0

as well as that of the first exit time from a bounded
interval. Next, with an appropriate normalization, we pass from the pseudorandom walk to the pseudo-Brownian motion driven
by the high-order heat-type equation 𝜕/𝜕𝑡 = (−1)

𝑁−1

𝑐𝜕
2𝑁

/𝜕𝑥
2𝑁. We retrieve the corresponding pseudodistribution of the first

overshooting time of a threshold for the pseudo-Brownian motion (Lachal, 2007). In the same way, we get the pseudodistribution
of the first exit time from a bounded interval for the pseudo-Brownian motion which is a new result for this pseudoprocess.

1. Introduction

Throughout the paper, we denote by Z the set of integers,
by N that of nonnegative integers, and by N∗ that of positive
integers: Z = {. . . , −1, 0, 1, . . .}, N = {0, 1, 2, . . .}, N∗

= {1,

2, . . .}. More generally, for any set of numbers 𝐸, we set 𝐸∗

=

𝐸 \ {0}.
Let 𝑁 be a positive integer, 𝑐 a positive constant, and set

𝜅
𝑁
= (−1)

𝑁−1. Let (𝜉
𝑛
)
𝑛∈N∗ be a sequence of independent

identically distributed pseudorandom variables taking their
values in the set of integers {−𝑁, −𝑁+1, . . . , −1, 0, 1, . . . , 𝑁−

1,𝑁}. By pseudorandom variable, we mean a measurable
function defined on a space endowed with a signed measure
with a total mass equaling the unity. We assume that the
commonpseudodistribution of the 𝜉

𝑛
’s is characterized by the

(positive or negative) real pseudo-probabilities𝑝
𝑘
= P{𝜉

𝑛
= 𝑘}

for any 𝑘 ∈ {−𝑁, −𝑁 + 1, . . . , 𝑁 − 1,𝑁}. The parameters 𝑝
𝑘

sum to the unity: ∑𝑁

𝑘=−𝑁
𝑝
𝑘
= 1.

Now, let us introduce (𝑆
𝑛
)
𝑛∈N the associated pseudoran-

domwalk defined onZ by 𝑆
0
= 0 and 𝑆

𝑛
= ∑

𝑛

𝑗=1
𝜉
𝑗
for 𝑛 ∈ N∗.

The infinitesimal generator associated with (𝑆
𝑛
)
𝑛∈N is defined,

for any function 𝑓 defined on Z, as

G
𝑆
𝑓 (𝑗) = E [𝑓 (𝜉

1
+ 𝑗)] − 𝑓 (𝑗)

=

𝑁

∑

𝑘=−𝑁

𝑝
𝑘
𝑓 (𝑗 + 𝑘) − 𝑓 (𝑗) , 𝑗 ∈ Z.

(1)

Here we consider the pseudorandom walk which admits the
discrete 𝑁-iterated Laplacian as a generator infinitesimal.
More precisely, by introducing the so-called discrete Lapla-
cian Δ defined, for any function 𝑓 defined on Z, by

Δ𝑓 (𝑗) = 𝑓 (𝑗 + 1) − 2𝑓 (𝑗) + 𝑓 (𝑗 − 1) , 𝑗 ∈ Z, (2)

the discrete 𝑁-iterated Laplacian is the operator Δ𝑁

=

Δ ∘ ⋅ ⋅ ⋅ ∘ Δ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁 times
given by

Δ
𝑁

𝑓 (𝑗) =

𝑁

∑

𝑘=−𝑁

(−1)
𝑘+𝑁

(
2𝑁

𝑘 + 𝑁
)𝑓 (𝑗 + 𝑘) , 𝑗 ∈ Z. (3)

Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2014, Article ID 520136, 49 pages
http://dx.doi.org/10.1155/2014/520136

http://dx.doi.org/10.1155/2014/520136


2 International Journal of Stochastic Analysis

We then choose the 𝑝
𝑘
’s such thatG

𝑆
= 𝜅

𝑁
𝑐Δ

𝑁 which yields,
by identification, for any 𝑘 ∈ {−𝑁, −𝑁 + 1, . . . , −1, 1, . . . , 𝑁 −

1,𝑁},

𝑝
𝑘
= 𝑝

−𝑘
= (−1)

𝑘−1

𝑐 (
2𝑁

𝑘 + 𝑁
) , 𝑝

0
= 1 − 𝑐 (

2𝑁

𝑁
) . (4)

When 𝑁 = 1, (𝑆
𝑛
)
𝑛∈N is the nearest neighbours pseudo-

random walk with a possible stay at its current location; it
is characterized by the numbers 𝑝

1
= 𝑝

−1
= 𝑐 and 𝑝

0
=

1 − 2𝑐. Moreover, if 0 < 𝑐 < 1/2, then 𝑝
0
> 0; in this

case, we are dealingwith an ordinary symmetric randomwalk
(with positive probabilities). If 𝑐 = 1/2, this is the classical
symmetric random walk: 𝑝

1
= 𝑝

−1
= 1/2 and 𝑝

0
= 0.

Actually, with the additional assumption that 𝑝
−𝑘

= 𝑝
𝑘

for any 𝑘 ∈ {−𝑁, −𝑁 + 1, . . .,𝑁 − 1,𝑁} (i.e., the 𝜉
𝑛
’s are

symmetric, or the pseudorandom walk has no drift), the 𝑝
𝑘
’s

are the unique numbers such that

G
𝑆
𝑓 (𝑗) = 𝜅

𝑁
𝑐𝑓

(2𝑁)

(𝑗)

+ terms with higher order derivatives,
(5)

where 𝑓 is an analytical extension of 𝑓 and 𝑓(2𝑁) stands for
the (2𝑁)th derivative of 𝑓 : 𝑓(2𝑁)

(𝑥) = (d2𝑁𝑓/d𝑥2𝑁)(𝑥).
Our motivation for studying the pseudorandom walk

associated with the parameters defined by (4) is that it is
the discrete counterpart of the pseudo-Brownian motion as
the classical random walk is for Brownian motion. Let us
recall that pseudo-Brownian motion is the pseudo-Markov
process (𝑋

𝑡
)
𝑡≥0

with independent and stationary increments,
associated with the signed heat-type kernel 𝑝(𝑡; 𝑥) which is
the elementary solution of the high-order heat-type equation
𝜕/𝜕𝑡 = 𝜅

𝑁
𝑐𝜕

2𝑁

/𝜕𝑥
2𝑁. The kernel 𝑝(𝑡; 𝑥) is characterized by

its Fourier transform:

E ( e 𝑖𝑢𝑋
𝑡) = ∫

+∞

−∞

e 𝑖𝑢𝑥

𝑝 (𝑡; 𝑥)d𝑥 = e −𝑐𝑡𝑢
2𝑁

. (6)

The corresponding infinitesimal generator is given, for any
𝐶
2𝑁-function 𝑓, by

G
𝑋
𝑓 (𝑥) = lim

ℎ→0
+

1

ℎ
[E [𝑓 (𝑋

ℎ
+ 𝑥)] − 𝑓 (𝑥)]

= 𝜅
𝑁
𝑐𝑓

(2𝑁)

(𝑥) .

(7)

The reader can find extensive literature on pseudo-Brownian
motion. For instance, let us quote the works of Beghin et al.
[1–20] and the references therein.

We observe that (5) and (7) are closely related to the
continuous 𝑁-iterated Laplacian d2𝑁/d𝑥2𝑁. For 𝑁 = 2,
the operator Δ2 is the two-Laplacian related to the famous
biharmonic functions: in the discrete case,

Δ
2

𝑓 (𝑗) = 𝑓 (𝑗 + 2) − 4𝑓 (𝑗 + 1) + 6𝑓 (𝑗)

− 4𝑓 (𝑗 − 1) + 𝑓 (𝑗 − 2) , 𝑗 ∈ Z,
(8)

and in the continuous case,

Δ
2

𝑓 (𝑥) =
d4𝑓
d𝑥4

(𝑥) , 𝑥 ∈ R. (9)

In the discrete case, it has been considered by Sato [21] and
Vanderbei [22].

The link between the pseudorandom walk and pseudo-
Brownianmotion is the following one: when normalizing the
pseudorandom walk (𝑆

𝑛
)
𝑛∈N on a grid with small spatial step

𝜀
2𝑁 and temporal step 𝜀 (i.e., we construct the pseudoprocess
(𝜀𝑆

⌊𝑡/𝜀
2𝑁

⌋
)
𝑡≥0

where ⌊⋅⌋ denotes the usual floor function), the
limiting pseudoprocess as 𝜀 → 0

+ is exactly the pseudo-
Brownian motion.

Now, we consider the first overshooting time of a fixed
single threshold 𝑎 < 0 or 𝑏 > 0 (𝑎, 𝑏 being integers) for
(𝑆

𝑛
)
𝑛∈N:

𝜎
−

𝑎
= min {𝑛 ∈ N

∗

: 𝑆
𝑛
≤ 𝑎} ,

𝜎
+

𝑏
= min {𝑛 ∈ N

∗

: 𝑆
𝑛
≥ 𝑏}

(10)

as well as the first exit time from a bounded interval (𝑎, 𝑏):

𝜎
𝑎𝑏
= min {𝑛 ∈ N

∗

: 𝑆
𝑛
≤ 𝑎 or 𝑆

𝑛
≥ 𝑏}

= min {𝑛 ∈ N
∗

: 𝑆
𝑛
∉ (𝑎, 𝑏)}

(11)

with the usual convention that min 0 = +∞. Hence, when
𝜎
+

𝑏
< +∞, 𝑆

𝜎
+

𝑏
−1
≤ 𝑏−1 and 𝑆

𝜎
+

𝑏

≥ 𝑏, the overshoot at time 𝜎+
𝑏

which is 𝑆
𝜎
+

𝑏

− 𝑏 can take the values 0, 1, 2, . . . , 𝑁 − 1, that is,
𝑆
𝜎
+

𝑏

∈ {𝑏, 𝑏+1, 𝑏+2, . . . , 𝑏+𝑁−1}. Similarly, when 𝜎−
𝑎
< +∞,

𝑆
𝜎
−

𝑎

∈ {𝑎 − 𝑁 + 1, 𝑎 − 𝑁 + 2, . . . , 𝑎}, and when 𝜎
𝑎𝑏
< +∞,

𝑆
𝜎
𝑎𝑏

∈ {𝑎, 𝑎 − 1, . . . , 𝑎 − 𝑁 + 1} ∪ {𝑏, 𝑏 + 1, . . . , 𝑏 + 𝑁 − 1}. We
put 𝑆+

𝑏
= 𝑆

𝜎
+

𝑏

, 𝑆−
𝑎
= 𝑆

𝜎
−

𝑎

and 𝑆
𝑎𝑏
= 𝑆

𝜎
𝑎𝑏

.
In the sameway, we introduce the first overshooting times

of the thresholds 𝑎 < 0 and 𝑏 > 0 (𝑎, 𝑏 being now real
numbers) for (𝑋

𝑡
)
𝑡≥0

:

𝜏
−

𝑎
= inf {𝑡 ≥ 0 : 𝑋

𝑡
≤ 𝑎} , 𝜏

+

𝑏
= inf {𝑡 ≥ 0 : 𝑋

𝑡
≥ 𝑏}

(12)

as well as the first exit time from a bounded interval (𝑎, 𝑏):

𝜏
𝑎𝑏
= inf {𝑡 ≥ 0 : 𝑋

𝑡
≤ 𝑎 or𝑋

𝑡
≥ 𝑏}

= inf {𝑡 ≥ 0 : 𝑋
𝑡
∉ (𝑎, 𝑏)}

(13)

with the similar convention that inf 0 = +∞, and we set,
when the corresponding time is finite,

𝑋
−

𝑎
= 𝑋

𝜏
−

𝑎

, 𝑋
+

𝑏
= 𝑋

𝜏
+

𝑏

, 𝑋
𝑎𝑏
= 𝑋

𝜏
𝑎𝑏

. (14)

In this paper we provide a representation for the gen-
erating function of the joint distributions of the couples
(𝜎

−

𝑎
, 𝑆

−

𝑎
), (𝜎+

𝑏
, 𝑆

+

𝑏
), and (𝜎

𝑎𝑏
, 𝑆

𝑎𝑏
). In particular, we derive

simple expressions for the marginal distributions of 𝑆−
𝑎
, 𝑆+

𝑏
,

and 𝑆
𝑎𝑏
. We also obtain explicit expressions for the famous

“ruin pseudoprobabilities” P{𝜎−
𝑎
< 𝜎

+

𝑏
} and P{𝜎+

𝑏
< 𝜎

−

𝑎
}.

The main tool employed in this paper is the use of generating
functions.

Taking that the limit as 𝜀 goes to zero, we retrieve the joint
distributions of the couples (𝜏−

𝑎
, 𝑋

−

𝑎
) and (𝜏+

𝑏
, 𝑋

+

𝑏
) obtained in

[10, 11]. Therein, we used Spitzer’s identity for deriving these
distributions. Moreover, we obtain the joint distribution of
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the couple (𝜏
𝑎𝑏
, 𝑋

𝑎𝑏
) which is a new and an important result

for the study of pseudo-Brownian motion. In particular, we
deduce the “ruin pseudo-probabilities” P{𝜏−

𝑎
< 𝜏

+

𝑏
} and

P{𝜏+
𝑏
< 𝜏

−

𝑎
}; the results have been announced without any

proof in a survey on pseudo-Brownian motion [13], after a
conference held in Madrid (IWAP 2010).

In [11, 17, 18], the authors observed a curious fact
concerning the pseudodistributions of 𝑋−

𝑎
and 𝑋

+

𝑏
: they

are linear combinations of the Dirac distribution and its
successive derivatives (in the sense of Schwarz distributions).
For instance,

P {𝑋+

𝑏
∈ d𝑧}

d𝑧
=

𝑁−1

∑

𝑗=0

𝑏
𝑗

𝑗!
𝛿
(𝑗)

𝑏
(𝑧) . (15)

The quantity 𝛿(𝑗)
𝑏

is to be understood as the functional acting
on test functions 𝜙 according to ⟨𝛿(𝑗)

𝑏
, 𝜙⟩ = (−1)

𝑗

𝜙
(𝑗)

(𝑏). The
appearance of the 𝛿(𝑗)

𝑏
’s in (15), which is quite surprising for

probabilists, can be better understood thanks to the discrete
approach. Indeed, the 𝛿(𝑗)

𝑏
’s come from the location at the

overshooting time of 𝑏 for the normalized pseudorandom
walk: the location takes place in the “cluster” of points 𝑏, 𝑏 +
𝜀, 𝑏 + 2𝜀, . . . , 𝑏 + (𝑁 − 1)𝜀.

In order to facilitate the reading of the paper, we have
divided it into three parts:

Part I—some properties of the pseudorandom walk
Part II—first overshooting time of a single threshold
Part III—first exit time from a bounded interval.

The reader will find a list of notations in Table 2 which is
postponed to the end of the paper.

2. Part I—Some Properties of
the Pseudorandom Walk

2.1. Pseudodistribution of 𝜉
1
and 𝑆

𝑛
. We consider the pseudo-

random walk (𝑆
𝑛
)
𝑛∈N related to a family of real parameters

{𝑝
𝑘
, 𝑘 ∈ {−𝑁, . . . , 𝑁}} satisfying 𝑝

𝑘
= 𝑝

−𝑘
for any

𝑘 ∈ {1, . . . , 𝑁} and ∑
𝑁

𝑘=−𝑁
𝑝
𝑘
= 1. Let us recall that the

infinitesimal generator associated with (𝑆
𝑛
)
𝑘≥0

is defined by

G
𝑆
𝑓 (𝑗) =

𝑁

∑

𝑘=−𝑁

𝑝
𝑘
𝑓 (𝑗 + 𝑘) − 𝑓 (𝑗)

= (𝑝
0
− 1) 𝑓 (𝑗) +

𝑁

∑

𝑘=1

𝑝
𝑘
[𝑓 (𝑗 + 𝑘) + 𝑓 (𝑗 − 𝑘)] .

(16)

In this section, we look for the values of 𝑝
𝑘
, 𝑘 ∈ {−𝑁, . . . , 𝑁},

for which the infinitesimal generator G is of the form (5).
Next, we provide several properties for the corresponding
pseudorandom walk.

Suppose that 𝑓 can be extended into an analytical func-
tion 𝑓. In this case, we can expand

𝑓 (𝑗 + 𝑘) + 𝑓 (𝑗 − 𝑘) = 2

∞

∑

ℓ=0

𝑘
2ℓ

(2ℓ)!
𝑓
(2ℓ)

(𝑗) . (17)

Therefore,

G𝑓 (𝑗) = (𝑝
0
− 1) 𝑓 (𝑗) + 2

𝑁

∑

𝑘=1

𝑝
𝑘

∞

∑

ℓ=0

𝑘
2ℓ

(2ℓ)!
𝑓
(2ℓ)

(𝑗)

= (𝑝
0
+ 2

𝑁

∑

𝑘=1

𝑝
𝑘
− 1)𝑓 (𝑗)

+ 2

∞

∑

ℓ=1

(

𝑁

∑

𝑘=1

𝑘
2ℓ

𝑝
𝑘
)
𝑓
(2ℓ)

(𝑗)

(2ℓ)!
.

(18)

Since 𝑝
0
+ 2∑

𝑁

𝑘=1
𝑝
𝑘
= 1, we see that the expression (5) of G

holds if and only if the 𝑝
𝑘
’s satisfy the equations

𝑁

∑

𝑘=1

𝑘
2ℓ

𝑝
𝑘
= 0 for 1 ≤ ℓ ≤ 𝑁 − 1,

𝑁

∑

𝑘=1

𝑘
2𝑁

𝑝
𝑘
=
1

2
𝜅
𝑁
𝑐 (2𝑁)!.

(19)

Proposition 1. The numbers 𝑝
𝑘
, 𝑘 ∈ {1, . . . , 𝑁}, satisfying

(19), are given by

𝑝
𝑘
= (−1)

𝑘−1

𝑐 (
2𝑁

𝑘 + 𝑁
) . (20)

In particular, 𝑝
𝑁
= 𝜅

𝑁
𝑐.

Proof. First, we recall that the solution of a Vandermonde
system of the form ∑

𝑁

𝑘=1
𝑎
ℓ

𝑘
𝑥
𝑘
= 𝛼

ℓ
, 1 ≤ ℓ ≤ 𝑁, is given

by

𝑥
𝑘
=

𝐴
𝑘
(
𝑎
1
,...,𝑎
𝑁

𝛼
1
,...,𝛼
𝑁

)

𝐴 (𝑎
1
, . . . , 𝑎

𝑁
)
, 1 ≤ 𝑘 ≤ 𝑁 (21)

with

𝐴 (𝑎
1
, . . . , 𝑎

𝑁
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑁

𝑎
2

1
⋅ ⋅ ⋅ 𝑎

2

𝑁

...
...

𝑎
𝑁

1
⋅ ⋅ ⋅ 𝑎

𝑁

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(22)

and, for any 𝑘 ∈ {1, . . . , 𝑁},

𝐴
𝑘
(
𝑎
1
, . . . , 𝑎

𝑁

𝛼
1
, . . . , 𝛼

𝑁

) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑘−1
𝛼
1
𝑎
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑁

𝑎
2

1
⋅ ⋅ ⋅ 𝑎

2

𝑘−1
𝛼
2
𝑎
2

𝑘+1
⋅ ⋅ ⋅ 𝑎

2

𝑁

...
...

...
...

...
𝑎
𝑁

1
⋅ ⋅ ⋅ 𝑎

𝑁

𝑘−1
𝛼
𝑁

𝑎
𝑁

𝑘+1
⋅ ⋅ ⋅ 𝑎

𝑁

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (23)

In the notation of 𝐴
𝑘
and that of forthcoming determinants,

we adopt the convention that when the index of certain
entries in the determinant lies out of the range of 𝑘, the
corresponding column is discarded. That is, for 𝑘 = 1 and
𝑘 = 𝑁, the respective determinants write

𝐴
1
(
𝑎
1
, . . . , 𝑎

𝑁

𝛼
1
, . . . , 𝛼

𝑁

) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
1

𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑁

...
...

...
𝛼
𝑁

𝑎
𝑁

2
⋅ ⋅ ⋅ 𝑎

𝑁

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐴
𝑁
(
𝑎
1
, . . . , 𝑎

𝑁

𝛼
1
, . . . , 𝛼

𝑁

) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
1
⋅ ⋅ ⋅ 𝑎

𝑁−1
𝛼
1

...
...

...
𝑎
𝑁

1
⋅ ⋅ ⋅ 𝑎

𝑁

𝑁−1
𝛼
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(24)
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It is well-known that, for any 𝑘 ∈ {1, . . . , 𝑁},

𝐴 (𝑎
1
, . . . , 𝑎

𝑁
) = ∏

1≤𝑗≤𝑁

𝑎
𝑗

∏

1≤ℓ<𝑚≤𝑁

(𝑎
𝑚
− 𝑎

ℓ
)

= (−1)
𝑘+𝑁

∏

1≤𝑗≤𝑁

𝑎
𝑗
∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑎
𝑘
− 𝑎

𝑗
)

× ∏

1≤ℓ<𝑚≤𝑁

ℓ,𝑚 ̸= 𝑘

(𝑎
𝑚
− 𝑎

ℓ
) .

(25)

In the particular case where 𝛼
ℓ
= 0 for 1 ≤ ℓ ≤ 𝑁 − 1, we

have, for any 𝑘 ∈ {1, . . . , 𝑁}, that

𝐴
𝑘
(
𝑎
1
, . . . , 𝑎

𝑁

𝛼
1
, . . . , 𝛼

𝑁

) = (−1)
𝑘+𝑁

𝛼
𝑁

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑘−1

𝑎
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑁

𝑎
2

1
⋅ ⋅ ⋅ 𝑎

2

𝑘−1
𝑎
2

𝑘+1
⋅ ⋅ ⋅ 𝑎

2

𝑁

...
...

...
...

𝑎
𝑁−1

1
⋅ ⋅ ⋅ 𝑎

𝑁−1

𝑘−1
𝑎
𝑁−1

𝑘+1
⋅ ⋅ ⋅ 𝑎

𝑁−1

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

= (−1)
𝑘+𝑁

𝛼
𝑁
∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

𝑎
𝑗

∏

1≤ℓ<𝑚≤𝑁

ℓ,𝑚 ̸= 𝑘

(𝑎
𝑚
− 𝑎

ℓ
) .

(26)

Therefore, the solution simply writes

𝑥
𝑘
=

𝛼
𝑁

𝑎
𝑘
∏ 1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑎
𝑘
− 𝑎

𝑗
)

, 1 ≤ 𝑘 ≤ 𝑁.
(27)

Now, we see that system (19) is a Vandermonde system
with the choices 𝑎

𝑘
= 𝑘

2, 𝑥
𝑘
= 𝑝

𝑘
, and 𝛼

ℓ
= 0 for 1 ≤ ℓ ≤

𝑁 − 1, 𝛼
𝑁
= 𝜅

𝑁
𝑐(2𝑁)!/2. With these settings at hands, we

explicitly have

𝑎
𝑘
∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑎
𝑘
− 𝑎

𝑗
) = 𝑘

2

∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑘
2

− 𝑗
2

)

= 𝑘
2

∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑘 − 𝑗) ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(𝑘 + 𝑗)

=
1

2
(−1)

𝑁−𝑘

(𝑁 + 𝑘)! (𝑁 − 𝑘)!

(28)

and the result of Proposition 1 ensues.

Finally, the value of 𝑝
0
is obtained as follows: by using the

fact that ∑2𝑁

𝑘=0
(−1)

𝑘

(
2𝑁

𝑘
) = 0,

𝑝
0
= 1 − ∑

−𝑁≤𝑘≤𝑁

𝑘 ̸= 0

𝑝
𝑘

= 1 + 𝑐 ∑

−𝑁≤𝑘≤𝑁

𝑘 ̸= 0

(−1)
𝑘

(
2𝑁

𝑘 + 𝑁
)

= 1 − 𝑐 (
2𝑁

𝑁
) + (−1)

𝑁

𝑐

2𝑁

∑

𝑘=0

(−1)
𝑘

(
2𝑁

𝑘
)

= 1 − 𝑐 (
2𝑁

𝑁
) .

(29)

We find it interesting to compute the cumulative sums of the
𝑝
𝑗
’s: for 𝑘 ∈ {−𝑁, . . . , 𝑁},

𝑘

∑

𝑗=−𝑁

𝑝
𝑗
=

𝑘

∑

𝑗=−𝑁

[𝛿
𝑗0
+ (−1)

𝑗−1

𝑐 (
2𝑁

𝑗 + 𝑁
)]

= 1
{𝑘≥0}

+ (−1)
𝑁−1

𝑐

𝑘+𝑁

∑

𝑗=0

(−1)
𝑗

(
2𝑁

𝑗
) .

(30)

The last displayed sum is classical and easy to compute by
appealing to Pascal’s formula which leads to a telescopic sum:

𝑘+𝑁

∑

𝑗=0

(−1)
𝑗

(
2𝑁

𝑗
)

=

𝑘+𝑁

∑

𝑗=0

[(−1)
𝑗

(
2𝑁 − 1

𝑗 − 1
) − (−1)

𝑗+1

(
2𝑁 − 1

𝑗
)]

= (−1)
𝑘+𝑁

(
2𝑁 − 1

𝑘 + 𝑁
) .

(31)

Thus, for 𝑘 ∈ {−𝑁, . . . , 𝑁},
𝑘

∑

𝑗=−𝑁

𝑝
𝑗
= 1

{𝑘≥0}
+ (−1)

𝑘−1

𝑐 (
2𝑁 − 1

𝑘 + 𝑁
) . (32)

Observe that this sum is nothing but P{𝜉
1
≤ 𝑘}. Next, we

compute the total sum of the |𝑝
𝑗
|’s: by using the fact that

∑
2𝑁

𝑘=0
(
2𝑁

𝑘
) = 4

𝑁,
𝑁

∑

𝑘=−𝑁

󵄨󵄨󵄨󵄨𝑝𝑘
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑐 (
2𝑁

𝑁
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∑

−𝑁≤𝑘≤𝑁

𝑘 ̸= 0

𝑐 (
2𝑁

𝑘 + 𝑁
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑐 (
2𝑁

𝑁
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑐 [4
𝑁

− (
2𝑁

𝑁
)]

= 𝑐4
𝑁

− 1 + 2[1 − 𝑐 (
2𝑁

𝑁
)]

+

.

(33)

As previously mentioned, there is an interpretation to this
sum: this is the total variation of the pseudodistribution of
𝜉
1
. We can also explicitly determine the generating function

of 𝜉
1
: for any 𝜁 ∈ C∗,

E (𝜁
𝜉
1) =

𝑁

∑

𝑘=−𝑁

𝑝
𝑘
𝜁
𝑘

= 1 + 𝑐 [

𝑁

∑

𝑘=−𝑁

(−1)
𝑘−1

(
2𝑁

𝑘 + 𝑁
)𝜁

𝑘

]

= 1 + (−1)
𝑁−1

𝑐

𝜁𝑁
[

2𝑁

∑

𝑘=0

(−1)
𝑘

(
2𝑁

𝑘
) 𝜁

𝑘

]

= 1 + 𝜅
𝑁
𝑐
(1 − 𝜁)

2𝑁

𝜁𝑁
.

(34)

We sum up below the results we have obtained concerning
the pseudodistribution of 𝜉

1
.
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Proposition 2. The pseudodistribution of 𝜉
1
is determined, for

𝑘 ∈ {−𝑁, . . . , 𝑁}, by

P {𝜉
1
= 𝑘} = 𝛿

𝑘0
+ (−1)

𝑘−1

𝑐 (
2𝑁

𝑘 + 𝑁
) , (35)

or, equivalently, by

P {𝜉
1
≤ 𝑘} = 1

{𝑘≥0}
+ (−1)

𝑘−1

𝑐 (
2𝑁 − 1

𝑘 + 𝑁
) . (36)

The total variation of the pseudodistribution of 𝜉
1
is given by

󵄩󵄩󵄩󵄩󵄩
P
𝜉
1

󵄩󵄩󵄩󵄩󵄩
=

{{{{

{{{{

{

1 + 𝑐 [4
𝑁

− 2(
2𝑁

𝑁
)] if 0 < 𝑐 ≤ 1

(
2𝑁

𝑁
)
,

𝑐4
𝑁

− 1 if 𝑐 ≥ 1

(
2𝑁

𝑁
)
.

(37)

The generating function of 𝜉
1
is given, for any 𝜁 ∈ C∗, by

E (𝜁
𝜉
1) = 1 + 𝜅

𝑁
𝑐
(1 − 𝜁)

2𝑁

𝜁𝑁
. (38)

In particular, the Fourier transform of 𝜉
1
admits the following

expression: for any 𝜃 ∈ [0, 2𝜋], by

E (e𝑖𝜃𝜉1) = 1 − 𝑐4𝑁sin2𝑁 (𝜃
2
) . (39)

Remark 3. For 𝑐 = 1/ (
2𝑁

𝑁
), we have P{𝜉

1
= 0} = 0; that is,

the pseudorandom walk does not stay at its current location.
If 0 < 𝑐 ≤ 1/ ( 2𝑁+1

𝑁+1
), it can be easily seen, by using the identity

(
2𝑁

𝑁
) + (

2𝑁

𝑁+1
) = (

2𝑁+1

𝑁+1
), that P{𝜉

1
= 0} ≥ P{𝜉

1
= 1} > 0. On

the other hand, for any 𝑐 > 0, it is clear that P{𝜉
1
= 1} >

|P{𝜉
1
= 2}| > ⋅ ⋅ ⋅ > |P{𝜉

1
= 𝑁}|. In Table 1 and Figures 1 and

2, we provide some numerical values and (rescaled) profiles
of the pseudodistribution of 𝜉

1
for 𝑁 = 3 and 𝑁 = 4 and

several values of 𝑐.

In the sequel, we will use the total variation of 𝜉
1
as an

upper bound which we call𝑀
1
:

𝑀
1
=

{{{{

{{{{

{

1 + 𝑐 [4
𝑁

− 2(
2𝑁

𝑁
)] if 0 < 𝑐 ≤ 1

(
2𝑁

𝑁
)
,

𝑐4
𝑁

− 1 if 𝑐 ≥ 1

(
2𝑁

𝑁
)
.

(40)

Set f(𝜃) = E(e𝑖𝜃𝜉1) for any 𝜃 ∈ [0, 2𝜋]. We notice that f(𝜃) ∈
[1 − 𝑐4

𝑁

, 1] and, more precisely,

‖f‖
∞
= sup

𝜃∈[0,2𝜋]

|f (𝜃)|

= max (󵄨󵄨󵄨󵄨󵄨1 − 𝑐4
𝑁
󵄨󵄨󵄨󵄨󵄨
, 1)

=

{{

{{

{

1 if 0 < 𝑐 ≤ 1

22𝑁−1
,

𝑐4
𝑁

− 1 if 𝑐 ≥ 1

22𝑁−1
.

(41)

Table 1: Some numerical values in the cases𝑁 ∈ {3, 4}.

(a)

𝑐 𝑝
𝑜

𝑝
1

𝑝
2

𝑝
3

1 −19 15 −6 1
1/20 0 0.75 −0.30 0.050
1/32 0.38 0.47 −0.19 0.031
1/35 0.43 0.43 −0.17 0.029
1/64 0.69 0.23 −0.094 0.016

(b)

𝑐 𝑝
𝑜

𝑝
1

𝑝
2

𝑝
3

𝑝
4

1 −69 56 −28 8 −1
1/70 0 0.8 −0.4 0.114 −0.0143
1/126 0.44 0.44 −0.22 0.063 −0.0079
1/128 0.45 0.44 −0.22 0.062 −0.0078
1/256 0.73 0.22 −0.11 0.031 −0.0039

Let us denote this bound by𝑀
∞
:

𝑀
∞
=

{{

{{

{

1 if 0 < 𝑐 ≤ 1

22𝑁−1
,

𝑐4
𝑁

− 1 if 𝑐 ≥ 1

22𝑁−1
.

(42)

In view of (40) and (42), since ( 2𝑁
𝑁
) ≤ 2

2𝑁−1, we see that
𝑀

1
≥ 𝑀

∞
≥ 1.

Proposition 4. The pseudodistribution of 𝑆
𝑛
is given, for any

𝑘 ∈ {−𝑁𝑛, . . . , 𝑁𝑛}, by

P {𝑆
𝑛
= 𝑘} = (−1)

𝑘

𝑛

∑

ℓ=0

(−𝑐)
ℓ

(
𝑛

ℓ
)(

2𝑁ℓ

𝑘 + 𝑁ℓ
) . (43)

Actually, the foregoing sum is taken over the ℓ such that ℓ ≥

|𝑘|/𝑁. We also have that

P {𝑆
𝑛
≤ 𝑘} = 1

{𝑘≥0}
+ (−1)

𝑘

𝑛

∑

ℓ=1

(−𝑐)
ℓ

(
𝑛

ℓ
)(

2𝑁ℓ − 1

𝑘 + 𝑁ℓ
) .

(44)

Proof. By the independence of the 𝜉
𝑗
’s which have the same

pseudoprobability distribution, we plainly have that

E (e𝑖𝜃𝑆𝑛) = f(𝜃)
𝑛

= [1 − 𝑐4
𝑁sin 2𝑁

(
𝜃

2
)]

𝑛

. (45)

Hence, by inverse Fourier transform, we extract that

P {𝑆
𝑛
= 𝑘} =

1

2𝜋
∫

2𝜋

0

f(𝜃)
𝑛e−𝑖𝑘𝜃 d𝜃 (46)

=

𝑛

∑

ℓ=0

(−4
𝑁

𝑐)
ℓ

(
𝑛

ℓ
)
1

2𝜋
∫

2𝜋

0

sin2𝑁ℓ

(
𝜃

2
) e−𝑖𝑘𝜃 d𝜃.

(47)
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Figure 1:𝑁 = 3, 𝑐 ∈ {1, 1/32, 1/64}.

Figure 2:𝑁 = 4, 𝑐 ∈ {1, 1/128, 1/256}.

By writing sin(𝜃/2) = (e𝑖𝜃/2 − e−𝑖𝜃/2)/(2𝑖), we get for the
integral lying in (47) that

1

2𝜋
∫

2𝜋

0

sin2𝑁ℓ

(
𝜃

2
) e−𝑖𝑘𝜃d𝜃

=
1

2𝜋
∫

2𝜋

0

(
e𝑖𝜃/2 − e−𝑖𝜃/2

2𝑖
)

2𝑁ℓ

e−𝑖𝑘𝜃 d𝜃

=
(−1)

𝑁ℓ

(2𝜋) 4
𝑁ℓ

∫

2𝜋

0

2𝑁ℓ

∑

𝑚=0

(−1)
𝑚

(
2𝑁ℓ

𝑚
) e𝑖(𝑚−𝑘−𝑁ℓ)𝜃 d𝜃

=
(−1)

𝑁ℓ

4𝑁ℓ

2𝑁ℓ

∑

𝑚=0

(−1)
𝑚

(
2𝑁ℓ

𝑚
)
1

2𝜋
∫

2𝜋

0

e𝑖(𝑚−𝑘−𝑁ℓ)𝜃 d𝜃

=
(−1)

𝑘

4𝑁ℓ
(
2𝑁ℓ

𝑘 + 𝑁ℓ
) .

(48)

By plugging (48) into (47), we derive (43). Next, we write, for
𝑘 ∈ {−𝑁𝑛, . . . , 𝑁𝑛}, that

P {𝑆
𝑛
≤ 𝑘} =

𝑘

∑

𝑗=−𝑁𝑛

P {𝑆
𝑛
= 𝑗}

=

𝑛

∑

ℓ=0

(−𝑐)
ℓ

(
𝑛

ℓ
)

𝑘∧(𝑁ℓ)

∑

𝑗=(−𝑁𝑛)∨(−𝑁ℓ)

(−1)
𝑗

(
2𝑁ℓ

𝑗 + 𝑁ℓ
)

=

𝑛

∑

ℓ=0

(−𝑐)
ℓ

(
𝑛

ℓ
)

𝑘∧(𝑁ℓ)

∑

𝑗=−𝑁ℓ

(−1)
𝑗

(
2𝑁ℓ

𝑗 + 𝑁ℓ
) .

(49)

If 𝑘 < 0, then the term in sum (49) corresponding to ℓ = 0

vanishes and

P {𝑆
𝑛
≤ 𝑘} =

𝑛

∑

ℓ=1

(−𝑐)
ℓ

(
𝑛

ℓ
)

𝑘

∑

𝑗=−𝑁ℓ

(−1)
𝑗

(
2𝑁ℓ

𝑗 + 𝑁ℓ
) . (50)
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The second sum in the foregoing equality is easy to compute:

𝑘

∑

𝑗=−𝑁ℓ

(−1)
𝑗

(
2𝑁ℓ

𝑗 + 𝑁ℓ
)

=

𝑘

∑

𝑗=−𝑁ℓ

[(−1)
𝑗

(
2𝑁ℓ − 1

𝑗 + 𝑁ℓ − 1
) − (−1)

𝑗+1

(
2𝑁ℓ − 1

𝑗 + 𝑁ℓ
)]

= (−1)
𝑘

(
2𝑁ℓ − 1

𝑘 + 𝑁ℓ
) .

(51)

If 𝑘 ≥ 0, then the term in sum (49) corresponding to ℓ = 0 is
1 and

P {𝑆
𝑛
≤ 𝑘} = 1 +

𝑛

∑

ℓ=1

(−𝑐)
ℓ

(
𝑛

ℓ
)

𝑘∧(𝑁ℓ)

∑

𝑗=−𝑁ℓ

(−1)
𝑗

(
2𝑁ℓ

𝑗 + 𝑁ℓ
) . (52)

By using the convention that ( 𝛼𝛽 ) = 0 if 𝛽 > 𝛼, we see that
the second sum above also coincides with (51). Formula (44)
ensues in both cases.

Proposition 5. The upper bound below holds true: for any
positive integer 𝑛 and any integer 𝑘,

󵄨󵄨󵄨󵄨P {𝑆𝑛 = 𝑘}
󵄨󵄨󵄨󵄨 ≤

√P {𝑆
2𝑛
= 0} ≤ 𝑀

𝑛

∞
. (53)

Assume that 0 < 𝑐 ≤ 1/2
2𝑁−1. The asymptotics below holds

true: for any 𝛿 ∈ (0, 1/(2𝑁)),

P {𝑆
𝑛
= 0} =

𝑛→+∞

O(
1

𝑛𝛿
) . (54)

Proof. Let us introduce the usual norms of any suitable
function 𝜙:

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩1
=

1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨𝜙 (𝜃)
󵄨󵄨󵄨󵄨 d𝜃,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩2
= √

1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨𝜙 (𝜃)
󵄨󵄨󵄨󵄨

2 d𝜃,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩∞

= sup
𝜃∈[0,2𝜋]

󵄨󵄨󵄨󵄨𝜙 (𝜃)
󵄨󵄨󵄨󵄨

(55)

and recall the elementary inequalities ‖𝜙‖
1
≤ ‖𝜙‖

2
≤ ‖𝜙‖

∞
.

It is clear from (46) that, for any integer 𝑘,

󵄨󵄨󵄨󵄨P {𝑆𝑛 = 𝑘}
󵄨󵄨󵄨󵄨 ≤

1

2𝜋
∫

2𝜋

0

|f (𝜃)|
𝑛 d𝜃 = 󵄩󵄩󵄩󵄩f

𝑛󵄩󵄩󵄩󵄩1

≤
󵄩󵄩󵄩󵄩f

𝑛󵄩󵄩󵄩󵄩2
= √

1

2𝜋
∫

2𝜋

0

f(𝜃)
2𝑛 d𝜃 = √P {𝑆

2𝑛
= 0}

≤ ‖f‖
𝑛

∞
= 𝑀

𝑛

∞
.

(56)

This proves (53). Next, by (46), since f(2𝜋−𝜃) = f(𝜃), we have,
for any 𝜀 ∈ (0, 𝜋), that

P {𝑆
𝑛
= 0} =

1

2𝜋
∫

2𝜋

0

f(𝜃)
𝑛 d𝜃 = 1

𝜋
∫

𝜋

0

f(𝜃)
𝑛 d𝜃

=
1

𝜋
(∫

𝜀

0

f(𝜃)
𝑛 d𝜃 + ∫

𝜋

𝜀

f(𝜃)
𝑛 d𝜃) .

(57)

The assumption 0 < 𝑐 < 1/22𝑁−1 entails that |f(𝜃)| < 1 for any
𝜃 ∈ (0, 𝜋). We see that |f(𝜃)| ≤ 1 on [0, 𝜀], and |f(𝜃)| ≤ |f(𝜀)|
on [𝜀, 𝜋] for any 𝜀 ∈ (0, 𝜋). Hence,

󵄨󵄨󵄨󵄨P {𝑆𝑛 = 0}
󵄨󵄨󵄨󵄨 ≤ 𝜀 + |f (𝜀)|

𝑛

. (58)

Now, choose 𝜀 = 1/𝑛𝛿 for a positive 𝛿. We have that

ln (|f (𝜀)|𝑛) = 𝑛 ln(1 − 𝑐4𝑁sin2𝑁 ( 1

2𝑛𝛿
)) ∼ −𝑐𝑛

1−2𝑁𝛿 (59)

which clearly entails, for large enough 𝑛, that |f(𝜀)|𝑛 ≤

exp(−(𝑐/2)𝑛1−2𝑁𝛿

). Thus, if 𝛿 ∈ (0, 1/(2𝑁)), |f(𝜀)|𝑛 = 𝑜(𝜀)

which proves (54).
If 𝑐 = 1/2

2𝑁−1, f(𝜃) = 1 − 2sin2𝑁(𝜃/2). In this case,
the same holds true upon splitting the integral ∫𝜋

0

into
∫
𝜀

0

+∫
𝜋−𝜀

𝜀

+∫
𝜋

𝜋−𝜀

.

Remark 6. A better estimate for |P{𝑆
𝑛
= 𝑘}| can be obtained

in the same way:

∀𝑘 ∈ Z,
󵄨󵄨󵄨󵄨P {𝑆𝑛 = 𝑘}

󵄨󵄨󵄨󵄨 ≤ {
P {𝑆

𝑛
= 0} if 𝑛 is even,

𝑀
∞
P {𝑆

𝑛−1
= 0} if 𝑛 is odd.

(60)

Nevertheless, we will not use it. We also have the following
inequality for the total variation of 𝑆

𝑛
:

󵄩󵄩󵄩󵄩󵄩
P
𝑆
𝑛

󵄩󵄩󵄩󵄩󵄩
=

𝑁𝑛

∑

𝑘=−𝑁𝑛

󵄨󵄨󵄨󵄨P {𝑆𝑛 = 𝑘}
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩󵄩
P
𝜉
1

󵄩󵄩󵄩󵄩󵄩

𝑛

= 𝑀
𝑛

1
. (61)

Proposition 7. For any bounded function 𝐹 defined on Z𝑛,

󵄨󵄨󵄨󵄨E [𝐹 (𝑆1, . . . , 𝑆𝑛)]
󵄨󵄨󵄨󵄨 ≤ ‖𝐹‖∞𝑀

𝑛

1
. (62)

Proof. Recall that we set 𝑝
𝑘
= P{𝜉

1
= 𝑘} for any 𝑘 ∈

{−𝑁, . . . , 𝑁}. We extend these settings by putting 𝑝
𝑘
= 0 for

𝑘 ∈ Z \ {−𝑁, . . . , 𝑁}. We have that

󵄨󵄨󵄨󵄨E [𝐹 (𝑆1, . . . , 𝑆𝑛)]
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

(𝑘1 ,...,𝑘𝑛)∈Z
𝑛

𝐹 (𝑘
1
, . . . , 𝑘

𝑛
)P {𝑆

1
= 𝑘

1
, . . . , 𝑆

𝑛
= 𝑘

𝑛
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝐹‖
∞

∑

(𝑘1 ,...,𝑘𝑛)∈Z
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑘
1

𝑝
𝑘
2
−𝑘
1

⋅ ⋅ ⋅ 𝑝
𝑘
𝑛
−𝑘
𝑛−1

󵄨󵄨󵄨󵄨󵄨
.

(63)
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The foregoing sum can be easily evaluated as follows:

∑

(𝑘1 ,...,𝑘𝑛)∈Z
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑘
1

𝑝
𝑘
2
−𝑘
1

⋅ ⋅ ⋅ 𝑝
𝑘
𝑛
−𝑘
𝑛−1

󵄨󵄨󵄨󵄨󵄨

= ∑

𝑘
1
∈Z

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑘
1

󵄨󵄨󵄨󵄨󵄨
( ∑

𝑘
2
∈Z

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑘
2
−𝑘
1

󵄨󵄨󵄨󵄨󵄨
(⋅ ⋅ ⋅ ( ∑

𝑘
𝑛
∈Z

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑘
𝑛
−𝑘
𝑛−1

󵄨󵄨󵄨󵄨󵄨
) ⋅ ⋅ ⋅ ))

= (∑

𝑘∈Z

󵄨󵄨󵄨󵄨𝑝𝑘
󵄨󵄨󵄨󵄨)

𝑛

= 𝑀
𝑛

1

(64)

which proves (62).

2.2. Generating Function of 𝑆
𝑛
. Let us introduce the generat-

ing functions, defined for complex numbers 𝑧, 𝜁, by

𝐺
𝑘
(𝑧) = ∑

𝑛∈N

P {𝑆
𝑛
= 𝑘} 𝑧

𝑛

= ∑

𝑛∈N:
𝑛≥|𝑘|/𝑁

P {𝑆
𝑛
= 𝑘} 𝑧

𝑛 for 𝑘 ∈ Z,

𝐺 (𝑧, 𝜁) = ∑

𝑘∈Z,𝑛∈N

P {𝑆
𝑛
= 𝑘} 𝜁

𝑘

𝑧
𝑛

= ∑

𝑘∈Z,𝑛∈N:
|𝑘|≤𝑁𝑛

P {𝑆
𝑛
= 𝑘} 𝜁

𝑘

𝑧
𝑛

.

(65)

We first study the problem of convergence of the foregoing
series. We start from

∑

𝑘∈Z,𝑛∈N

󵄨󵄨󵄨󵄨󵄨
P {𝑆

𝑛
= 𝑘} 𝜁

𝑘

𝑧
𝑛
󵄨󵄨󵄨󵄨󵄨
≤ ∑

𝑘∈Z,𝑛∈N:
|𝑘|≤𝑁𝑛

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑘󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

.
(66)

If 𝜁 ̸= 0 and |𝜁| ̸= 1, then

∑

𝑘∈Z,𝑛∈N:
|𝑘|≤𝑁𝑛

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑘󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

=

∞

∑

𝑛=0

(
1 −

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑁𝑛+1

1 −
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

+
1 − 1/

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑁𝑛+1

1 − 1/
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

− 1)
󵄨󵄨󵄨󵄨𝑀∞

𝑧
󵄨󵄨󵄨󵄨

𝑛

=
1

1 −
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

(

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

−
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨
𝑀

∞
𝑧𝜁

𝑁
󵄨󵄨󵄨󵄨󵄨

𝑛

)

+
1

1 − 1/
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

(

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

−
1

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀
∞
𝑧

𝜁𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

) −

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

.

(67)

If we choose 𝑧, 𝜁 such that |𝑀
∞
𝑧| < 1, |𝑀

∞
𝑧𝜁

𝑁

| < 1

and |𝑀
∞
𝑧/𝜁

𝑁

| < 1 (which is equivalent to |𝑧| < 1/𝑀
∞
×

[min(|𝜁|, 1/|𝜁|)]𝑁, or 𝑁√|𝑀
∞
𝑧| < |𝜁| < 1/

𝑁

√|𝑀
∞
𝑧|), then

the double sum defining the function 𝐺(𝑧, 𝜁) is absolutely
summable. If |𝜁| = 1, then

∑

𝑘∈Z,𝑛∈N:
|𝑘|≤𝑁𝑛

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑘󵄨󵄨󵄨󵄨𝑀∞
𝑧
󵄨󵄨󵄨󵄨

𝑛

=

∞

∑

𝑛=0

(2𝑁𝑛 + 1)
󵄨󵄨󵄨󵄨𝑀∞

𝑧
󵄨󵄨󵄨󵄨

𝑛

. (68)

If we choose 𝑧 such that |𝑀
∞
𝑧| < 1, then the same conclusion

holds.
Now, we have that

𝐺 (𝑧, 𝜁) = ∑

𝑛∈N

(∑

𝑘∈Z

P {𝑆
𝑛
= 𝑘} 𝜁

𝑘

)𝑧
𝑛

= ∑

𝑛∈N

E (𝜁
𝑆
𝑛) 𝑧

𝑛

= ∑

𝑛∈N

[𝑧E (𝜁
𝜉
1)]

𝑛

=
1

1 − 𝑧E (𝜁𝜉1)

(69)

and, thanks to (38), we can state the following result.

Proposition 8. The double generating function of the P{𝑆
𝑛
=

𝑘}, 𝑘 ∈ Z, 𝑛 ∈ N, is given, for any complex numbers 𝑧, 𝜁 such
that 𝑁√|𝑀

∞
𝑧| < |𝜁| < 1/

𝑁

√|𝑀
∞
𝑧|, by

𝐺 (𝑧, 𝜁) =
𝜁
𝑁

(1 − 𝑧) 𝜁
𝑁 − 𝜅

𝑁
𝑐𝑧(1 − 𝜁)

2𝑁
. (70)

In particular, for any 𝜃 ∈ [0, 2𝜋] and 𝑧 ∈ C such that |𝑧| <
1/𝑀

∞
,

𝐺(𝑧, e 𝑖𝜃

) =
1

1 − 𝑧 + 𝑐4𝑁𝑧 sin2𝑁 (𝜃/2)
. (71)

On the other hand,

𝐺 (𝑧, 𝜁) = ∑

𝑘∈Z

(∑

𝑛∈N

P {𝑆
𝑛
= 𝑘} 𝑧

𝑛

)𝜁
𝑘

= ∑

𝑘∈Z

𝐺
𝑘
(𝑧) 𝜁

𝑘

.

(72)

By substituting 𝜁 = e 𝑖𝜃 in the foregoing equality, we get the
Fourier series of the function 𝜃 󳨃→ 𝐺(𝑧, e 𝑖𝜃

):

𝐺(𝑧, e 𝑖𝜃

) = ∑

𝑘∈Z

𝐺
𝑘
(𝑧) e𝑖𝑘𝜃 (73)

from which we extract the sequence of the coefficients
(𝐺

𝑘
(𝑧))

𝑘∈N. Indeed, since P{𝑆𝑛 = −𝑘} = P{𝑆
𝑛
= 𝑘}, we have

that 𝐺
𝑘
(𝑧) = 𝐺

−𝑘
(𝑧) and

𝐺
𝑘
(𝑧) =

1

2𝜋
∫

2𝜋

0

𝐺(𝑧, e 𝑖𝜃

) e−𝑖𝑘𝜃d𝜃

=
1

2𝜋
∫

2𝜋

0

𝐺(𝑧, e 𝑖𝜃

) e𝑖𝑘𝜃d𝜃

=
1

2𝜋𝑖
∫
C

𝐺 (𝑧, 𝜁) 𝜁
𝑘−1d𝜁,

(74)

where C is the circle of radius 1 centered at the origin and
counter clockwise orientated. Then, referring to (70), we
obtain, for any 𝑧 ∈ C satisfying |𝑧| < 1/𝑀

∞
, that

𝐺
𝑘
(𝑧) =

1

2𝜋𝑖
∫
C

𝜁
𝑘+𝑁−1

𝑃 (𝑧, 𝜁)
d 𝜁, (75)
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where 𝑃(𝑧, 𝜁) is the polynomial given by

𝑃 (𝑧, 𝜁) = (1 − 𝑧) 𝜁
𝑁

− 𝜅
𝑁
𝑐𝑧(𝜁 − 1)

2𝑁

. (76)

We are looking for the roots of 𝜁 󳨃→ 𝑃(𝑧, 𝜁) which lie inside
the circleC. For this, we introduce the𝑁th roots of 𝜅

𝑁
: 𝜃

𝑗
=

− e 𝑖((2𝑗−1)/𝑁)𝜋 for 1 ≤ 𝑗 ≤ 𝑁; 𝜃𝑁
𝑗
= 𝜅

𝑁
.

From now on, in order to simplify the expression of the
roots of 𝑃, we make the assumption that 𝑧 is a real number
lying in (0, 1/𝑀

∞
) (and then 𝑧 ∈ (0, 1)). The roots of 𝜁 󳨃→

𝑃(𝑧, 𝜁) are those of the equations 𝜁2 − 2[1 + 𝜃
𝑗
𝑤(𝑧)]𝜁 + 1 = 0,

1 ≤ 𝑗 ≤ 𝑁, where

𝑤 (𝑧) =

𝑁

√1 − 𝑧

2
𝑁

√𝑐𝑧
. (77)

They can be written as

𝑢
𝑗
(𝑧) = 1 + 𝜃

𝑗
𝑤 (𝑧)

− 𝜃
𝑗
√𝑤 (𝑧) [𝑎

𝑗
(𝑧) + 𝑖𝜖

𝑗
𝑏
𝑗
(𝑧)] , 1 ≤ 𝑗 ≤ 𝑁,

V
𝑗
(𝑧) = 1 + 𝜃

𝑗
𝑤 (𝑧)

+ 𝜃
𝑗
√𝑤 (𝑧) [𝑎

𝑗
(𝑧) + 𝑖𝜖

𝑗
𝑏
𝑗
(𝑧)] , 1 ≤ 𝑗 ≤ 𝑁,

(78)

with

𝜖
𝑗
= sgn(sin(

2𝑗 − 1

𝑁
𝜋))

(with the convention that sgn (0) = 0) ,

𝑎
𝑗
(𝑧) =

1

√2

[

[

√𝑤(𝑧)
2

− 4 cos(
2𝑗 − 1

𝑁
𝜋)𝑤 (𝑧) + 4

+ 𝑤 (𝑧) − 2 cos(
2𝑗 − 1

𝑁
𝜋)]

]

1/2

,

𝑏
𝑗
(𝑧) =

1

√2

[

[

√𝑤(𝑧)
2

− 4 cos(
2𝑗 − 1

𝑁
𝜋)𝑤 (𝑧) + 4

− 𝑤 (𝑧) + 2 cos(
2𝑗 − 1

𝑁
𝜋)]

]

1/2

.

(79)

We notice that 𝑎
𝑗
(𝑧)𝑏

𝑗
(𝑧) = | sin(((2𝑗 − 1)/𝑁)𝜋)|. Because of

the last coefficient 1 in the polynomial 𝜁2−2[1+𝜃
𝑗
𝑤(𝑧)]𝜁+1,

it is clear that the roots 𝑢
𝑗
(𝑧) and V

𝑗
(𝑧) are inverse: V

𝑗
(𝑧) =

1/𝑢
𝑗
(𝑧).
Let us check that |𝑢

𝑗
(𝑧)| < 1 < |V

𝑗
(𝑧)| for any 𝑗 ∈

{1, . . . , 𝑁}. Straightforward computations yield that

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

= 𝐴
𝑗
(𝑧) − 𝐵

𝑗
(𝑧) ,

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑧)
󵄨󵄨󵄨󵄨󵄨

2

= 𝐴
𝑗
(𝑧) + 𝐵

𝑗
(𝑧) ,

(80)

where

𝐴
𝑗
(𝑧) = 𝑤(𝑧)

2

+ 𝑤 (𝑧)

× [

[

√𝑤(𝑧)
2

− 4 cos(
2𝑗 − 1

𝑁
𝜋)𝑤 (𝑧) + 4

− 2 cos(
2𝑗 − 1

𝑁
𝜋)]

]

+ 1,

𝐵
𝑗
(𝑧) = 2√𝑤 (𝑧) [ (𝑤 (𝑧) − cos(

2𝑗 − 1

𝑁
𝜋)) 𝑎

𝑗
(𝑧)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin(
2𝑗 − 1

𝑁
𝜋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏
𝑗
(𝑧) ] .

(81)

Since V
𝑗
(𝑧) = 1/𝑢

𝑗
(𝑧), checking that |𝑢

𝑗
(𝑧)| < 1 < |V

𝑗
(𝑧)|

is equivalent to checking that |𝑢
𝑗
(𝑧)|

2

< |V
𝑗
(𝑧)|

2; that is,
𝐵
𝑗
(𝑧) > 0. If sin(((2𝑗 − 1)/𝑁)𝜋) ̸= 0, we have 𝑎

𝑗
(𝑧)𝑏

𝑗
(𝑧) ̸= 0,

𝑎
𝑗
(𝑧) = | sin(((2𝑗 − 1)/𝑁)𝜋)|/𝑏

𝑗
(𝑧) and then

𝐵
𝑗
(𝑧) = 2𝑎

𝑗
(𝑧)√𝑤 (𝑧) [𝑤 (𝑧) − cos(

2𝑗 − 1

𝑁
𝜋) + 𝑏

𝑗
(𝑧)

2

]

= 𝑎
𝑗
(𝑧)√𝑤 (𝑧)

× [

[

√𝑤(𝑧)
2

− 4 cos(
2𝑗 − 1

𝑁
𝜋)𝑤 (𝑧) + 4 + 𝑤 (𝑧)]

]

> 0.

(82)

If sin(((2𝑗−1)/𝑁)𝜋) = 0 (which happens only when𝑁 is odd
and 𝑗 = (𝑁 + 1)/2), 𝑎

𝑗
(𝑧) = √𝑤(𝑧) + 2, 𝑏

𝑗
(𝑧) = 0 and then

𝐵
𝑗
= 2𝑎

𝑗
(𝑧)√𝑤(𝑧)(𝑤(𝑧) + 1) > 0.

The above discussion ensures that the rootswe are looking
for (i.e., those lying insideC) are 𝑢

𝑗
(𝑧), 1 ≤ 𝑗 ≤ 𝑁; we discard

the V
𝑗
(𝑧)’s.

Remark 9. We notice that

lim
𝑧→1

−

𝑎
𝑗
(𝑧) = √2 sin(

2𝑗 − 1

2𝑁
𝜋) ,

lim
𝑧→1

−

𝑏
𝑗
(𝑧) = 𝜖

𝑗

√2 cos(
2𝑗 − 1

2𝑁
𝜋)

(83)

and then

lim
𝑧→1

−

𝜃
𝑗
[𝑎

𝑗
(𝑧) + 𝑖𝜖

𝑗
𝑏
𝑗
(𝑧)] = √2𝜑

𝑗
, (84)

where we set 𝜑
𝑗
= −𝑖e 𝑖((2𝑗−1)/2𝑁)𝜋. The 𝜑

𝑗
, 1 ≤ 𝑗 ≤ 𝑁, are

the (2𝑁)th roots of 𝜅
𝑁
with positive real part: 𝜑2𝑁

𝑗
= 𝜅

𝑁
and

R(𝜑
𝑗
) > 0. As a result, we derive the asymptotics, which will

be used further,

𝑢
𝑗
(𝑧) = 1 + 𝜀

𝑗
(𝑧)

with 𝜀
𝑗
(𝑧) ∼

𝑧→1
−

−

𝜑
𝑗

2𝑁

√𝑐

2𝑁

√1 − 𝑧 = O (
2𝑁

√1 − 𝑧) .

(85)
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Example 10. For𝑁 = 1, the roots explicitly write as

𝑢
1
(𝑧) = 1 + 𝑤 (𝑧) − 𝑎

1
(𝑧)√𝑤 (𝑧), V

1
(𝑧) =

1

𝑢
1
(𝑧)

(86)

with

𝑤 (𝑧) =
1 − 𝑧

2𝑐𝑧
, 𝑎

1
(𝑧) = √𝑤 (𝑧) + 2. (87)

If 𝑐 = 1/2, it can be simplified into

𝑢
1
(𝑧) =

1 − √1 − 𝑧2

𝑧
. (88)

For𝑁 = 2, the roots explicitly write as

𝑢
1
(𝑧) = [1 − 𝑏

1
(𝑧)√𝑤 (𝑧)] − 𝑖 [𝑤 (𝑧) − 𝑎

1
(𝑧)√𝑤 (𝑧)] ,

𝑢
2
(𝑧) = 𝑢

1
(𝑧), V

1
(𝑧) =

1

𝑢
1
(𝑧)

, V
2
(𝑧) = V

1
(𝑧),

(89)

with

𝑤 (𝑧) =
√1 − 𝑧

2√𝑐𝑧
, 𝑎

1
(𝑧) =

1

√2

√√𝑤(𝑧)
2

+ 4 + 𝑤 (𝑧),

𝑏
1
(𝑧) =

1

√2

√√𝑤(𝑧)
2

+ 4 − 𝑤 (𝑧).

(90)

For𝑁 = 3, the roots explicitly write as

𝑢
1
(𝑧) =

1

2
[2 − 𝑤 (𝑧) − (𝑎

1
(𝑧) − 𝑏

1
(𝑧)√3)√𝑤 (𝑧)]

−
𝑖

2
[𝑤 (𝑧)√3 − (𝑎

1
(𝑧)√3 + 𝑏

1
(𝑧))√𝑤 (𝑧)] ,

𝑢
2
(𝑧) = 1 − 𝑤 (𝑧) − 𝑎

2
(𝑧)√𝑤 (𝑧), 𝑢

3
(𝑧) = 𝑢

1
(𝑧),

V
1
(𝑧) =

1

𝑢
1
(𝑧)

, V
2
(𝑧) =

1

𝑢
2
(𝑧)

, V
3
(𝑧) = V

1
(𝑧),

(91)

with

𝑎
1
(𝑧) =

1

√2

√√𝑤(𝑧)
2

− 2𝑤 (𝑧) + 4 + 𝑤 (𝑧) − 1,

𝑏
1
(𝑧) =

1

√2

√√𝑤(𝑧)
2

− 2𝑤 (𝑧) + 4 − 𝑤 (𝑧) + 1,

𝑎
2
(𝑧) = √𝑤 (𝑧) + 2, 𝑤 (𝑧) =

3

√1 − 𝑧

2
3

√𝑐𝑧
.

(92)

Now, 𝐺
𝑘
(𝑧) can be evaluated by residues theorem. Sup-

pose first that 𝑘 ≥ 0 (then 𝑘 + 𝑁 − 1 ≥ 0) so that 0 is not a
pole in the integral defining 𝐺

𝑘
(𝑧):

𝐺
𝑘
(𝑧) =

𝑁

∑

𝑗=1

Res( 𝜁
𝑘+𝑁−1

𝑃 (𝑧, 𝜁)
, 𝜁 = 𝑢

𝑗
(𝑧))

=

𝑁

∑

𝑗=1

𝑢
𝑗
(𝑧)

𝑘+𝑁−1

(𝜕𝑃/𝜕𝜁) (𝑧, 𝑢
𝑗
(𝑧))

=
1

𝑁 (1 − 𝑧)

𝑁

∑

𝑗=1

1 − 𝑢
𝑗
(𝑧)

1 + 𝑢
𝑗
(𝑧)

𝑢
𝑗
(𝑧)

𝑘

.

(93)

The foregoing representation of 𝐺
𝑘
(𝑧) is valid a priori for

any 𝑧 ∈ (0, 1/𝑀
∞
). Actually, in view of the expressions of

𝑤(𝑧) and 𝑢
𝑗
(𝑧), we can see that (93) defines an analytical

function in the interval (0, 1). Since𝐺
𝑘
(𝑧) is a power series, by

analytical continuation, equality (93) holds true for any 𝑧 ∈
(0, 1). Moreover, by symmetry, we have that 𝐺

𝑘
(𝑧) = 𝐺

−𝑘
(𝑧)

for 𝑘 ≤ 0. We display this result in the theorem below.

Theorem 11. For any 𝑘 ∈ Z, the generating function of the
P{𝑆

𝑛
= 𝑘}, 𝑛 ∈ N, is given, for any 𝑧 ∈ (0, 1), by

𝐺
𝑘
(𝑧) =

1

𝑁 (1 − 𝑧)

𝑁

∑

𝑗=1

1 − 𝑢
𝑗
(𝑧)

1 + 𝑢
𝑗
(𝑧)

𝑢
𝑗
(𝑧)

|𝑘|

. (94)

Remark 12. Another proof ofTheorem 11 consists in expand-
ing the rational fraction 𝜁 󳨃→ 𝐺(𝑧, 𝜁) into partial fractions.We
find it interesting to outline themain steps of thismethod.We
can write that

𝐺 (𝑧, 𝜁) =

𝑁

∑

𝑗=1

𝑢
𝑗
(𝑧)

𝜁 − 𝑢
𝑗
(𝑧)

+

𝑁

∑

𝑗=1

V
𝑗
(𝑧)

𝜁 − V
𝑗
(𝑧)

(95)

with

𝑢
𝑗
(𝑧) =

𝑢
𝑗
(𝑧)

𝑁 (1 − 𝑧)

1 − 𝑢
𝑗
(𝑧)

1 + 𝑢
𝑗
(𝑧)

,

V
𝑗
(𝑧) =

V
𝑗
(𝑧)

𝑁 (1 − 𝑧)

1 − V
𝑗
(𝑧)

1 + V
𝑗
(𝑧)

= −

1/𝑢
𝑗
(𝑧)

𝑁 (1 − 𝑧)

1 − 𝑢
𝑗
(𝑧)

1 + 𝑢
𝑗
(𝑧)

.

(96)

We next expand the partial fractions 1/(𝜁 − 𝑢
𝑗
(𝑧)) and 1/(𝜁 −

V
𝑗
(𝑧)) into power series as follows. We have checked that

|𝑢
𝑗
(𝑧)| < 1 < |V

𝑗
(𝑧)| for any 𝑗 ∈ {1, . . . , 𝑁}. Now, if |𝑢

𝑗
(𝑧)| <

|𝜁| < |V
𝑗
(𝑧)| for any 𝑗 ∈ {1, . . . , 𝑁},

1

𝜁 − 𝑢
𝑗
(𝑧)

=

∞

∑

𝑘=0

𝑢
𝑗
(𝑧)

𝑘

𝜁𝑘+1
=

−1

∑

𝑘=−∞

𝜁
𝑘

𝑢
𝑗
(𝑧)

𝑘+1

,

1

𝜁 − V
𝑗
(𝑧)

= −

∞

∑

𝑘=0

𝜁
𝑘

V
𝑗
(𝑧)

𝑘+1

(97)

from which (94) can be easily extracted.
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2.3. Limiting Pseudoprocess. In this section, by pseudoprocess
it is meant a continuous-time process driven by a signed
measure. Actually, this object is not properly defined on all
continuous times but only on dyadic times 𝑘/2𝑗, 𝑗, 𝑘 ∈ N.
A proper definition consists in seeing it as the limit of a step
process associated with the observations of the pseudopro-
cess on the dyadic times. We refer the reader to [10, 18] for
precise details which are cumbersome to reproduce here.

Below, we give an ad hoc definition for the convergence
of a family of pseudoprocesses ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

towards a pseu-
doprocess (𝑋

𝑡
)
𝑡≥0

.

Definition 13. Let ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

be a family of pseudoprocesses
and (𝑋

𝑡
)
𝑡≥0

a pseudoprocess. We say that

(𝑋
𝜀

𝑡
)
𝑡≥0

󳨀→
𝜀→0
+

(𝑋
𝑡
)
𝑡≥0 (98)

if and only if

∀𝑛 ∈ N
∗

, ∀𝑡
1
, . . . , 𝑡

𝑛
≥ 0, ∀𝜇

1
, . . . , 𝜇

𝑛
∈ R,

E ( e 𝑖 ∑
𝑛

𝑘=1
𝜇
𝑘
𝑋
𝜀

𝑡
𝑘 ) 󳨀→

𝜀→0
+

E ( e 𝑖 ∑
𝑛

𝑘=1
𝜇
𝑘
𝑋
𝑡
𝑘 ) .

(99)

This is the weak convergence of the finite-dimensional
projections of the family of pseudoprocesses.

In this part, we choose for the family ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

the
continuous-time pseudoprocesses defined, for any 𝜀 > 0, by

𝑋
𝜀

𝑡
= 𝜀𝑆

⌊𝑡/𝜀
2𝑁

⌋
, 𝑡 ≥ 0, (100)

where ⌊⋅⌋ stands for the usual floor function.The quantity𝑋𝜀

𝑡

takes its values on the discrete set 𝜀Z. Roughly speaking, we
normalize the pseudorandom walk on the time × space grid
𝜀
2𝑁N × 𝜀Z. Let (𝑋

𝑡
)
𝑡≥0

be the pseudo-Brownian motion. It is
characterized by the following property: for any 𝑛 ∈ N∗, any
𝑡
1
, . . . , 𝑡

𝑛
≥ 0 such that 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
and any 𝜇

1
, . . . , 𝜇

𝑛
∈ R,

E ( e 𝑖 ∑
𝑛

𝑘=1
𝜇
𝑘
𝑋
𝑡
𝑘 ) = e −𝑐∑

𝑛

𝑘=1
(𝜇
1
+⋅⋅⋅+𝜇

𝑘
)
2𝑁

(𝑡
𝑘
−𝑡
𝑘−1

)

. (101)

We refer to [10, 18] for a proper definition of pseudo-
Brownian motion, and to references therein for interesting
properties of this pseudoprocess.

Theorem 14. Suppose that 𝑐 ≤ 1/2
2𝑁−1. The following

convergence holds:

(𝑋
𝜀

𝑡
)
𝑡≥0

󳨀→
𝜀→0
+

(𝑋
𝑡
)
𝑡≥0
. (102)

Proof. (i) We begin by computing the Laplace-Fourier trans-
form of 𝑋𝜀

𝑡
. By definition of 𝑋𝜀

𝑡
, we have that E( e 𝑖𝜇𝑋

𝜀

𝑡 ) =

E( e 𝑖𝜇𝜀𝑆
⌊𝑡/𝜀
2𝑁
⌋) and then

∫

+∞

0

e−𝜆𝑡E (e𝑖𝜇𝑋
𝜀

𝑡 ) d𝑡

=

∞

∑

𝑛=0

(∫

(𝑛+1)𝜀
2𝑁

𝑛𝜀
2𝑁

e−𝜆𝑡 d𝑡)E (e𝑖𝜇𝜀𝑆𝑛)

=
1 − e−𝜆𝜀

2𝑁

𝜆

∞

∑

𝑛=0

(e−𝜆𝜀
2𝑁

)

𝑛

E (e𝑖𝜇𝜀𝑆𝑛)

=
1 − e−𝜆𝜀

2𝑁

𝜆
∑

𝑛∈N,𝑘∈Z

(e−𝜆𝜀
2𝑁

)

𝑛

(e𝑖𝜇𝜀)
𝑘

P {𝑆
𝑛
= 𝑘}

=
1 − e−𝜆𝜀

2𝑁

𝜆
𝐺(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) .

(103)

By (71), we have that

𝐺(e−𝜆𝜀
2𝑁

, e𝑖𝜇𝜀) = 1

1 − e−𝜆𝜀2𝑁 + 𝑐4𝑁e−𝜆𝜀2𝑁sin2𝑁 (𝜇𝜀/2)
.

(104)

Actually, equality (104) is valid for𝜆 such that e−𝜆𝜀
2𝑁

< 1/𝑀
∞
;

that is, 𝜆 > (ln𝑀
∞
)/𝜀

2𝑁. Since 𝑐 is assumed not to be greater
than 1/22𝑁−1, by (42), we have that𝑀

∞
= 1 and (104) is valid

for any 𝜆 > 0.
Now, by using the elementary asymptotics sin(𝜇𝜀/2) =

𝜀→0
+

𝜇𝜀/2 + 𝑜(𝜀) and e−𝜆𝜀
2𝑁

=
𝜀→0
+

1 − 𝜆𝜀
2𝑁

+ 𝑜(𝜀), we obtain that

𝐺(e−𝜆𝜀
2𝑁

, e𝑖𝜇𝜀) ∼
𝜀→0
+

1

𝜆 + 𝑐𝜇2𝑁

1

𝜀2𝑁
. (105)

As a result, for any 𝜆 > 0,

lim
𝜀→0
+

∫

+∞

0

e−𝜆𝑡E (e𝑖𝜇𝑋
𝜀

𝑡 )d𝑡 = 1

𝜆 + 𝑐𝜇2𝑁
= ∫

+∞

0

e−(𝜆+𝑐𝜇
2𝑁

)𝑡 d𝑡

(106)

from which and (101) we deduce that

lim
𝜀→0
+

E (e𝑖𝜇𝑋
𝜀

𝑡 ) = e−𝑐𝜇
2𝑁

𝑡

= E (e𝑖𝜇𝑋𝑡) . (107)

Notice that the Laplace-Fourier of𝑋
𝑡
takes the simple form

∫

+∞

0

e−𝜆𝑡E (e𝑖𝜇𝑋𝑡)d𝑡 = 1

𝜆 + 𝑐𝜇2𝑁
. (108)
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(ii) In the same way, we compute the Laplace-Fourier
transform of 𝑋𝜀

𝑡+𝜀
2𝑛 which will be used further. We have

E(e𝑖𝜇𝑋
𝜀

𝑡+𝜀
2𝑛 ) = E(e𝑖𝜇𝜀𝑆⌊𝑡/𝜀2𝑁⌋+1). Then

∫

+∞

0

e−𝜆𝑡E (e𝑖𝜇𝑋
𝜀

𝑡+𝜀
2𝑛 ) d𝑡

=

∞

∑

𝑛=0

(∫

(𝑛+1)𝜀
2𝑁

𝑛𝜀
2𝑁

e−𝜆𝑡 d𝑡)E (ei𝜇𝜀Sn+1)

=
1 − e−𝜆𝜀

2𝑁

𝜆

∞

∑

𝑛=0

(e−𝜆𝜀
2𝑁

)

𝑛

E (e𝑖𝜇𝜀𝑆𝑛+1)

=
1 − e−𝜆𝜀

2𝑁

𝜆
e𝜆𝜀
2𝑁

∑

𝑛∈N∗,𝑘∈Z

(e−𝜆𝜀
2𝑁

)

𝑛

(e𝑖𝜇𝜀)
𝑘

P {𝑆
𝑛
= 𝑘}

=
e𝜆𝜀
2𝑁

− 1

𝜆
[𝐺 (e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) − 1] .
(109)

As for (107), we immediately extract the following limit:

lim
𝜀→0
+

E (e𝑖𝜇𝑋
𝜀

𝑡+𝜀
2𝑁) = E (e𝑖𝜇𝑋𝑡) . (110)

(iii) We now compute the joint Fourier transform of
(𝑋

𝜀

𝑡
1

, 𝑋
𝜀

𝑡
2

) for two times 𝑡
1
, 𝑡

2
such that 𝑡

1
< 𝑡

2
. Using the

elementary fact that ⌊𝑥⌋ − ⌊𝑦⌋ ∈ {⌊𝑥 − 𝑦⌋, ⌊𝑥 − 𝑦⌋ + 1}, we
observe that

𝑋
𝜀

𝑡
2

− 𝑋
𝜀

𝑡
1

𝑑

= 𝜀𝑆
⌊𝑡
2
/𝜀
2𝑁

⌋−⌊𝑡
1
/𝜀
2𝑁

⌋
∈ {𝜀𝑆

⌊(𝑡
2
−𝑡
1
)/𝜀
2𝑁

⌋
, 𝜀𝑆

⌊(𝑡
2
−𝑡
1
)/𝜀
2𝑁

⌋+1
}

= {𝑋
𝜀

𝑡
2
−𝑡
1

, 𝑋
𝜀

𝑡
2
−𝑡
1
+𝜀
2𝑁} .

(111)

Then, we get, for 𝜇
1
, 𝜇

2
∈ R, that

E (e𝑖(𝜇1𝑋
𝜀

𝑡
1

+𝜇
2
𝑋
𝜀

𝑡
2

)

) ∈ {E (e𝑖(𝜇1+𝜇2)𝑋
𝜀

𝑡
1 )E (e𝑖𝜇2𝑋

𝜀

𝑡
2
−𝑡
1 ) ,

E (e𝑖(𝜇1+𝜇2)𝑋
𝜀

𝑡
1 )E (e𝑖𝜇2𝑋

𝜀

𝑡
2
−𝑡
1
+𝜀
2𝑁

)} .

(112)

By (107) and (110), we obtain the following limit:

lim
𝜀→0
+

E (e𝑖𝜇2𝑋
𝜀

𝑡
2
−𝑡
1 ) = lim

𝜀→0
+

E (e𝑖𝜇2𝑋
𝜀

𝑡
2
−𝑡
1
+𝜀
2𝑁

) = E (e𝑖𝜇2𝑋𝑡2−𝑡1 )

(113)

which yields that

lim
𝜀→0
+

E (e𝑖(𝜇1𝑋
𝜀

𝑡
1

+𝜇
2
𝑋
𝜀

𝑡
2

)

)

= lim
𝜀→0
+

E (𝑒
𝑖(𝜇
1
+𝜇
2
)𝑋
𝜀

𝑡
1 ) × lim

𝜀→0
+

E (e𝑖𝜇2𝑋
𝜀

𝑡
2
−𝑡
1 )

= E (e𝑖(𝜇1+𝜇2)𝑋𝑡1 ) × E (e𝑖𝜇2𝑋𝑡2−𝑡1 )

= E (e𝑖(𝜇1𝑋𝑡1+𝜇2𝑋𝑡2 )) .

(114)

(iv) Finally, we can easily extend the foregoing limiting
result by recurrence as follows: for 𝑛 ∈ N∗, 𝜇

1
, . . . , 𝜇

𝑛
∈ R

and for any times 𝑡
1
, . . . , 𝑡

𝑛
such that 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
,

lim
𝜀→0
+

E (e𝑖(𝜇1𝑋
𝜀

𝑡
1

+⋅⋅⋅+𝜇
𝑛
𝑋
𝜀

𝑡
𝑛

)

) = E (e𝑖(𝜇1𝑋𝑡1+⋅⋅⋅+𝜇𝑛𝑋𝑡𝑛 )) . (115)

The proof of Theorem 14 is complete.

We find it interesting to compute in a similar way the 𝜆-
potential of the pseudoprocess (𝑋

𝑡
)
𝑡≥0

. By definition of 𝑋𝜀

𝑡
,

we have, for any 𝛼, 𝛽 ∈ R such that 𝛼 < 𝛽, P{𝑋𝜀

𝑡
∈ [𝛼, 𝛽)} =

P{𝑆
⌊𝑡/𝜀
2𝑁

⌋
∈ [𝛼/𝜀, 𝛽/𝜀)}. Thus,

∫

+∞

0

e−𝜆𝑡P {𝑋𝜀

𝑡
∈ [𝛼, 𝛽)}d𝑡

=

∞

∑

𝑛=0

(∫

(𝑛+1)𝜀
2𝑁

𝑛𝜀
2𝑁

e−𝜆𝑡 d𝑡)P{𝑆
𝑛
∈ [

𝛼

𝜀
,
𝛽

𝜀
)}

=
1 − e−𝜆𝜀

2𝑁

𝜆

∞

∑

𝑛=0

(e−𝜆𝜀
2𝑁

)

𝑛 [
[
[

[

∑

𝑘∈Z:
𝛼/𝜀≤𝑘<𝛽/𝜀

P {𝑆
𝑛
= 𝑘}

]
]
]

]

=
1 − e−𝜆𝜀

2𝑁

𝜆
∑

𝑘∈Z:
𝛼/𝜀≤𝑘<𝛽/𝜀

[

∞

∑

𝑛=0

P {𝑆
𝑛
= 𝑘} (e−𝜆𝜀

2𝑁

)

𝑛

]

=
1 − e−𝜆𝜀

2𝑁

𝜆
∑

𝑘∈Z:
𝛼/𝜀≤𝑘<𝛽/𝜀

𝐺
𝑘
(e−𝜆𝜀

2𝑁

) .

(116)

Interchanging the two sums in the above computations is
justified by the fact that the series ∑∞

𝑛=0
P{𝑆

𝑛
= 𝑘}(e−𝜆𝜀

2𝑁

)

𝑛

is
absolutely convergent because of the condition 𝑐 ≤ 1/2

2𝑁−1.
Indeed, by (53), for any 𝜆 > 0, |P{𝑆

𝑛
= 𝑘}| < 𝑀

𝑛

∞
= 1.

Put 𝑢
𝑗
(𝜆, 𝜀) = 𝑢

𝑗
(e−𝜆𝜀

2𝑁

). This yields that

∫

+∞

0

e−𝜆𝑡P {𝑋𝜀

𝑡
∈ [𝛼, 𝛽)} d𝑡

=
1

𝑁𝜆

𝑁

∑

𝑗=1

1 − 𝑢
𝑗
(𝜆, 𝜀)

1 + 𝑢
𝑗
(𝜆, 𝜀)

∑

𝛼/𝜀≤𝑘<𝛽/𝜀

𝑢
𝑗
(𝜆, 𝜀)

|𝑘|

.

(117)

Suppose, for example, that 0 ≤ 𝛼 < 𝛽. Then,

∑

𝛼/𝜀≤𝑘<𝛽/𝜀

𝑢
𝑗
(𝜆, 𝜀)

|𝑘|

=

⌈𝛽/𝜀⌉−1

∑

𝑘=⌈𝛼/𝜀⌉

𝑢
𝑗
(𝜆, 𝜀)

𝑘

=

𝑢
𝑗
(𝜆, 𝜀)

⌈𝛼/𝜀⌉

− 𝑢
𝑗
(𝜆, 𝜀)

⌈𝛽/𝜀⌉

1 − 𝑢
𝑗
(𝜆, 𝜀)

,

(118)

where ⌈⋅⌉ stands for the usual ceiling function. By using (85),
we deduce that

𝑢
𝑗
(𝜆, 𝜀) =

𝜀→0
+

1 − 𝜑
𝑗

2𝑁

√
𝜆

𝑐
𝜀 + 𝑜 (𝜀) (119)



International Journal of Stochastic Analysis 13

which implies that

lim
𝜀→0
+

𝑢
𝑗
(𝜆, 𝜀)

⌈𝛼/𝜀⌉

= e−𝜑𝑗
2𝑁
√𝜆/𝑐𝛼

. (120)

Therefore,

lim
𝜀→0
+

∫

+∞

0

e−𝜆𝑡P {𝑋𝜀

𝑡
∈ [𝛼, 𝛽)}d𝑡

=
1

2𝑁𝜆

𝑁

∑

𝑗=1

(e−𝜑𝑗
2𝑁
√𝜆/𝑐𝛼

− e−𝜑𝑗
2𝑁
√𝜆/𝑐𝛽

)

=
1

2𝑁𝜆

𝑁

∑

𝑗=1

(𝜑
𝑗

2𝑁

√
𝜆

𝑐
∫

𝛽

𝛼

e−𝜑𝑗
2𝑁
√𝜆/𝑐𝑥 d𝑥) .

(121)

The case 𝛼 < 𝛽 ≤ 0 is similar to treat. We have obtained the
following result.

Proposition 15. The 𝜆-potential of the pseudoprocess (𝑋
𝑡
)
𝑡≥0

is given by

∫

+∞

0

e−𝜆𝑡 (
P {𝑋

𝑡
∈ d𝑥}
d𝑥

)d𝑡

=

{{{{{

{{{{{

{

1

2𝑁
2𝑁

√𝑐 𝜆1−1/(2𝑁)

𝑁

∑

𝑗=1

𝜑
𝑗
e−𝜑𝑗
2𝑁
√𝜆/𝑐𝑥 if 𝑥 ≥ 0,

−
1

2𝑁
2𝑁

√𝑐 𝜆1−1/(2𝑁)

𝑁

∑

𝑗=1

𝜑
𝑗
e𝜑𝑗
2𝑁
√𝜆/𝑐𝑥 if 𝑥 ≤ 0.

(122)

3. Part II—First Overshooting Time of
a Single Threshold

3.1. On the Pseudodistribution of (𝜎+
𝑏
, 𝑆

+

𝑏
). Let 𝑏 ∈ N∗. In

this section, we explicitly compute the generating function of
(𝜎

+

𝑏
, 𝑆

+

𝑏
). Set, for ℓ ∈ {𝑏, 𝑏 + 1, . . . , 𝑏 + 𝑁 − 1},

𝐻
+

𝑏,ℓ
(𝑧) = E (𝑧

𝜎
+

𝑏 1
{𝑆
+

𝑏
=ℓ,𝜎
+

𝑏
<+∞}

) = ∑

𝑘∈N

P {𝜎
+

𝑏
= 𝑘, 𝑆

+

𝑏
= ℓ} 𝑧

𝑘

.

(123)

We are able to provide an explicit expression of𝐻+

𝑏,ℓ
(𝑧). Before

tackling this problem, we need an a priori estimate forP{𝜎+
𝑏
=

𝑘, 𝑆
+

𝑏
= ℓ}. By (62), we immediately derive that |P{𝜎+

𝑏
= 𝑘,

𝑆
+

𝑏
= ℓ}| = |P{𝑆

1
< 𝑏, . . . , 𝑆

𝑘−1
< 𝑏, 𝑆

𝑘
= ℓ}| ≤ 𝑀

𝑘

1
. Hence, the

power series defining 𝐻+

𝑏,ℓ
(𝑧) absolutely converges for |𝑧| <

1/𝑀
1
.

3.1.1. Joint Pseudodistribution of (𝜎+
𝑏
, 𝑆

+

𝑏
)

Theorem 16. The pseudodistribution of (𝜎+
𝑏
, 𝑆

+

𝑏
) is character-

ized by the identity, valid for any 𝑧 ∈ (0, 1) and any ℓ ∈

{𝑏, 𝑏 + 1, . . . , 𝑏 + 𝑁 − 1},

E (𝑧
𝜎
+

𝑏 1
{𝑆
+

𝑏
=ℓ,𝜎
+

𝑏
<+∞}

) = (−1)
ℓ−𝑏

𝑁

∑

𝑘=1

𝑠
+

𝑘,ℓ−𝑏
(𝑧)

𝑝
+

𝑘
(𝑧)

𝑢
𝑘
(𝑧)

𝑏+𝑁−1

,

(124)

where 𝑠+
𝑘,0
(𝑧) = 1 and for 𝑘 ∈ {1, . . . , 𝑁}, ℓ ∈ {1, . . . , 𝑁 − 1},

𝑠
+

𝑘,ℓ
(𝑧) = ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
ℓ
≤𝑁

𝑖
1
,...,𝑖
ℓ

̸= 𝑘

𝑢
𝑖
1

(𝑧) ⋅ ⋅ ⋅ 𝑢
𝑖
ℓ

(𝑧) ,

𝑝
+

𝑘
(𝑧) = ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

[𝑢
𝑘
(𝑧) − 𝑢

𝑗
(𝑧)] .

(125)

Proof. Pick an integer 𝑘 ≥ 𝑏. If 𝑆
𝑛
= 𝑘, then an overshoot of

the threshold 𝑏 occurs before time 𝑛: 𝜎+
𝑏
≤ 𝑛.This remark and

the independence of the increments of the pseudorandom
walk entail that

P {𝑆
𝑛
= 𝑘} = P {𝑆

𝑛
= 𝑘, 𝜎

+

𝑏
≤ 𝑛}

=

𝑛

∑

𝑗=0

𝑏+𝑁−1

∑

ℓ=𝑏

P {𝑆
𝑛
= 𝑘, 𝜎

+

𝑏
= 𝑗, 𝑆

+

𝑏
= ℓ}

=

𝑛

∑

𝑗=0

𝑏+𝑁−1

∑

ℓ=𝑏

P {𝜎
+

𝑏
= 𝑗, 𝑆

+

𝑏
= ℓ}P {𝑆

𝑛−𝑗
= 𝑘 − ℓ} .

(126)

Since the series defining 𝐺
𝑘
(𝑧) and 𝐻+

𝑏,ℓ
(𝑧) absolutely con-

verge, respectively, for 𝑧 ∈ (0, 1) and |𝑧| < 1/𝑀
1
, and

since 𝑀
1
≥ 1, we can apply the generating function to the

convolution equality (126). We get, for 𝑧 ∈ (0, 1/𝑀
1
), that

𝐺
𝑘
(𝑧) =

𝑏+𝑁−1

∑

ℓ=𝑏

𝐺
𝑘−ℓ

(𝑧)𝐻
+

𝑏,ℓ
(𝑧) . (127)

Using expression (94) of 𝐺
𝑘
, namely, 𝐺

𝑘
(𝑧) =

∑
𝑁

𝑗=1
𝛼
𝑗
(𝑧)𝑢

𝑗
(𝑧)

𝑘 for 𝑘 ≥ 0, where 𝛼
𝑗
(𝑧) = 1/[𝑁(1 − 𝑧)] ×

[1 − 𝑢
𝑗
(𝑧)]/[1 + 𝑢

𝑗
(𝑧)], we obtain that

𝑁

∑

𝑗=1

𝛼
𝑗
(𝑧) 𝑢

𝑗
(𝑧)

𝑘

(

𝑏+𝑁−1

∑

ℓ=𝑏

𝐻
+

𝑏,ℓ
(𝑧)

𝑢
𝑗
(𝑧)

ℓ
− 1) = 0, 𝑘 ≥ 𝑏 + 𝑁 − 1.

(128)

Recalling that V
𝑗
(𝑧) = 1/𝑢

𝑗
(𝑧) and setting �̃�

𝑗
(𝑧) =

𝛼
𝑗
(𝑧)(∑

𝑏+𝑁−1

ℓ=𝑏
𝐻

+

𝑏,ℓ
(𝑧)V

𝑗
(𝑧)

ℓ

− 1), system (128) reads
∑

𝑁

𝑗=1
�̃�
𝑗
(𝑧)𝑢

𝑗
(𝑧)

𝑘

= 0, 𝑘 ≥ 𝑏 + 𝑁 − 1. When limiting
the range of 𝑘 to the set {𝑏 + 𝑁, 𝑏 + 𝑁 + 1, . . . , 𝑏 + 2𝑁 − 1},
this becomes a homogeneous Vandermonde system whose
solution is trivial: �̃�

𝑗
(𝑧) = 0, 1 ≤ 𝑗 ≤ 𝑁. Thus, we get the

following Vandermonde system:

𝑏+𝑁−1

∑

ℓ=𝑏

𝐻
+

𝑏,ℓ
(𝑧) V

𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 𝑁. (129)

System (129) can be explicitly solved. In order to simplify the
settings, we will omit the variable 𝑧 in the sequel of the proof.
It is convenient to rewrite (129) as

𝑏+𝑁−1

∑

ℓ=𝑏

𝐻
+

𝑏,ℓ
Vℓ−𝑏
𝑗

= 𝑢
𝑏

𝑗
, 1 ≤ 𝑗 ≤ 𝑁. (130)
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Cramer’s formulae yield

𝐻
+

𝑏,ℓ
=
𝑉
ℓ
(V

1
, . . . , V

𝑁
)

𝑉 (V
1
, . . . , V

𝑁
)
, 𝑏 ≤ ℓ ≤ 𝑏 + 𝑁 − 1, (131)

where

𝑉 (V
1
, . . . , V

𝑁
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1
⋅ ⋅ ⋅ V𝑁−1

1

1 V
2
⋅ ⋅ ⋅ V𝑁−1

2

...
...

...
1 V

𝑁
⋅ ⋅ ⋅ V𝑁−1

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∏

1≤𝑖<𝑗≤𝑁

(V
𝑗
− V

𝑖
) (132)

and, for any ℓ ∈ {𝑏, . . . , 𝑏 + 𝑁 − 1},

𝑉
ℓ
(V

1
, . . . , V

𝑁
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1
⋅ ⋅ ⋅ Vℓ−𝑏−1

1
𝑢
𝑏

1
Vℓ−𝑏+1
1

⋅ ⋅ ⋅ V𝑁−1

1

1 V
2
⋅ ⋅ ⋅ Vℓ−𝑏−1

2
𝑢
𝑏

2
Vℓ−𝑏+1
2

⋅ ⋅ ⋅ V𝑁−1

2

...
...

...
...

...
...

1 V
𝑁

⋅ ⋅ ⋅ Vℓ−𝑏−1
𝑁

𝑢
𝑏

𝑁
Vℓ−𝑏+1
𝑁

⋅ ⋅ ⋅ V𝑁−1

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(133)

This last determinant can be expanded as ∑𝑁

𝑘=1
𝑢
𝑏

𝑘
𝑉
𝑘ℓ
(V

1
, . . . ,

V
𝑘−1
, V

𝑘+1
, . . . , V

𝑁
) with, for 𝑘 ∈ {1, . . . , 𝑁},

𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1

⋅ ⋅ ⋅ Vℓ−𝑏−1
1

0 Vℓ−𝑏+1
1

⋅ ⋅ ⋅ V𝑁−1

1

...
...

...
...

...
...

1 V
𝑘−1

⋅ ⋅ ⋅ Vℓ−𝑏−1
𝑘−1

0 Vℓ−𝑏+1
𝑘−1

⋅ ⋅ ⋅ V𝑁−1

𝑘−1

1 V
𝑘

⋅ ⋅ ⋅ Vℓ−𝑏−1
𝑘

1 Vℓ−𝑏+1
𝑘

⋅ ⋅ ⋅ V𝑁−1

𝑘

1 V
𝑘+1

⋅ ⋅ ⋅ Vℓ−𝑏−1
𝑘+1

0 Vℓ−𝑏+1
𝑘+1

⋅ ⋅ ⋅ V𝑁−1

𝑘+1

...
...

...
...

...
...

1 V
𝑁

⋅ ⋅ ⋅ Vℓ−𝑏−1
𝑁

0 Vℓ−𝑏+1
𝑁

⋅ ⋅ ⋅ V𝑁−1

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(134)

In fact, the quantity 𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
) is the coef-

ficient of 𝑥ℓ−𝑏 in the polynomial

𝑥 󳨃󳨀→

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1

⋅ ⋅ ⋅ V𝑁−1

1

...
...

...
1 V

𝑘−1
⋅ ⋅ ⋅ V𝑁−1

𝑘−1

1 𝑥 ⋅ ⋅ ⋅ 𝑥
𝑁−1

1 V
𝑘+1

⋅ ⋅ ⋅ V𝑁−1

𝑘+1

...
...

...
1 V

𝑁
⋅ ⋅ ⋅ V𝑁−1

𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(135)

which is nothing but𝑉(V
1
, . . . , V

𝑘−1
, 𝑥, V

𝑘+1
, . . . , V

𝑁
), the value

of which is

∏

1≤𝑖<𝑗≤𝑁

𝑖,𝑗 ̸= 𝑘

(V
𝑗
− V

𝑖
) ∏

1≤𝑖≤𝑘−1

(𝑥 − V
𝑖
) ∏

𝑘+1≤𝑖≤𝑁

(V
𝑖
− 𝑥)

=

∏
1≤𝑖<𝑗≤𝑁

(V
𝑗
− V

𝑖
)

∏ 1≤𝑖≤𝑁

𝑖 ̸= 𝑘

(V
𝑘
− V

𝑖
)
∏

1≤𝑖≤𝑁

𝑖 ̸= 𝑘

(𝑥 − V
𝑖
)

= 𝑉 (V
1
, . . . , V

𝑁
) ∏

1≤𝑖≤𝑁

𝑖 ̸= 𝑘

𝑥 − V
𝑖

V
𝑘
− V

𝑖

= (−1)
𝑁−1

𝑉 (V
1
, . . . , V

𝑁
) ∏

1≤𝑖≤𝑁

𝑖 ̸= 𝑘

(𝑢
𝑘

𝑢
𝑖
𝑥 − 1

𝑢
𝑘
− 𝑢

𝑖

)

= (−1)
𝑁−1

𝑢
𝑁−1

𝑘

𝑝
+

𝑘

𝑉 (V
1
, . . . , V

𝑁
) ∏

1≤𝑖≤𝑁

𝑖 ̸= 𝑘

(𝑢
𝑖
𝑥 − 1) .

(136)

Using the elementary expansion ∏ 1≤𝑖≤𝑁

𝑖 ̸= 𝑘

(𝑢
𝑖
𝑥 − 1) =

∑
𝑁−1

ℓ=0
(−1)

𝑁−1−ℓ

𝑠
+

𝑘,ℓ
𝑥
ℓ, we obtain by identification that

𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
)

= (−1)
ℓ−𝑏

𝑢
𝑁−1

𝑘

𝑝
+

𝑘

𝑠
+

𝑘,ℓ−𝑏
𝑉 (V

1
, . . . , V

𝑁
) .

(137)

Plugging this expression into (131), we then derive for𝐻+

𝑏,ℓ
(𝑧)

representation (124) which is valid at least for 𝑧 ∈ (0, 1/𝑀
1
).

Finally, we observe that (124) defines an analytical function
in (0, 1) and that𝐻+

𝑏,ℓ
(𝑧) is a power series. Thus, by analytical

continuation, (124) holds true for any 𝑧 ∈ (0, 1).

Example 17. For 𝑁 = 1, the settings of Theorem 16 write
𝑠
+

1,0
(𝑧) = 𝑝

+

1
(𝑧) = 1. Then, formula (124) reads

E (𝑧
𝜎
+

𝑏 1
{𝑆
+

𝑏
=𝑏,𝜎
+

𝑏
<+∞}

) = 𝑢
1
(𝑧)

𝑏

, (138)

where 𝑢
1
(𝑧) is given in Example 10. Of course, in this case,

the condition 𝑆+
𝑏
= 𝑏 is redundant since we are dealing with

an ordinary random walk with jumps of one unity at most.
When 𝑐 = 1/2, this is the classical symmetric random walk
and (124) recovers the most well-known formula in random
walk theory:

E (𝑧
𝜎
+

𝑏 1
{𝜎
+

𝑏
<+∞}

) = (
1 − √1 − 𝑧2

𝑧
)

𝑏

. (139)

For𝑁 = 2, the settings of Theorem 16 write

𝑠
+

1,0
(𝑧) = 𝑠

+

2,0
(𝑧) = 1, 𝑠

+

1,1
(𝑧) = 𝑢

2
(𝑧) , 𝑠

+

2,1
(𝑧) = 𝑢

1
(𝑧) ,

𝑝
+

1
(𝑧) = 𝑢

1
(𝑧) − 𝑢

2
(𝑧) , 𝑝

+

2
(𝑧) = 𝑢

2
(𝑧) − 𝑢

1
(𝑧) ,

(140)
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where 𝑢
1
(𝑧) and 𝑢

2
(𝑧) are given in Example 10 and (124) reads

E (𝑧
𝜎
+

𝑏 1
{𝑆
+

𝑏
=𝑏,𝜎
+

𝑏
<+∞}

) =
𝑢
1
(𝑧)

𝑏+1

− 𝑢
2
(𝑧)

𝑏+1

𝑢
1
(𝑧) − 𝑢

2
(𝑧)

,

E (𝑧
𝜎
+

𝑏 1
{𝑆
+

𝑏
=𝑏+1,𝜎

+

𝑏
<+∞}

) =
𝑢
1
(𝑧) 𝑢

2
(𝑧)

𝑏+1

− 𝑢
2
(𝑧) 𝑢

1
(𝑧)

𝑏+1

𝑢
1
(𝑧) − 𝑢

2
(𝑧)

.

(141)

Remark 18. We have the similar expression related to 𝜎
−

𝑎

below. The analogous system to (129) writes as

𝑎

∑

ℓ=𝑎−𝑁+1

𝐻
−

𝑎,ℓ
(𝑧) 𝑢

𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 𝑁, (142)

where𝐻−

𝑎,ℓ
(𝑧) = E(𝑧𝜎

−

𝑎 1
{𝑆
−

𝑎
=ℓ,𝜎
−

𝑎
<+∞}

). The solution is given by

E (𝑧
𝜎
−

𝑎 1
{𝑆
−

𝑎
=ℓ,𝜎
−

𝑎
<+∞}

) = (−1)
ℓ−𝑎

𝑁

∑

𝑘=1

𝑠
−

𝑘,ℓ−𝑎
(𝑧)

𝑝
−

𝑘
(𝑧)

𝑢
𝑘
(𝑧)

𝑎+𝑁−1

,

(143)

where 𝑠−
𝑘,0
(𝑧) = 1 and, for 𝑘 ∈ {1, . . . , 𝑁}, ℓ ∈ {1, . . . , 𝑁 − 1},

𝑠
−

𝑘,ℓ
(𝑧) = ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
ℓ
≤𝑁

𝑖
1
,...,𝑖
ℓ

̸= 𝑘

V
𝑖
1

(𝑧) ⋅ ⋅ ⋅ V
𝑖
ℓ

(𝑧) ,

(144)

𝑝
−

𝑘
(𝑧) = ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

[V
𝑘
(𝑧) − V

𝑗
(𝑧)] .

(145)

The double generating function of (𝜎+
𝑏
, 𝑆

+

𝑏
) defined by

E (𝑧
𝜎
+

𝑏 𝜁
𝑆
+

𝑏 1
{𝜎
+

𝑏
<+∞}

) =

𝑏+𝑁−1

∑

ℓ=𝑏

E (𝑧
𝜎
+

𝑏 1
{𝑆
+

𝑏
=ℓ}
) 𝜁

ℓ (146)

admits an interesting representation by means of Lagrange
interpolating polynomials that we display in the theorem
below.

Theorem 19. The double generating function of (𝜎+
𝑏
, 𝑆

+

𝑏
) is

given, for any 𝑧 ∈ (0, 1/𝑀
1
) and 𝜁 ∈ C, by

E (𝑧
𝜎
+

𝑏 𝜁
𝑆
+

𝑏 1
{𝜎
+

𝑏
<+∞}

) =

𝑁

∑

𝑘=1

𝐿
𝑘
(𝑧, 𝜁) (𝑢

𝑘
(𝑧) 𝜁)

𝑏

, (147)

where

𝐿
𝑘
(𝑧, 𝜁) = ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

𝜁 − V
𝑗
(𝑧)

V
𝑘
(𝑧) − V

𝑗
(𝑧)

, 𝑘 ∈ {1, . . . , 𝑁} , (148)

are the Lagrange interpolating polynomials with respect to the
variable 𝜁 such that 𝐿

𝑘
(𝑧, V

𝑗
(𝑧)) = 𝛿

𝑗𝑘
.

Proof. By (131) and by omitting the variable 𝑧 as previously
mentioned, we have that

E (𝑧
𝜎
+

𝑏 𝜁
𝑆
+

𝑏 1
{𝜎
+

𝑏
<+∞}

)

=

𝑏+𝑁−1

∑

ℓ=𝑏

𝐻
+

𝑏,ℓ
𝜁
ℓ

=

𝑏+𝑁−1

∑

ℓ=𝑏

𝑉
ℓ
(V

1
, . . . , V

𝑁
)

𝑉 (V
1
, . . . , V

𝑁
)
𝜁
ℓ

=

𝑏+𝑁−1

∑

ℓ=𝑏

(

𝑁

∑

𝑘=1

𝑢
𝑏

𝑘

𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
)

𝑉 (V
1
, . . . , V

𝑁
)

) 𝜁
ℓ

=

𝑁

∑

𝑘=1

(

𝑏+𝑁−1

∑

ℓ=𝑏

𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
)

𝑉 (V
1
, . . . , V

𝑁
)

𝜁
ℓ−𝑏

)(𝑢
𝑘
𝜁)

𝑏

=

𝑁

∑

𝑘=1

𝑉 (V
1
, . . . , V

𝑘−1
, 𝜁, V

𝑘+1
, . . . , V

𝑁
)

𝑉 (V
1
, . . . , V

𝑁
)

(𝑢
𝑘
𝜁)

𝑏

.

(149)

It is clear that the quantity 𝑉(V
1
, . . . , V

𝑘−1
, 𝜁, V

𝑘+1
, . . . , V

𝑁
)/

𝑉(V
1
, . . . , V

𝑁
), which explicitly writes as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1

⋅⋅⋅ V𝑁−1
1

...
...

...
1 V
𝑘−1

⋅⋅⋅ V𝑁−1
𝑘−1

1 𝜁 ⋅⋅⋅ 𝜁
𝑁−1

1 V
𝑘+1

⋅⋅⋅ V𝑁−1
𝑘+1

...
...

...
1 V
𝑁

⋅⋅⋅ V𝑁−1
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 V
1
⋅⋅⋅ V𝑁−1
1

...
...

...
1 V
𝑁

⋅⋅⋅ V𝑁−1
𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(150)

defines a polynomial of the variable 𝜁 of degree𝑁 − 1 which
vanishes at V

1
, . . . , V

𝑘−1
,V
𝑘+1
, . . . , V

𝑁
and equals 1 at V

𝑘
. Hence,

by putting back the variable 𝑧, it coincides with the Lagrange
polynomial 𝐿

𝑘
(𝑧, 𝜁) and formula (147) immediately ensues.

Example 20. For𝑁 = 2, (147) reads

E (𝑧
𝜎
+

𝑏 𝜁
𝑆
+

𝑏 1
{𝜎
+

𝑏
<+∞}

)

= 𝜁
𝑏

(𝑢
1
(𝑧)

𝑏
𝜁 − V

2
(𝑧)

V
1
(𝑧) − V

2
(𝑧)

+ 𝑢
2
(𝑧)

𝑏
𝜁 − V

1
(𝑧)

V
2
(𝑧) − V

1
(𝑧)

)

=
𝜁
𝑏

𝑢
1
(𝑧) − 𝑢

2
(𝑧)

[(𝑢
1
(𝑧)

𝑏+1

− 𝑢
2
(𝑧)

𝑏+1

)

+ (𝑢
1
(𝑧) 𝑢

2
(𝑧)

𝑏+1

− 𝑢
2
(𝑧) 𝑢

1
(𝑧)

𝑏+1

) 𝜁] .

(151)

This is in good agreement with the formulae of Example 17.
We retrieve a result of [21].

3.1.2. Pseudodistribution of 𝑆+
𝑏
. In order to derive the pseu-

dodistribution of 𝑆+
𝑏
which is characterized by the numbers

𝐻
+

𝑏,ℓ
(1), ℓ ∈ {𝑏, 𝑏 + 1, . . . , 𝑏 + 𝑁 − 1}, we solve the system

obtained by taking the limit in (129) as 𝑧 → 1
−.
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Lemma 21. The following system holds:
𝑏+𝑁−1

∑

ℓ=𝑘+𝑏

(
ℓ − 𝑏

𝑘
)𝐻

+

𝑏,ℓ
(1)

= (−1)
𝑘

(
𝑏 + 𝑘 − 1

𝑏 − 1
) , 0 ≤ 𝑘 ≤ 𝑁 − 1.

(152)

Proof. By (85), we have the expansion V
𝑗
(𝑧) = 1/𝑢

𝑗
(𝑧) = 1 −

𝜀
𝑗
(𝑧), where 𝜀

𝑗
(𝑧) =

𝑧→1
−

O(
2𝑁

√1 − 𝑧 ) for any 𝑗 ∈ {1, . . . , 𝑁}.
Putting this into (129), we get that

𝑏+𝑁−1

∑

ℓ=𝑏

(1 − 𝜀
𝑗
(𝑧))

ℓ−𝑏

𝐻
+

𝑏,ℓ
(𝑧) = (1 − 𝜀

𝑗
(𝑧))

−𝑏

; (153)

that is,
𝑁−1

∑

𝑘=0

(−1)
𝑘

(

𝑏+𝑁−1

∑

ℓ=𝑏+𝑘

(
ℓ − 𝑏

𝑘
)𝐻

+

𝑏,ℓ
(𝑧)) 𝜀

𝑗
(𝑧)

𝑘

=

∞

∑

𝑘=0

(−1)
𝑘

(
−𝑏

𝑘
) 𝜀

𝑗
(𝑧)

𝑘

=

∞

∑

𝑘=0

(
𝑏 + 𝑘 − 1

𝑏 − 1
) 𝜀

𝑗
(𝑧)

𝑘

.

(154)

Set

𝑀
𝑘
(𝑧) = (−1)

𝑘

𝑏+𝑁−1

∑

ℓ=𝑏+𝑘

(
ℓ − 𝑏

𝑘
)𝐻

+

𝑏,ℓ
(𝑧) − (

𝑏 + 𝑘 − 1

𝑏 − 1
) ,

𝑅
𝑗
(𝑧) =

∞

∑

ℓ=𝑁

(
𝑏 + ℓ − 1

𝑏 − 1
) 𝜀

𝑗
(𝑧)

ℓ

.

(155)

Then, equality (154) reads
𝑁−1

∑

𝑘=0

𝑀
𝑘
(𝑧) 𝜀

𝑗
(𝑧)

𝑘

= 𝑅
𝑗
(𝑧) , 1 ≤ 𝑗 ≤ 𝑁. (156)

This is a Vandermonde system, the solution of which is given
by𝑀

𝑘
(𝑧) = �̃�

𝑘
(𝑧)/�̃�(𝑧), 0 ≤ 𝑘 ≤ 𝑁 − 1, where

�̃� (𝑧) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜀
1
(𝑧) ⋅ ⋅ ⋅ 𝜀

1
(𝑧)

𝑁−1

1 𝜀
2
(𝑧) ⋅ ⋅ ⋅ 𝜀

2
(𝑧)

𝑁−1

...
...

...
1 𝜀

𝑁
(𝑧) ⋅ ⋅ ⋅ 𝜀

𝑁
(𝑧)

𝑁−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

�̃�
𝑘
(𝑧)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜀
1
(𝑧) ⋅ ⋅ ⋅ 𝜀

1
(𝑧)

𝑘−1

𝑅
1
(𝑧) 𝜀

1
(𝑧)

𝑘+1

⋅ ⋅ ⋅ 𝜀
1
(𝑧)

𝑁−1

1 𝜀
2
(𝑧) ⋅ ⋅ ⋅ 𝜀

2
(𝑧)

𝑘−1

𝑅
2
(𝑧) 𝜀

2
(𝑧)

𝑘+1

⋅ ⋅ ⋅ 𝜀
2
(𝑧)

𝑁−1

...
...

...
...

...
...

1 𝜀
𝑁
(𝑧) ⋅ ⋅ ⋅ 𝜀

𝑁
(𝑧)

𝑘−1

𝑅
𝑁
(𝑧) 𝜀

𝑁
(𝑧)

𝑘+1

⋅ ⋅ ⋅ 𝜀
𝑁
(𝑧)

𝑁−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(157)

Since, by (85), 𝜀
𝑗
(𝑧) ∼

𝑧→1
−

constant × 2𝑁√1 − 𝑧 for any 𝑗 ∈
{1, . . . , 𝑁}, we have that

�̃� (𝑧) = ∏

1≤ℓ<𝑚≤𝑁

[𝜀
𝑚
(𝑧) − 𝜀

ℓ
(𝑧)]

∼
𝑧→1

−

constant × (1 − 𝑧)(𝑁−1)/4

(158)

and second,

𝑅
𝑗
(𝑧) ∼

𝑧→1
−

(
𝑏 + 𝑁 − 1

𝑏 − 1
) 𝜀

𝑗
(𝑧)

𝑁

∼ constant × √1 − 𝑧

(159)

which implies, for 𝑘 ∈ {0, . . . , 𝑁 − 1}, that

�̃�
𝑘
(𝑧) =

𝑧→1
−

O [(1 − 𝑧)
1/2+(∑

1≤𝑚≤𝑁−1,𝑚 ̸= 𝑘
𝑚)/(2𝑁)

]

= 𝑜 [(1 − 𝑧)
(𝑁−1)/4

] .

(160)

Therefore, lim
𝑧→1

−𝑀
𝑘
(𝑧) = 0. On the other hand, for 𝑧 ∈

(0, 1), referring to the definition of𝑀
𝑘
(𝑧), we can see that the

quantity𝐻+

𝑏,ℓ
(𝑧) can be expressed as a linear combination of

the𝑀
𝑘
(𝑧)’s plus a constant. Hence, the limit lim

𝑧→1
−𝐻

+

𝑏,ℓ
(𝑧)

exists and, by appealing to a Tauberian theorem, it coincides
with𝐻+

𝑏,ℓ
(1). This finishes the proof of (152).

Theorem 22. The pseudodistribution of 𝑆+
𝑏
is characterized by

the following pseudo-probabilities: for any ℓ ∈ {𝑏, 𝑏+ 1, . . . , 𝑏 +
𝑁 − 1},

P {𝑆
+

𝑏
= ℓ, 𝜎

+

𝑏
< +∞} = (−1)

𝑏+ℓ
𝑏

ℓ
(
𝑁 − 1

ℓ − 𝑏
)(

𝑏 + 𝑁 − 1

𝑏
) .

(161)

Moreover, P{𝜎+
𝑏
< +∞} = 1.

Proof. We explicitly solve system (152) rewritten as
𝑁−1

∑

ℓ=𝑘

(
ℓ

𝑘
)𝐻

+

𝑏,ℓ+𝑏
(1) = (−1)

𝑘

(
𝑏 + 𝑘 − 1

𝑏 − 1
) , 0 ≤ 𝑘 ≤ 𝑁 − 1.

(162)

The matrix of the system is (( ℓ
𝑘
))

0≤𝑘,ℓ≤𝑁−1
which admits

((−1)
𝑘+ℓ

(
ℓ

𝑘
))

0≤𝑘,ℓ≤𝑁−1

as an inverse with the convention of
settings ( ℓ

𝑘
) = 0 if 𝑘 > ℓ. The solution of the system is given,

for ℓ ∈ {0, 1, . . . , 𝑁 − 1}, by

𝐻
+

𝑏,ℓ+𝑏
(1) =

𝑁−1

∑

𝑘=ℓ

(−1)
𝑘+ℓ

(
𝑘

ℓ
) × (−1)

𝑘

(
𝑏 + 𝑘 − 1

𝑏 − 1
)

= (−1)
ℓ

(
𝑏 + ℓ − 1

𝑏 − 1
)

𝑁−1

∑

𝑘=ℓ

(
𝑏 + 𝑘 − 1

𝑏 + ℓ − 1
)

= (−1)
ℓ

(
𝑏 + ℓ − 1

𝑏 − 1
)(

𝑏 + 𝑁 − 1

𝑏 + ℓ
)

= (−1)
ℓ

𝑏

ℓ + 𝑏
(
𝑁 − 1

ℓ
)(

𝑏 + 𝑁 − 1

𝑏
) .

(163)

This proves (161). Now, by summing theP{𝑆+
𝑏
= ℓ, 𝜎

+

𝑏
< +∞},

𝑏 ≤ ℓ ≤ 𝑏 + 𝑁 − 1, given by (161), we obtain that

P {𝜎
+

𝑏
< +∞} = (−1)

𝑏

𝑏 (
𝑏 + 𝑁 − 1

𝑏
)

𝑏+𝑁−1

∑

ℓ=𝑏

(−1)
ℓ

ℓ
(
𝑁 − 1

ℓ − 𝑏
)

= 𝑏(
𝑏 + 𝑁 − 1

𝑏
)

𝑁−1

∑

ℓ=0

(−1)
ℓ

ℓ + 𝑏
(
𝑁 − 1

ℓ
) .

(164)
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Writing 1/(ℓ + 𝑏) = ∫1
0

𝑥
ℓ+𝑏−1 d𝑥, we see that

𝑁−1

∑

ℓ=0

(−1)
ℓ

ℓ + 𝑏
(
𝑁 − 1

ℓ
)

= ∫

1

0

(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑥

ℓ

)𝑥
𝑏−1 d𝑥

= ∫

1

0

(1 − 𝑥)
𝑁−1

𝑥
𝑏−1 d𝑥 = (𝑁 − 1)! (𝑏 − 1)!

(𝑏 + 𝑁 − 1)!
.

(165)

HenceP{𝜎+
𝑏
< +∞} = 1.The proof ofTheorem 22 is finished.

In the sequel, when considering 𝑆
+

𝑏
, we will omit the

condition 𝜎+
𝑏
< +∞.

Example 23. Let us have a look on the particular values
1, 2, 3, 4 of𝑁.

(i) Case𝑁 = 1. Evidently, in this case 𝑆+
𝑏
= 𝑏 and then

P {𝑆
+

𝑏
= 𝑏} = 1. (166)

This is the case of the ordinary random walk!

(ii) Case 𝑁 = 2. In this case the pseudorandom variables
𝜉
𝑛
, 𝑛 ∈ N∗, have two-valued upward jumps. Then the

overshooting place must be either 𝑏 or 𝑏 + 1: 𝑆+
𝑏
∈ {𝑏, 𝑏 + 1}.

We have that

P {𝑆
+

𝑏
= 𝑏} = 𝑏 + 1, P {𝑆

+

𝑏
= 𝑏 + 1} = −𝑏. (167)

Of course, we immediately see that P{𝑆+
𝑏
= 𝑏} + P{𝑆+

𝑏
=

𝑏 + 1} = 1.

(iii) Case𝑁 = 3. In this case 𝑆+
𝑏
∈ {𝑏, 𝑏 + 1, 𝑏 + 2} and

P {𝑆
+

𝑏
= 𝑏} =

1

2
(𝑏 + 1) (𝑏 + 2) ,

P {𝑆
+

𝑏
= 𝑏 + 1} = −𝑏 (𝑏 + 2) ,

P {𝑆
+

𝑏
= 𝑏 + 2} =

1

2
𝑏 (𝑏 + 1) .

(168)

We can easily check that P{𝑆+
𝑏
= 𝑏} + P{𝑆+

𝑏
= 𝑏 + 1} + P{𝑆+

𝑏
=

𝑏 + 2} = 1.

(iv) Case𝑁 = 4. In this case 𝑆+
𝑏
∈ {𝑏, 𝑏 + 1, 𝑏 + 2, 𝑏 + 3} and

P {𝑆
+

𝑏
= 𝑏} =

1

6
(𝑏 + 1) (𝑏 + 2) (𝑏 + 3) ,

P {𝑆
+

𝑏
= 𝑏 + 1} = −

1

2
𝑏 (𝑏 + 2) (𝑏 + 3) ,

P {𝑆
+

𝑏
= 𝑏 + 2} =

1

2
𝑏 (𝑏 + 1) (𝑏 + 3) ,

P {𝑆
+

𝑏
= 𝑏 + 3} = −

1

6
𝑏 (𝑏 + 1) (𝑏 + 2) .

(169)

We can easily check that P{𝑆+
𝑏
= 𝑏} + P{𝑆+

𝑏
= 𝑏 + 1} + P{𝑆+

𝑏
=

𝑏 + 2} + P{𝑆+
𝑏
= 𝑏 + 3} = 1.

3.1.3. Pseudomoments of 𝑆+
𝑏
. In the sequel, we use the notation

(𝑖)
𝑛
= 𝑖(𝑖 − 1)(𝑖 − 2) ⋅ ⋅ ⋅ (𝑖 − 𝑛+ 1) for any 𝑖 ∈ Z and any 𝑛 ∈ N∗

and (𝑖)
0
= 1. Of course, (𝑖)

𝑛
= 𝑖!/(𝑖 − 𝑛)! and (𝑖)

𝑛
/𝑛! = (

𝑖

𝑛
) if

𝑖 ≥ 𝑛. We also use the conventions 1/𝑖! = 0 for any negative
integer 𝑖 and ∑𝑗

𝑘=𝑖
= 0 if 𝑖 > 𝑗.

In this section, we compute several functionals related
to the pseudomoments of 𝑆+

𝑏
. More precisely, we pro-

vide formulae for E[(𝑆+
𝑏
− 𝛽)

𝑛
] (Theorem 25), E[(𝑆+

𝑏
− 𝑏)

𝑛
]

(Corollary 26), E[(𝑆+
𝑏
)
𝑛
], and E[(𝑆+

𝑏
)
𝑛

] (Theorem 27).
Putting the elementary identity 1/(ℓ + 𝑏) = ∫1

0

𝑥
ℓ+𝑏−1 d𝑥

into the equality

E [𝑓 (𝑆
+

𝑏
)] = (

𝑏 + 𝑁 − 1

𝑏
)

𝑏+𝑁−1

∑

ℓ=𝑏

(−1)
𝑏+ℓ

𝑏

ℓ
(
𝑁 − 1

ℓ − 𝑏
)𝑓 (ℓ)

= 𝑏 (
𝑏 + 𝑁 − 1

𝑏
)

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)
𝑓 (ℓ + 𝑏)

ℓ + 𝑏
,

(170)

we get the following integral representation of E[𝑓(𝑆+
𝑏
)].

Theorem 24. For any function𝑓 defined on {𝑏, . . . , 𝑏+𝑁−1},

E [𝑓 (𝑆
+

𝑏
)]= 𝑏 (

𝑏 + 𝑁 − 1

𝑏
)

× ∫

1

0

(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑓 (ℓ + 𝑏) 𝑥

ℓ

)𝑥
𝑏−1d𝑥.

(171)

Theorem 25. For any integers 𝑛 ≥ 0 and 𝛽, the factorial
pseudo-moment of (𝑆+

𝑏
− 𝛽) of order 𝑛 is given by

E [(𝑆
+

𝑏
− 𝛽)

𝑛
]

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝑏 − 𝛽)!

(𝑏 − 1)!

𝑛∧(𝑁−1)

∑

𝑘=0∨(𝑛+𝛽−𝑏)

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

if 𝛽 ≤ 𝑏,
(−1)

𝑛

(𝑏 − 1)! (𝛽 − 𝑏 − 1)!

×

𝑛∧(𝑁−1)

∑

𝑘=0

(𝑘 + 𝑏 − 1)! (𝛽 − 𝑏 + 𝑛 − 𝑘 − 1)! (
𝑛

𝑘
)

if 𝛽 ≥ 𝑏 + 1.
(172)

If 𝑛 ≤ 𝑁 − 1, we simply have that

E [(𝑆
+

𝑏
− 𝛽)

𝑛
] = (−𝛽)

𝑛
= (−1)

𝑛

𝛽 (𝛽 + 1) ⋅ ⋅ ⋅ (𝛽 + 𝑛 − 1) .

(173)
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Proof. By (171), we have that

E [(𝑆
+

𝑏
− 𝛽)

𝑛
]

= 𝑏 (
𝑏 + 𝑁 − 1

𝑏
)

× ∫

1

0

(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ + 𝑏 − 𝛽)

𝑛
𝑥
ℓ+𝑏−1

) d𝑥.

(174)

Next, by observing that (ℓ + 𝑏 − 𝛽)
𝑛
𝑥
ℓ+𝑏−1

= 𝑥
𝑛+𝛽−1

×

(d𝑛

/ d𝑥𝑛)(𝑥ℓ+𝑏−𝛽), we obtain that

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ + 𝑏 − 𝛽)

𝑛
𝑥
ℓ+𝑏−1

=

𝑁−1

∑

ℓ=0

((−1)
ℓ

(
𝑁 − 1

ℓ
)

d𝑛

d𝑥𝑛
(𝑥

ℓ+𝑏−𝛽

)) 𝑥
𝑛+𝛽−1

=
d𝑛

d𝑥𝑛
(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑥

ℓ+𝑏−𝛽

)𝑥
𝑛+𝛽−1

=
d𝑛

d𝑥𝑛
((1 − 𝑥)

𝑁−1

𝑥
𝑏−𝛽

) 𝑥
𝑛+𝛽−1

.

(175)

Applying Leibniz rule to (175), we see that

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ + 𝑏 − 𝛽)

𝑛
𝑥
ℓ+𝑏−1

= (

𝑛

∑

𝑘=0

(
𝑛

𝑘
)

d𝑘

d𝑥𝑘
((1 − 𝑥)

𝑁−1

)
d𝑛−𝑘

d𝑥𝑛−𝑘
(𝑥

𝑏−𝛽

))𝑥
𝑛+𝛽−1

=

𝑛∧(𝑁−1)

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) (𝑁 − 1)

𝑘
(𝑏 − 𝛽)

𝑛−𝑘

× (1 − 𝑥)
𝑁−1−𝑘

𝑥
𝑘+𝑏−1

.

(176)

Therefore,

∫

1

0

(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ + 𝑏 − 𝛽)

𝑛
𝑥
ℓ+𝑏−1

) d𝑥

=

𝑛∧(𝑁−1)

∑

𝑘=0

(−1)
𝑘

(𝑁 − 1)
𝑘
(𝑏 − 𝛽)

𝑛−𝑘
(
𝑛

𝑘
)

× ∫

1

0

(1 − 𝑥)
𝑁−1−𝑘

𝑥
𝑘+𝑏−1 d𝑥

=

𝑛∧(𝑁−1)

∑

𝑘=0

(−1)
𝑘

(𝑁 − 1)
𝑘
(𝑏 − 𝛽)

𝑛−𝑘
(
𝑛

𝑘
)

×
(𝑁 − 1 − 𝑘)! (𝑘 + 𝑏 − 1)!

(𝑏 + 𝑁 − 1)!

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

(𝑏 − 𝛽)! (𝑁 − 1)!

(𝑏 + 𝑁 − 1)!

×

𝑛∧(𝑁−1)

∑

𝑘=0∨(𝑛+𝛽−𝑏)

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

if 𝛽 ≤ 𝑏,
(−1)

𝑛

(𝑁 − 1)!

(𝛽 − 𝑏 − 1)! (𝑏 + 𝑁 − 1)!

×

𝑛∧(𝑁−1)

∑

𝑘=0

(𝑘 + 𝑏 − 1)! (𝛽 − 𝑏 + 𝑛 − 𝑘 − 1)! (
𝑛

𝑘
)

if 𝛽 ≥ 𝑏 + 1.
(177)

Finally, plugging (177) into (175) and (174) yields (172).
Assume now that 𝑛 ≤ 𝑁 − 1 and 𝛽 ≤ 𝑏. If 𝑛 ≥ 1 − 𝛽, we

can write in (172) that

(𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
=

d𝛽+𝑛−1

d𝑥𝛽+𝑛−1
(𝑥

𝑘+𝑏−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

. (178)

Then,

𝑛∧(𝑁−1)

∑

𝑘=0∨(𝑛+𝛽−𝑏)

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

=

𝑛

∑

𝑘=0

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

=
d𝛽+𝑛−1

d𝑥𝛽+𝑛−1
[(

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)𝑥

𝑘

)𝑥
𝑏−1

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=
d𝛽+𝑛−1

d𝑥𝛽+𝑛−1
((1 − 𝑥)

𝑛

𝑥
𝑏−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=

𝑛

∑

𝑘=0

(−1)
𝑘

(𝑛)
𝑘
(𝑏 − 1)

𝛽+𝑛−𝑘−1
(
𝛽 + 𝑛 − 1

𝑘
)

× ((1 − 𝑥)
𝑛−𝑘

𝑥
𝑘+𝑏−𝛽−𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

= (−1)
𝑛

(𝑛)
𝑛
(𝑏 − 1)

𝛽−1
(
𝛽 + 𝑛 − 1

𝑛
)

= (−1)
𝑛
(𝑏 − 1)! (𝛽 + 𝑛 − 1)!

(𝑏 − 𝛽)! (𝛽 − 1)!

= (−1)
𝑛 (𝑏 − 1)!

(𝑏 − 𝛽)!
𝛽 (𝛽 + 1) ⋅ ⋅ ⋅ (𝛽 + 𝑛 − 1) .

(179)

Putting (179) into (172) yields (173). If 𝑛 ≤ −𝛽 (which requires
that 𝛽 ≤ 0), in (172), we write instead that

(𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
=

1

(−𝑛 − 𝛽)!
∫

1

0

𝑥
𝑘+𝑏−1

(1 − 𝑥)
−𝑛−𝛽d𝑥.

(180)
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Then,

𝑛∧(𝑁−1)

∑

𝑘=0∨(𝑛+𝛽−𝑏)

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

=

𝑛

∑

𝑘=0

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 + 𝑏 − 𝛽 − 𝑛)!
(
𝑛

𝑘
)

=
1

(−𝑛 − 𝛽)!

× ∫

1

0

(

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)𝑥

𝑘

)𝑥
𝑏−1

(1 − 𝑥)
−𝑛−𝛽d𝑥

=
1

(−𝑛 − 𝛽)!
∫

1

0

𝑥
𝑏−1

(1 − 𝑥)
−𝛽d𝑥

=
(𝑏 − 1)! (−𝛽)!

(𝑏 − 𝛽)! (−𝑛 − 𝛽)!

= (−1)
𝑛 (𝑏 − 1)!

(𝑏 − 𝛽)!
𝛽 (𝛽 + 1) ⋅ ⋅ ⋅ (𝛽 + 𝑛 − 1) .

(181)

Putting (181) into (172) yields (173) in this case too.
Assume finally that 𝑛 ≤ 𝑁 − 1 and 𝛽 ≥ 𝑏 + 1. We write in

(172) that

(𝑘 + 𝑏 − 1)! (𝛽 − 𝑏 + 𝑛 − 𝑘 − 1)!

= (𝛽 + 𝑛 − 1)! ∫

1

0

𝑥
𝑘+𝑏−1

(1 − 𝑥)
𝛽−𝑏+𝑛−𝑘−1d𝑥.

(182)

Then

𝑛∧(𝑁−1)

∑

𝑘=0

(𝑘 + 𝑏 − 1)! (𝛽 − 𝑏 + 𝑛 − 𝑘 − 1)! (
𝑛

𝑘
)

= (𝛽 + 𝑛 − 1)!

× ∫

1

0

[

𝑛

∑

𝑘=0

(
𝑛

𝑘
)(

𝑥

1 − 𝑥
)

𝑘

]𝑥
𝑏−1

(1 − 𝑥)
𝛽−𝑏+𝑛−1d𝑥

= (𝛽 + 𝑛 − 1)! ∫

1

0

𝑥
𝑏−1

(1 − 𝑥)
𝛽−𝑏−1d𝑥

= (𝑏 − 1)! (𝛽 − 𝑏 − 1)!
(𝛽 + 𝑛 − 1)!

(𝛽 − 1)!
.

(183)

Putting (183) into (172) yields (173).

By choosing 𝛽 = 𝑏 in Theorem 25, we derive that

E [(𝑆
+

𝑏
− 𝑏)

𝑛
] =

1

(𝑏 − 1)!

𝑛∧(𝑁−1)

∑

𝑘=𝑛

(−1)
𝑘 (𝑘 + 𝑏 − 1)!

(𝑘 − 𝑛)!
(
𝑛

𝑘
) .

(184)

We immediately obtain the following particular result which
will be used inTheorem 28.

Corollary 26. The factorial pseudomoments of (𝑆+
𝑏
− 𝑏) are

given by

E [(𝑆
+

𝑏
− 𝑏)

𝑛
] = {

(−𝑏)
𝑛

if 0 ≤ 𝑛 ≤ 𝑁 − 1,

0 if 𝑛 ≥ 𝑁.
(185)

The above identity can be rewritten, if 0 ≤ 𝑛 ≤ 𝑁 − 1, as

E [(
𝑆
+

𝑏
− 𝑏

𝑛
)] = (−1)

𝑛

(
𝑛 + 𝑏 − 1

𝑏 − 1
) . (186)

Moreover, since 𝑆+
𝑏
∈ {𝑏, 𝑏 + 1, . . . , 𝑏 + 𝑁 − 1}, it is clear that

(𝑆
+

𝑏
−𝑏)(𝑆

+

𝑏
−𝑏−1) ⋅ ⋅ ⋅ (𝑆

+

𝑏
−𝑏−𝑁+1) = 0which immediately

entails that (𝑆+
𝑏
− 𝑏)

𝑛
= 0 for any 𝑛 ≥ 𝑁; thenE[(𝑆+

𝑏
− 𝑏)

𝑛
] = 0

for 𝑛 ≥ 𝑁 as stated in Corollary 26.
By choosing 𝛽 = 0 in Theorem 25, we plainly extract that

E[(𝑆+
𝑏
)
𝑛
] = 0 for 𝑛 ∈ {1, . . . , 𝑁 − 1}. Moreover, as previously

mentioned, (𝑆+
𝑏
)
𝑛
= 0 for any 𝑛 ≥ 𝑏 + 𝑁; then E[(𝑆+

𝑏
)
𝑛
] =

0 for 𝑛 ≥ 𝑏 + 𝑁. Actually, we can compute the factorial
pseudomoments of 𝑆+

𝑏
,E[(𝑆+

𝑏
)
𝑛
], for 𝑛 ∈ {𝑁,𝑁+1, . . . , 𝑏+𝑁}.

The formula of Theorem 25 seems to be untractable, so we
provide another way for evaluating them.

Theorem 27. The factorial pseudomoments of 𝑆+
𝑏
are given by

E [(𝑆
+

𝑏
)
𝑛
] =

{{{

{{{

{

(−1)
𝑁−1

(
𝑛 − 1

𝑁 − 1
) (𝑏 + 𝑁 − 1)

𝑛

𝑖𝑓 𝑁 ≤ 𝑛 ≤ 𝑏 + 𝑁 − 1,

0 if 1 ≤ 𝑛 ≤ 𝑁 − 1 or 𝑛 ≥ 𝑏 + 𝑁.
(187)

Moreover, for 𝑛 ∈ {1, . . . , 𝑁 − 1}, the pseudo-moment of 𝑆+
𝑏
of

order 𝑛 vanishes:

E [(𝑆
+

𝑏
)
𝑛

] = 0,

E [(𝑆
+

𝑏
)
𝑁

] = (−1)
𝑁−1 (𝑏 + 𝑁 − 1)!

(𝑏 − 1)!
= −(−𝑏)

𝑁
.

(188)

Proof. We focus on the case where 𝑁 ≤ 𝑛 ≤ 𝑏 + 𝑁 − 1. We
have that

E [(𝑆
+

𝑏
)
𝑛
] =

𝑁−1

∑

ℓ=0

P {𝑆
+

𝑏
= ℓ + 𝑏} (ℓ + 𝑏)

𝑛

= 𝑏(
𝑏 + 𝑁 − 1

𝑏
)

𝑁−1

∑

ℓ=0

(−1)
ℓ

(ℓ + 𝑏 − 1)
𝑛−1

(
𝑁 − 1

ℓ
) .

(189)
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The intermediate sum lying in the last displayed equality can
be evaluated as follows: by observing that (ℓ + 𝑏 − 1)

𝑛−1
=

(d𝑛−1/d𝑥𝑛−1)(𝑥ℓ+𝑏−1)|
𝑥=1

and appealing to Leibniz rule, we
obtain that
𝑁−1

∑

ℓ=0

(−1)
ℓ

(ℓ + 𝑏 − 1)
𝑛−1

(
𝑁 − 1

ℓ
)

=
d𝑛−1

d𝑥𝑛−1
(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑥

ℓ+𝑏−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=
d𝑛−1

d𝑥𝑛−1
((1 − 𝑥)

𝑁−1

𝑥
𝑏−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=

𝑛−1

∑

𝑗=𝑁−1

(
𝑛 − 1

𝑗
)

d𝑗

d𝑥𝑗
((1 − 𝑥)

𝑁−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

d𝑛−1−𝑗

d𝑥𝑛−1−𝑗
(𝑥

𝑏−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

= (−1)
𝑁−1

(𝑁 − 1)! (
𝑛 − 1

𝑁 − 1
) (𝑏 − 1)

𝑛−𝑁

= (−1)
𝑁−1 (𝑏 − 1)! (𝑛 − 1)!

(𝑛 − 𝑁)! (𝑏 + 𝑁 − 𝑛 − 1)!
.

(190)

Consequently,

E [(𝑆
+

𝑏
)
𝑛
] = (−1)

𝑁−1

𝑏 (
𝑏 + 𝑁 − 1

𝑏
)

(𝑏 − 1)! (𝑛 − 1)!

(𝑛 − 𝑁)! (𝑏 + 𝑁 − 𝑛 − 1)!

= (−1)
𝑁−1 (𝑛 − 1)! (𝑏 + 𝑁 − 1)!

(𝑛 − 𝑁)! (𝑁 − 1)! (𝑏 + 𝑁 − 𝑛 − 1)!
.

(191)

This is the result announced in Theorem 27 when 𝑁 ≤ 𝑛 ≤

𝑏 + 𝑁 − 1.
Next, concerning the pseudomoments of 𝑆+

𝑏
, we appeal

to an elementary argument of linear algebra: the family
(1, 𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
) (recall that 𝑋

𝑘
= 𝑋(𝑋 − 1) ⋅ ⋅ ⋅ (𝑋 −

𝑘 + 1)) is a basis of the space of polynomials of degree not
greater than 𝑛. So, 𝑋𝑛 can be written as a linear combination
of 𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
. Then E[(𝑆+

𝑏
)
𝑛

] can be written as a linear
combination of the factorial pseudomoments of 𝑆+

𝑏
of order

between 1 and 𝑛. The latters cancel for 𝑛 ∈ {1, . . . , 𝑁 − 1}. As
a result, E[(𝑆+

𝑏
)
𝑛

] = 0.
The same argument ensures the equalities E[(𝑆+

𝑏
)
𝑁
] =

E[(𝑆+
𝑏
)
𝑁

], which is equal to (−1)
𝑁−1

(𝑏 + 𝑁 − 1)
𝑁
, and

E[(𝑆+
𝑏
− 𝑏)

𝑁
] = E[(𝑆+

𝑏
)
𝑁

] + (−𝑏)
𝑁 which vanishes. Each of

them yields the value of E[(𝑆+
𝑏
)
𝑁

].
The proof of Theorem 27 is completed.

3.2. Link with the High-Order Finite-Difference Operator. Set
Δ
+

𝑓(𝑖) = 𝑓(𝑖+1)−𝑓(𝑖) for any 𝑖 ∈ Z and (Δ+

)
𝑗

= Δ
+

∘ ⋅ ⋅ ⋅ ∘ Δ
+

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 times

for any 𝑗 ∈ N∗. Set also (Δ+

)
0

𝑓 = 𝑓. The quantity (Δ+

)
𝑗 is the

iterated forward finite-difference operator given by

(Δ
+

)
𝑗

𝑓 (𝑖) =

𝑗

∑

𝑘=0

(−1)
𝑗+𝑘

(
𝑗

𝑘
)𝑓 (𝑖 + 𝑘) . (192)

Conversely, 𝑓(𝑖 + 𝑘) can be expressed by means of (Δ+

)
𝑗

𝑓(𝑖),
0 ≤ 𝑗 ≤ 𝑘, according to

𝑓 (𝑖 + 𝑘) =

𝑘

∑

𝑗=0

(
𝑘

𝑗
) (Δ

+

)
𝑗

𝑓 (𝑖) . (193)

We have the following expression for any functional of the
pseudorandom variable 𝑆+

𝑏
.

Theorem 28. One has, for any function 𝑓 defined on {𝑏, 𝑏 +
1, . . . , 𝑏 + 𝑁 − 1}, that

E [𝑓 (𝑆
+

𝑏
)] =

𝑁−1

∑

𝑗=0

(−1)
𝑗

(
𝑗 + 𝑏 − 1

𝑏 − 1
) (Δ

+

)
𝑗

𝑓 (𝑏) . (194)

Proof. By (193), we see that

E [𝑓 (𝑆
+

𝑏
)] = E(

𝑆
+

𝑏
−𝑏

∑

𝑗=0

(
𝑆
+

𝑏
− 𝑏

𝑗
) (Δ

+

)
𝑗

𝑓 (𝑏))

=

𝑁−1

∑

𝑗=0

E [(
𝑆
+

𝑏
− 𝑏

𝑗
)] (Δ

+

)
𝑗

𝑓 (𝑏)

(195)

which immediately yields (194) thanks to (186).

Corollary 29. The generating function of 𝑆+
𝑏
is given by

E (𝜁
𝑆
+

𝑏 ) = 𝜁
𝑏

𝑁−1

∑

𝑗=0

(
𝑗 + 𝑏 − 1

𝑏 − 1
) (1 − 𝜁)

𝑗

. (196)

Proof. Let us apply Theorem 28 to the function 𝑓(𝑖) = 𝜁
𝑖

for which we plainly have (Δ+

)
𝑗

𝑓(𝑖) = (−1)
𝑗

𝜁
𝑖

(1 − 𝜁)
𝑗. This

immediately yields (196).

Remark 30. A direct computation with (161) yields the alter-
native representation:

E (𝜁
𝑆
+

𝑏 ) = 𝑏(
𝑏 + 𝑁 − 1

𝑏
) 𝜁

𝑏

∫

1

0

𝑥
𝑏−1

(1 − 𝜁𝑥)
𝑁−1 d𝑥. (197)

Of special interest is the case when the starting point of
the pseudorandom walk is any point 𝑥 ∈ Z. By translating 𝑏
into 𝑏−𝑥 and the function𝑓 into the shifted function𝑓(⋅+𝑥)
in formula (194), we get that

E
𝑥
[𝑓 (𝑆

+

𝑏
)]

def
= E [𝑓 (𝑥 + 𝑆

+

𝑏−𝑥
)]

=

𝑁−1

∑

𝑗=0

(−1)
𝑗

(
𝑗 + 𝑏 − 𝑥 − 1

𝑗
) (Δ

+

)
𝑗

𝑓 (𝑏) .

(198)

Thus, we obtain the following result.

Theorem 31. One has, for any function 𝑓 defined on {𝑏, 𝑏 +
1, . . . , 𝑏 + 𝑁 − 1}, that

E
𝑥
[𝑓 (𝑆

+

𝑏
)] =

𝑁−1

∑

𝑗=0

𝑃
+

𝑏,𝑗
(𝑥) (Δ

+

)
𝑗

𝑓 (𝑏) (199)
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with 𝑃+

𝑏,0
(𝑥) = 1 and, for 𝑗 ∈ {1, . . . , 𝑁 − 1},

𝑃
+

𝑏,𝑗
(𝑥) =

1

𝑗!

𝑗−1

∏

𝑘=0

(𝑥 − 𝑏 − 𝑘) . (200)

The 𝑃+

𝑏,𝑗
, 0 ≤ 𝑗 ≤ 𝑁−1, are Newton interpolating polynomials.

They are of degree not greater than (𝑁 − 1) and characterized,
for any 𝑘 ∈ {0, . . . , 𝑁 − 1}, by

(Δ
+

)
𝑘

𝑃
+

𝑏,𝑗
(𝑏) = 𝛿

𝑗𝑘
. (201)

Proof. Coming back to the proof of Theorem 28 and appeal-
ing toTheorem 22, we write that

𝑃
+

𝑏,𝑗
(𝑥) = E

𝑥
[(
𝑆
+

𝑏
− 𝑏

𝑗
)]

= E [(
𝑆
+

𝑏−𝑥
+ 𝑥 − 𝑏

𝑗
)]

=

𝑁−1

∑

𝑚=𝑗

(
𝑚

𝑗
)P {𝑆

+

𝑏−𝑥
= 𝑏 − 𝑥 + 𝑚}

=
1

(𝑁 − 1)!

𝑁−1

∑

𝑚=𝑗

(−1)
𝑚

(
𝑚

𝑗
)(

𝑁 − 1

𝑚
)𝐾

𝑚
(𝑥) ,

(202)

where, for any𝑚 ∈ {0, . . . , 𝑁 − 1},

𝐾
𝑚
(𝑥) =

(∏
𝑁−1

𝑘=0
(𝑏 − 𝑥 + 𝑘))

(𝑏 − 𝑥 + 𝑚)
= ∏

0≤𝑘≤𝑁−1

𝑘 ̸=𝑚

(𝑏 − 𝑥 + 𝑘) . (203)

The expression 𝐾
𝑚
(𝑥) defines a polynomial of the variable 𝑥

of degree (𝑁−1), so 𝑃+

𝑏,𝑗
is a polynomial of degree not greater

than (𝑁−1). It is obvious that𝐾
𝑚
(𝑏+ℓ) = 0 for ℓ ∈ {0, . . . , 𝑁−

1}\{𝑚}. On the other hand,𝐾
ℓ
(𝑏+ℓ) = (−1)

ℓ

(𝑁−1)!/ (
𝑁−1

ℓ
).

By putting this into (202), we get that

𝑃
+

𝑏,𝑗
(𝑏 + ℓ) = (

ℓ

𝑗
) 1

{𝑗≤ℓ}
. (204)

Next, we obtain, for any 𝑘 ∈ {0, . . . , 𝑁 − 1}, that

(Δ
+

)
𝑘

𝑃
+

𝑏,𝑗
(𝑏) =

𝑘

∑

ℓ=0

(−1)
𝑘+ℓ

(
𝑘

ℓ
)𝑃

+

𝑏,𝑗
(𝑏 + ℓ)

=

𝑘

∑

ℓ=𝑗

(−1)
𝑘+ℓ

(
𝑘

ℓ
)(

ℓ

𝑗
)

= (−1)
𝑗+𝑘

(
𝑘

𝑗
)

𝑘−𝑗

∑

ℓ=0

(−1)
ℓ

(
𝑘 − 𝑗

ℓ
) = 𝛿

𝑗𝑘
.

(205)

The proof of Theorem 31 is finished.

We complete this paragraph by stating a strong pseudo-
Markov property related to time 𝜎+

𝑏
.

Theorem 32. One has, for any function 𝑓 defined on Z and
any 𝑛 ∈ N, that

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)] =

𝑁−1

∑

𝑗=0

𝑃
+

𝑏,𝑗
(𝑥) (Δ

+

)
𝑗

E
𝑏
[𝑓 (𝑆

𝑛
)] . (206)

In (206), the operator (Δ+

)
𝑗 acts on the variable 𝑏.

Proof. We denote by P
𝑥
the pseudoprobability associated

with the pseudoexpectation E
𝑥
. Actually, it represents the

pseudoprobability related to the pseudorandom walk started
at point 𝑥 at time 0. We have, by independence of the 𝜉

𝑗
’s, that

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)]

= ∑

𝑘,ℓ∈N:
𝑏≤ℓ≤𝑏+𝑁−1

E
𝑥
[1

{𝜎
+

𝑏
=𝑘,𝑆
+

𝑏
=ℓ}
𝑓 (𝑆

+

𝑏
+ 𝜉

𝑘+1
+ ⋅ ⋅ ⋅ + 𝜉

𝑘+𝑛
)]

= ∑

𝑘,ℓ∈N:
𝑏≤ℓ≤𝑏+𝑁−1

P
𝑥
{𝜎

+

𝑏
= 𝑘, 𝑆

+

𝑏
= ℓ}E [𝑓 (ℓ + 𝜉

1
+ ⋅ ⋅ ⋅ + 𝜉

𝑛
)]

=

𝑏+𝑁−1

∑

ℓ=𝑏

P
𝑥
{𝑆

+

𝑏
= ℓ}E

ℓ
[𝑓 (𝑆

𝑛
)]

= E
𝑥
[E

𝑆
+

𝑏

[𝑓 (𝑆
𝑛
)]] .

(207)

Hence, by setting 𝑔(𝑥) = E
𝑥
[𝑓(𝑆

𝑛
)], we have obtained that

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)] = E

𝑥
[𝑔 (𝑆

+

𝑏
)] (208)

which proves (206) thanks to (199).

Example 33. Below, we display the form of (206) for the
particular values 1, 2, 3 of𝑁.

(i) For𝑁 = 1, (206) reads

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)] = E

𝑏
[𝑓 (𝑆

𝑛
)] (209)

which is of course trivial! This is the strong Markov
property for the ordinary random walk.

(ii) For𝑁 = 2, (206) reads

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)] = E

𝑏
[𝑓 (𝑆

𝑛
)] + (𝑥 − 𝑏) Δ

+

E
𝑏
[𝑓 (𝑆

𝑛
)]

= (𝑏 − 𝑥 + 1)E
𝑏
[𝑓 (𝑆

𝑛
)]

+ (𝑥 − 𝑏)E
𝑏+1

[𝑓 (𝑆
𝑛
)] .

(210)
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(iii) For𝑁 = 3, (206) reads

E
𝑥
[𝑓 (𝑆

𝜎
+

𝑏
+𝑛
)] = E

𝑏
[𝑓 (𝑆

𝑛
)] + (𝑥 − 𝑏) Δ

+

E
𝑏
[𝑓 (𝑆

𝑛
)]

+
1

2
(𝑥 − 𝑏) (𝑥 − 𝑏 − 1) (Δ

+

)
2

E
𝑏
[𝑓 (𝑆

𝑛
)]

=
1

2
(𝑥 − 𝑏 − 1) (𝑥 − 𝑏 − 2)E

𝑏
[𝑓 (𝑆

𝑛
)]

− (𝑥 − 𝑏) (𝑥 − 𝑏 − 2)E
𝑏+1

[𝑓 (𝑆
𝑛
)]

+
1

2
(𝑥 − 𝑏) (𝑥 − 𝑏 − 1)E

𝑏+2
[𝑓 (𝑆

𝑛
)] .

(211)

3.3. Joint Pseudodistribution of (𝜏+
𝑏
, 𝑋

+

𝑏
). Below, we give an ad

hoc definition for the convergence of a family of exit times.

Definition 34. Let ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

be a family of pseudoprocesses
which converges towards a pseudoprocess (𝑋

𝑡
)
𝑡≥0

when 𝜀 →
0
+ in the sense of Definition 13. Let 𝐼 be a subset ofR and set
𝜏
𝜀

𝐼
= inf{𝑡 ≥ 0 : 𝑋𝜀

𝑡
∉ 𝐼}, 𝑋𝜀

𝐼
= 𝑋

𝜀

𝜏
𝜀

𝐼

and 𝜏
𝐼
= inf{𝑡 ≥ 0 : 𝑋

𝑡
∉

𝐼},𝑋
𝐼
= 𝑋

𝜏
𝐼

.
We say that

(𝜏
𝜀

𝐼
, 𝑋

𝜀

𝐼
) 󳨀→
𝜀→0
+

(𝜏
𝐼
, 𝑋

𝐼
) (212)

if and only if

∀𝜆 > 0, ∀𝜇 ∈ R,

E (e−𝜆𝜏
𝜀

𝐼
+𝑖𝜇𝑋
𝜀

𝐼1
{𝜏
𝜀

𝐼
<+∞}

) 󳨀→
𝜀→0
+

E (e−𝜆𝜏𝐼+𝑖𝜇𝑋𝐼1
{𝜏
𝐼
<+∞}

) .

(213)

We say that

𝑋
𝜀

𝐼
󳨀→
𝜀→0
+

𝑋
𝐼 (214)

if and only if

∀𝜇 ∈ R, E (e𝑖𝜇𝑋
𝜀

𝐼1
{𝜏
𝜀

𝐼
<+∞}

) 󳨀→
𝜀→0
+

E (e𝑖𝜇𝑋𝐼1
{𝜏
𝐼
<+∞}

) .

(215)

As in Section 2.3, we choose for the family ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

the
pseudoprocesses defined, for any 𝜀 > 0, by

𝑋
𝜀

𝑡
= 𝜀𝑆

⌊𝑡/𝜀
2𝑁

⌋
, 𝑡 ≥ 0, (216)

and for the pseudoprocess (𝑋
𝑡
)
𝑡≥0

the pseudo-Brownian
motion. For 𝐼, we choose the interval (−∞, 𝑏) so that 𝜏𝜀

𝐼
= 𝜏

𝜀+

𝑏
,

𝑋
𝜀

𝐼
= 𝑋

𝜀+

𝑏
and 𝜏

𝐼
= 𝜏

+

𝑏
,𝑋

𝐼
= 𝑋

+

𝑏
. Set 𝑏

𝜀
= ⌈𝑏/𝜀⌉where ⌈⋅⌉ is the

usual ceiling function. We have 𝜏𝜀+
𝑏
= 𝜀

2𝑁

𝜎
+

𝑏
𝜀

and 𝑋𝜀+

𝑏
= 𝜀𝑆

+

𝑏
𝜀

.
Recall the setting 𝜑

𝑗
= −𝑖e𝑖((2𝑗−1)/2𝑁)𝜋, 1 ≤ 𝑗 ≤ 𝑁.

Theorem 35. Assume that 𝑐 ≤ 1/22𝑁−1. The following conver-
gence holds:

(𝜏
𝜀+

𝑏
, 𝑋

𝜀+

𝑏
) 󳨀→
𝜀→0
+

(𝜏
+

𝑏
, 𝑋

+

𝑏
) , (217)

where, for any 𝜆 > 0 and any 𝜇 ∈ R,

E (e−𝜆𝜏
+

𝑏
+𝑖𝜇𝑋
+

𝑏 1
{𝜏
𝑏
<+∞}

)

= e𝑖𝜇𝑏
𝑁

∑

𝑘=1

∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

𝜑
𝑗

𝜑
𝑗
− 𝜑

𝑘

∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(1 −

𝑖 𝜑
𝑗
𝜇

2𝑁

√𝜆/𝑐

) e−𝜑𝑘
2𝑁
√𝜆/𝑐𝑏

.

(218)

Proof. We already pointed out that the assumption 𝑐 ≤

1/2
2𝑁−1 entails that 𝑀

∞
= 1. Therefore, (147) holds for

𝑧 = e−𝜆𝜀
2𝑁

< 1/𝑀
∞

= 1, that is, for 𝜆 > 0. So, by (147),
we have, for 𝜆 > 0, that

E (e−𝜆𝜏
𝜀+

𝑏
+𝑖𝜇𝑋
𝜀+

𝑏 1
{𝜏
𝜀+

𝑏
<+∞}

)

= E (e−𝜆𝜀
2𝑁

𝜎
+

𝑏
𝜀

+𝑖𝜇𝜀𝑆
+

𝑏
𝜀1

{𝜎
+

𝑏
𝜀

<+∞}
)

= e𝑖𝜇𝜀𝑏𝜀
𝑁

∑

𝑘=1

𝐿
𝑘
(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) 𝑢
𝑘
(e−𝜆𝜀

2𝑁

)

𝑏
𝜀

.

(219)

Recall that we previously set 𝑢
𝑗
(𝜆, 𝜀) = 𝑢

𝑗
(e−𝜆𝜀

2𝑁

). Thanks to
asymptotics (119), we get that

𝑢
𝑘
(𝜆, 𝜀) − 𝑢

𝑗
(𝜆, 𝜀) ∼

𝜀→0
+

(𝜑
𝑗
− 𝜑

𝑘
)
2𝑁

√
𝜆

𝑐
𝜀,

1 − 𝑢
𝑗
(𝜆, 𝜀) e𝑖𝜇𝜀 ∼

𝜀→0
+

(𝜑
𝑗

2𝑁

√
𝜆

𝑐
− 𝑖𝜇) 𝜀.

(220)

Thus,

lim
𝜀→0
+

𝐿
𝑘
(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) = ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

𝜑
𝑗

2𝑁

√𝜆/𝑐 − 𝑖𝜇

(𝜑
𝑗
− 𝜑

𝑘
)
2𝑁

√𝜆/𝑐

= ∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

𝜑
𝑗

𝜑
𝑗
− 𝜑

𝑘

∏

1≤𝑗≤𝑁

𝑗 ̸= 𝑘

(1 −

𝑖𝜑
𝑗
𝜇

2𝑁

√𝜆/𝑐

) .

(221)

Finally, we can easily concludewith the help of the elementary
limits that

lim
𝜀→0
+

e𝑖𝜇𝜀𝑏𝜀 = e𝑖𝜇𝑏, lim
𝜀→0
+

𝑢
𝑘
(𝜆, 𝜀)

𝑏
𝜀 = e−𝜑𝑘

2𝑁
√𝜆/𝑐𝑏

. (222)

Theorem 36. The following convergence holds:

𝑋
𝜀+

𝑏
󳨀→
𝜀→0
+

𝑋
+

𝑏
, (223)

where, for any 𝜇 ∈ R,

E (e𝑖𝜇𝑋
+

𝑏 1
{𝜏
+

𝑏
<+∞}

) = e𝑖𝜇𝑏
𝑁−1

∑

𝑗=0

(−𝑖𝜇𝑏)
𝑗

𝑗!
. (224)
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This is the Fourier transform of the pseudorandom variable𝑋+

𝑏
.

Moreover,

P {𝜏
+

𝑏
< +∞} = 1. (225)

Proof. By (194), we have that

E (e𝑖𝜇𝑋
𝜀+

𝑏 1
{𝜏
𝜀+

𝑏
<+∞}

) = E (e𝑖𝜇𝜀𝑆
+

𝑏
𝜀1

{𝜎
+

𝑏
𝜀

<+∞}
)

= e𝑖𝜇𝜀𝑏𝜀
𝑁−1

∑

𝑘=0

(
𝑗 + 𝑏

𝜀
− 1

𝑏
𝜀
− 1

) (1 − e𝑖𝜇𝜀)
𝑗

.

(226)

We can easily conclude by using the elementary asymptotics
that

lim
𝜀→0
+

e𝑖𝜇𝜀𝑏𝜀 = e𝑖𝜇𝑏, (
𝑗 + 𝑏

𝜀
− 1

𝑏
𝜀
− 1

) ∼
𝜀→0
+

𝑏
𝑗

𝑗!𝜀𝑗
,

(1 − e𝑖𝜇𝜀)
𝑗

∼
𝜀→0
+

(−𝑖𝜇𝜀)
𝑗

.

(227)

Corollary 37. The pseudodistribution of 𝑋+

𝑏
is given by

P {𝑋+

𝑏
∈ d𝑧}

d𝑧
=

𝑁−1

∑

𝑗=0

𝑏
𝑗

𝑗!
𝛿
(𝑗)

𝑏
(𝑧) . (228)

This formula should be understood as follows: for any
(𝑁 − 1)-times differentiable function 𝑓, by omitting the
condition 𝜏+

𝑏
< +∞,

E [𝑓 (𝑋
+

𝑏
)] =

𝑁−1

∑

𝑗=0

(−1)
𝑗
𝑏
𝑗

𝑗!
𝑓
(𝑗)

(𝑏) . (229)

We retrieve a result of [11] and, in the case𝑁 = 2, a pioneering
result of [18].

4. Part III—First Exit Time from
a Bounded Interval

4.1. On the Pseudodistribution of (𝜎
𝑎𝑏
, 𝑆

𝑎𝑏
). Let 𝑎, 𝑏 be two

integers such that 𝑎 < 0 < 𝑏 and let E = {𝑎, 𝑎 − 1, . . . , 𝑎 −

𝑁+ 1} ∪ {𝑏, 𝑏 + 1, . . . , 𝑏 +𝑁− 1}. In this section, we explicitly
compute the generating function of (𝜎

𝑎𝑏
, 𝑆

𝑎𝑏
). Set, for ℓ ∈ E,

𝐻
𝑎𝑏,ℓ

(𝑧) = E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

)

= ∑

𝑘∈N

P {𝜎
𝑎𝑏
= 𝑘, 𝑆

𝑎𝑏
= ℓ} 𝑧

𝑘

.

(230)

We are able to provide an explicit expression of 𝐻
𝑎𝑏,ℓ

(𝑧). As
in Section 3.1, due to (62), we have the following a priori
estimate: |P{𝜎

𝑎𝑏
= 𝑘, 𝑆

𝑎𝑏
= ℓ}| ≤ |P{𝑆

1
∈ (𝑎, 𝑏), . . . , 𝑆

𝑘−1
∈

(𝑎, 𝑏), 𝑆
𝑘
= ℓ}| ≤ 𝑀

𝑘

1
. As a byproduct, the power series

defining𝐻
𝑎𝑏,ℓ

(𝑧) absolutely converges for |𝑧| < 1/𝑀
1
.

4.1.1. Joint Pseudodistribution of (𝜎
𝑎𝑏
, 𝑆

𝑎𝑏
)

Theorem38. Thepseudodistribution of (𝜎
𝑎𝑏
, 𝑆

𝑎𝑏
) is character-

ized by the identity, valid for any 𝑧 ∈ (0, 1),

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

) =
𝑈
ℓ
(𝑢

1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

, (231)

where

𝑈 (𝑢
1
, . . . , 𝑢

2𝑁
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
1 𝑢

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(232)

and, if 𝑎 − 𝑁 + 1 ≤ ℓ ≤ 𝑎, 𝑈
ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
) is the determinant

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

1
𝑢
𝑁−𝑎−1

1
𝑢
ℓ+𝑁−𝑎

1
⋅ ⋅ ⋅ 𝑢

𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

2𝑁
𝑢
𝑁−𝑎−1

2𝑁
𝑢
ℓ+𝑁−𝑎

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (233)

and if 𝑏 ≤ ℓ ≤ 𝑏 + 𝑁 − 1, 𝑈
ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
) is the determinant

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
⋅ ⋅ ⋅ 𝑢

ℓ+𝑁−𝑎−2

1
𝑢
𝑁−𝑎−1

1
𝑢
ℓ+𝑁−𝑎

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁

⋅ ⋅ ⋅ 𝑢
𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
⋅ ⋅ ⋅ 𝑢

ℓ+𝑁−𝑎−2

2𝑁
𝑢
𝑁−𝑎−1

2𝑁
𝑢
ℓ+𝑁−𝑎

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (234)
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Proof. Pick an integer 𝑘 such that 𝑘 ≤ 𝑎 or 𝑘 ≥ 𝑏. If 𝑆
𝑛
= 𝑘,

then an exit of the interval (𝑎, 𝑏) occurs before time 𝑛:𝜎
𝑎𝑏
≤ 𝑛.

This remark and the independence of the increments of the
pseudorandom walk entail that

P {𝑆
𝑛
= 𝑘} = P {𝑆

𝑛
= 𝑘, 𝜎

𝑎𝑏
≤ 𝑛}

=

𝑛

∑

𝑗=0

∑

ℓ∈E

P {𝑆
𝑛
= 𝑘, 𝜎

𝑎𝑏
= 𝑗, 𝑆

𝑎𝑏
= ℓ}

=

𝑛

∑

𝑗=0

∑

ℓ∈E

P {𝜎
𝑎𝑏
= 𝑗, 𝑆

𝑎𝑏
= ℓ}P {𝑆

𝑛−𝑗
= 𝑘 − ℓ} .

(235)

Thanks to the absolute convergence of the series defining
𝐺
𝑘
(𝑧) and𝐻

𝑎𝑏,ℓ
(𝑧) for 𝑧 ∈ (0, 1) and |𝑧| < 1/𝑀

1
, respectively,

we can apply the generating function to equality (235). We
get, for 𝑧 ∈ (0, 1/𝑀

1
), that

𝐺
𝑘
(𝑧) = ∑

ℓ∈E

𝐺
𝑘−ℓ

(𝑧)𝐻
𝑎𝑏,ℓ

(𝑧) . (236)

Using expression (94) of 𝐺
𝑘
, namely, 𝐺

𝑘
(𝑧) =

∑
𝑁

𝑗=1
𝛼
𝑗
(𝑧) 𝑢

𝑗
(𝑧)

|𝑘|, we get, for 𝑘 ≥ 𝑏 + 𝑁 − 1 (recall
that V

𝑗
(𝑧) = 1/𝑢

𝑗
(𝑧)), that

𝑁

∑

𝑗=1

𝛼
𝑗
(𝑧) 𝑢

𝑗
(𝑧)

𝑘

(∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) V
𝑗
(𝑧)

ℓ

− 1) = 0, (237)

and, for 𝑘 ≤ 𝑎 − 𝑁 + 1, that
𝑁

∑

𝑗=1

𝛼
𝑗
(𝑧) V

𝑗
(𝑧)

𝑘

(∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

ℓ

− 1) = 0. (238)

When limiting the range of 𝑘 to the set {𝑏+𝑁, 𝑏+𝑁+1, . . . , 𝑏+
2𝑁−1} in (237) and to the set {𝑎−2𝑁+1, 𝑎−2𝑁+2, . . . , 𝑎 −

𝑁} in (238), we see that (237) and (238) are homogeneous
Vandermonde systems whose solutions are trivial; that is, the
terms within parentheses in (237) and (238) vanish. Thus, we
get the two systems below:

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 𝑁,

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) V
𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 𝑁.

(239)

It will be convenient to relabel the 𝑢
𝑗
(𝑧)’s and V

𝑗
(𝑧)’s, 1 ≤ 𝑗 ≤

𝑁, as 𝑢
𝑗
(𝑧) = V

𝑗+𝑁
(𝑧) and V

𝑗
(𝑧) = 𝑢

𝑗+𝑁
(𝑧); note that V

𝑗
(𝑧) =

1/𝑢
𝑗
(𝑧) for any 𝑗 ∈ {1, . . . , 2𝑁} and {𝑢

1
(𝑧), . . . , 𝑢

2𝑁
(𝑧)} =

{V
1
(𝑧), . . . , V

2𝑁
(𝑧)}. By using the relabeling 𝑢

𝑗
(𝑧), V

𝑗
(𝑧), 1 ≤

𝑗 ≤ 2𝑁, we obtain the two equivalent following systems of 2𝑁
equations and 2𝑁 unknowns, 𝑢

1
(𝑧), . . . , 𝑢

2𝑁
(𝑧) for the first

one, V
1
(𝑧), . . . , V

2𝑁
(𝑧) for the second one:

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 2𝑁, (240)

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) V
𝑗
(𝑧)

ℓ

= 1, 1 ≤ 𝑗 ≤ 2𝑁. (241)

Systems (240) and (241) are “lacunary” Vandermonde sys-
tems (some powers of 𝑢

𝑗
(𝑧) are missing). For instance, let us

rewrite system (240) as

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

ℓ+𝑁−𝑎−1

= 𝑢
𝑗
(𝑧)

𝑁−𝑎−1

, 1 ≤ 𝑗 ≤ 2𝑁.

(242)

Cramer’s formulae immediately yield (231) at least for 𝑧 ∈

(0, 1/𝑀
1
). By analyticity of the 𝑢

𝑗
’s on (0, 1), it is easily seen

that (231) holds true for 𝑧 ∈ (0, 1). Systems (240) and (241)
will be used in Lemma 42.

A method for computing the determinants exhibited
in Theorem 38 and solving system (242) is proposed in
Appendix A.1. In particular, we can deduce from Proposition
A.3 an alternative representation of E(𝑧𝜎𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

)

which can be seen as the analogous of (124). Set 𝑠
0
(𝑧) = 1

and, for 𝑘, ℓ ∈ {1, . . . , 2𝑁},

𝑠
ℓ
(𝑧) = ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
ℓ
≤2𝑁

𝑢
𝑖
1

(𝑧) ⋅ ⋅ ⋅ 𝑢
𝑖
ℓ

(𝑧) ,

𝑝
𝑘
(𝑧) = ∏

1≤𝑖≤2𝑁

𝑖 ̸= 𝑘

[𝑢
𝑘
(𝑧) − 𝑢

𝑖
(𝑧)] ,

(243)

𝑠
𝑘,0
(𝑧) = 1, 𝑠

𝑘,𝑚
(𝑧) = 0 for any integer𝑚 such that𝑚 ≤ −1 or

𝑚 ≥ 2𝑁 and, for𝑚 ∈ {1, . . . , 2𝑁 − 1},

𝑠
𝑘,𝑚

(𝑧) = ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
𝑚
≤2𝑁

𝑖
1
,...,𝑖
𝑚

̸= 𝑘

𝑢
𝑖
1

(𝑧) ⋅ ⋅ ⋅ 𝑢
𝑖
𝑚

(𝑧) .

(244)

Set also

�̃� (𝑧) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑁
(𝑧) 𝑠

𝑁−1
(𝑧) ⋅ ⋅ ⋅ 𝑠

𝑁−𝑏+𝑎+2
(𝑧)

𝑠
𝑁+1

(𝑧) 𝑠
𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑠

𝑁−𝑏+𝑎+1
(𝑧)

...
...

...
𝑠
𝑁+𝑏−𝑎−2

(𝑧) 𝑠
𝑁+𝑏−𝑎−3

(𝑧) ⋅ ⋅ ⋅ 𝑠
𝑁
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

�̃�
𝑘ℓ
(𝑧) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑘,𝑁

(𝑧) 𝑠
𝑘,𝑁−1

(𝑧) ⋅ ⋅ ⋅ 𝑠
𝑘,𝑁−𝑏+𝑎+1

(𝑧)

𝑠
𝑘,𝑁+1

(𝑧) 𝑠
𝑘,𝑁

(𝑧) ⋅ ⋅ ⋅ 𝑠
𝑘,𝑁−𝑏+𝑎

(𝑧)

...
...

...
𝑠
𝑘,𝑁+𝑏−𝑎−2

(𝑧) 𝑠
𝑘,𝑁+𝑏−𝑎−3

(𝑧) ⋅ ⋅ ⋅ 𝑠
𝑘,𝑁−1

(𝑧)

𝑠
𝑘,𝑁+𝑏−ℓ−1

(𝑧) 𝑠
𝑘,𝑁+𝑏−ℓ−2

(𝑧) ⋅ ⋅ ⋅ 𝑠
𝑘,𝑁+𝑎−ℓ

(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(245)

Then, applying Proposition A.3 with the choices 𝑝 = 𝑟 = 𝑁

and 𝑞 = 𝑏 − 𝑎 − 1 leads, for any ℓ ∈ E, to

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

) =
(−1)

ℓ+𝑁−𝑎−1

�̃� (𝑧)

2𝑁

∑

𝑘=1

�̃�
𝑘ℓ
(𝑧)

𝑝
𝑘
(𝑧)

𝑢
𝑘
(𝑧)

𝑁−𝑎−1

.

(246)

The double generating function defined by

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) = ∑

ℓ∈E

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

) 𝜁
ℓ

(247)

admits an interesting representation by means of interpolat-
ing polynomials that we display in the following theorem.
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Theorem 39. The double generating function of (𝜎
𝑎𝑏
, 𝑆

𝑎𝑏
) is

given, for 𝑧 ∈ (0, 1/𝑀
1
) and 𝜁 ∈ C, by

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) =

2𝑁

∑

𝑘=1

�̃�
𝑘
(𝑧, 𝜁) (V

𝑘
(𝑧) 𝜁)

𝑎−𝑁+1

, (248)

where, for 𝑘 ∈ {1, . . . , 2𝑁}

�̃�
𝑘
(𝑧, 𝜁) =

𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

𝑘−1
(𝑧) , 𝜁, 𝑢

𝑘+1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

.

(249)

The functions 𝜁 󳨃→ �̃�
𝑘
(𝑧, 𝜁) are interpolating polynomials

satisfying �̃�
𝑘
(𝑧, 𝑢

𝑗
(𝑧)) = 𝛿

𝑗𝑘
and can be expressed as

�̃�
𝑘
(𝑧, 𝜁) = 𝑃

𝑘
(𝑧, 𝜁) ∏

1≤𝑗≤2𝑁

𝑗 ̸= 𝑘

𝜁 − 𝑢
𝑗
(𝑧)

𝑢
𝑘
(𝑧) − 𝑢

𝑗
(𝑧)

, (250)

where 𝜁 󳨃→ 𝑃
𝑘
(𝑧, 𝜁) are some polynomials of degree (𝑏 − 𝑎 − 1).

Proof. By (231), we have that

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝑆
𝑎𝑏
≤𝑎,𝜎
𝑎𝑏
<+∞}

)

=

𝑎

∑

ℓ=𝑎−𝑁+1

𝐻
𝑎𝑏,ℓ

(𝑧) 𝜁
ℓ

=

𝑎

∑

ℓ=𝑎−𝑁+1

𝑈
ℓ
(𝑢

1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

𝜁
ℓ

.

(251)

In order to simplify the text, we omit the variable 𝑧. We
expand the determinant 𝑈

ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
), 𝑎 − 𝑁 + 1 ≤ ℓ ≤ 𝑎

with respect to its (ℓ + 𝑁 − 𝑎)th column:

𝑈
ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
)

=

2𝑁

∑

𝑘=1

𝑢
𝑁−𝑎−1

𝑘
𝑈
𝑘ℓ
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

2𝑁
) ,

(252)

where 𝑈
𝑘ℓ
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

2𝑁
), 1 ≤ 𝑘 ≤ 2𝑁, is the

determinant

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

1
0 𝑢

ℓ+𝑁−𝑎

1
⋅ ⋅ ⋅ 𝑢

𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
...

...
...

1 𝑢
𝑘−1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

𝑘−1
0 𝑢

ℓ+𝑁−𝑎

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘−1
𝑢
𝑏−𝑎+𝑁−1

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘−1

1 𝑢
𝑘

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

𝑘
1 𝑢

ℓ+𝑁−𝑎

𝑘
⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘
𝑢
𝑏−𝑎+𝑁−1

𝑘
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘

1 𝑢
𝑘+1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

𝑘+1
0 𝑢

ℓ+𝑁−𝑎

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘+1
𝑢
𝑏−𝑎+𝑁−1

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘+1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

2𝑁
0 𝑢

ℓ+𝑁−𝑎

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(253)

which plainly coincides with

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

1
𝑢
ℓ+𝑁−𝑎−1

1
𝑢
ℓ+𝑁−𝑎

1
⋅ ⋅ ⋅ 𝑢

𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
...

...
...

1 𝑢
𝑘−1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

𝑘−1
𝑢
ℓ+𝑁−𝑎−1

𝑘−1
𝑢
ℓ+𝑁−𝑎

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘−1
𝑢
𝑏−𝑎+𝑁−1

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘−1

0 0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

1 𝑢
𝑘+1

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

𝑘+1
𝑢
ℓ+𝑁−𝑎−1

𝑘+1
𝑢
ℓ+𝑁−𝑎

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘+1
𝑢
𝑏−𝑎+𝑁−1

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘+1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁

⋅ ⋅ ⋅ 𝑢
ℓ+𝑁−𝑎−2

2𝑁
𝑢
ℓ+𝑁−𝑎−1

2𝑁
𝑢
ℓ+𝑁−𝑎

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (254)

Therefore, we obtain that
𝑎

∑

ℓ=𝑎−𝑁+1

𝑈
ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
) 𝜁

ℓ

=

𝑎

∑

ℓ=𝑎−𝑁+1

(

2𝑁

∑

𝑘=1

𝑢
𝑁−𝑎−1

𝑘
𝑈
𝑘ℓ
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

2𝑁
)) 𝜁

ℓ

= 𝜁
𝑎−𝑁+1

×

2𝑁

∑

𝑘=1

(

𝑎

∑

ℓ=𝑎−𝑁+1

𝑈
𝑘ℓ
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

2𝑁
) 𝜁

ℓ+𝑁−𝑎−1

)

× V𝑎−𝑁+1

𝑘
.

(255)
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Next, we can see that the foregoing sumwithin parentheses is
the expansion of the determinant𝐷−

𝑘
(𝑧, 𝜁) belowwith respect

to its 𝑘th row (by putting back the variable 𝑧):
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1
(𝑧)

...
...

...
...

...
1 𝑢

𝑘−1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘−1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

𝑘−1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘−1
(𝑧)

1 𝜁 ⋅ ⋅ ⋅ 𝜁
𝑁−1

0 ⋅ ⋅ ⋅ 0

1 𝑢
𝑘+1

(𝑧) ⋅ ⋅ ⋅ 𝑢
𝑁−1

𝑘+1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

𝑘+1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘+1
(𝑧)

...
...

...
...

...
1 𝑢

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(256)

As a result, by setting
𝐷 (𝑧)

= 𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧))

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1
(𝑧)

...
...

...
...

...
1 𝑢

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(257)
we obtain that

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝑆
𝑎𝑏
≤𝑎,𝜎
𝑎𝑏
<+∞}

) =
1

𝐷 (𝑧)

𝑁

∑

𝑘=1

𝐷
−

𝑘
(𝑧, 𝜁)(V

𝑘
(𝑧) 𝜁)

𝑎−𝑁+1

.

(258)

Similarly, we could check that

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝑆
𝑎𝑏
≥𝑏,𝜎
𝑎𝑏
<+∞}

) =
1

𝐷 (𝑧)

𝑁

∑

𝑘=1

𝐷
+

𝑘
(𝑧, 𝜁)(V

𝑘
(𝑧) 𝜁)

𝑎−𝑁+1

,

(259)

where𝐷+

𝑘
(𝑧, 𝜁) is the determinant

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1
(𝑧)

...
...

...
...

...
1 𝑢

𝑘−1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

𝑘−1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

𝑘−1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘−1
(𝑧)

0 0 ⋅ ⋅ ⋅ 0 𝜁
𝑏−𝑎+𝑁−1

⋅ ⋅ ⋅ 𝜁
𝑏−𝑎+2𝑁−2

1 𝑢
𝑘+1

(𝑧) ⋅ ⋅ ⋅ 𝑢
𝑁−1

𝑘+1
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

𝑘+1
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

𝑘+1
(𝑧)

...
...

...
...

...
1 𝑢

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
(𝑧) 𝑢

𝑏−𝑎+𝑁−1

2𝑁
(𝑧) ⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(260)

By adding (258) and (259) and setting

𝐷
𝑘
(𝑧, 𝜁) = 𝐷

+

𝑘
(𝑧, 𝜁) + 𝐷

−

𝑘
(𝑧, 𝜁)

= 𝑈 (𝑢
1
(𝑧) , . . . , 𝑢

𝑘−1
(𝑧) , 𝜁, 𝑢

𝑘+1
(𝑧) , . . . , 𝑢

2𝑁
(𝑧)) ,

(261)

we obtain that

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) =
1

𝐷 (𝑧)

2𝑁

∑

𝑘=1

𝐷
𝑘
(𝑧, 𝜁) (V

𝑘
(𝑧) 𝜁)

𝑎−𝑁+1

.

(262)

We observe that the polynomials �̃�
𝑘
(𝑧, 𝜁) = 𝐷

𝑘
(𝑧, 𝜁)/𝐷(𝑧)

with respect to the variable 𝜁 are of degree 𝑏 − 𝑎 + 2𝑁 − 2

and satisfy the equalities �̃�
𝑘
(𝑧, 𝑢

𝑗
(𝑧)) = 𝛿

𝑗𝑘
for all 𝑗 ∈ E

and 𝑘 ∈ {1, . . . , 2𝑁}. Hence they can be expressed by means
of the Lagrange fundamental polynomials as displayed in
Theorem 39.

Example 40. For𝑁 = 1, (248) reads

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) = �̃�
1
(𝑧, 𝜁) (V

1
(𝑧) 𝜁)

𝑎

+ �̃�
2
(𝑧, 𝜁) (V

2
(𝑧) 𝜁)

𝑎

,

(263)

where

�̃�
1
(𝑧, 𝜁) =

𝑈 (𝜁, 𝑢
2
(𝑧))

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧))

=
𝑢
2
(𝑧)

𝑏−𝑎

− 𝜁
𝑏−𝑎

𝑢
2
(𝑧)

𝑏−𝑎

− 𝑢
1
(𝑧)

𝑏−𝑎

,

�̃�
2
(𝑧, 𝜁) =

𝑈 (𝑢
1
(𝑧) , 𝜁)

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧))

=
𝜁
𝑏−𝑎

− 𝑢
1
(𝑧)

𝑏−𝑎

𝑢
2
(𝑧)

𝑏−𝑎

− 𝑢
1
(𝑧)

𝑏−𝑎

.

(264)

Since V
1
(𝑧) = 1/𝑢

1
(𝑧) and V

2
(𝑧) = 1/𝑢

2
(𝑧), and also 𝑢

2
(𝑧) =

1/𝑢
1
(𝑧),

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) =
𝑢
2
(𝑧)

𝑏

− 𝑢
1
(𝑧)

𝑏

𝑢
2
(𝑧)

𝑏−𝑎

− 𝑢
1
(𝑧)

𝑏−𝑎

𝜁
𝑎

+
𝑢
2
(𝑧)

𝑎

− 𝑢
1
(𝑧)

𝑎

𝑢
2
(𝑧)

𝑎−𝑏

− 𝑢
1
(𝑧)

𝑎−𝑏

𝜁
𝑏

(265)

fromwhichwe extract thewell-known formulae related to the
case of an ordinary random walk:

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=𝑎,𝜎
𝑎𝑏
<+∞}

) =
𝑢
2
(𝑧)

𝑏

− 𝑢
1
(𝑧)

𝑏

𝑢
2
(𝑧)

𝑏−𝑎

− 𝑢
1
(𝑧)

𝑏−𝑎

,

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=𝑏,𝜎
𝑎𝑏
<+∞}

) =
𝑢
2
(𝑧)

𝑎

− 𝑢
1
(𝑧)

𝑎

𝑢
2
(𝑧)

𝑎−𝑏

− 𝑢
1
(𝑧)

𝑎−𝑏

.

(266)

In particular, if 𝑐 = 1/2 (case of the classical random walk),
by Example 10, we have in the above formulae that

𝑢
1
(𝑧) =

1 − √1 − 𝑧2

𝑧
, 𝑢

2
(𝑧) =

1 + √1 − 𝑧2

𝑧
. (267)

For𝑁 = 2, (248) reads

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

)

= �̃�
1
(𝑧, 𝜁) (V

1
(𝑧) 𝜁)

𝑎−1

+ �̃�
2
(𝑧, 𝜁) (V

2
(𝑧) 𝜁)

𝑎−1

+ �̃�
3
(𝑧, 𝜁) (V

3
(𝑧) 𝜁)

𝑎−1

+ �̃�
4
(𝑧, 𝜁) (V

4
(𝑧) 𝜁)

𝑎−1

,

(268)
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where

�̃�
1
(𝑧, 𝜁) =

𝑈 (𝜁, 𝑢
2
(𝑧) , 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

,

�̃�
2
(𝑧, 𝜁) =

𝑈 (𝑢
1
(𝑧) , 𝜁, 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

,

�̃�
3
(𝑧, 𝜁) =

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝜁, 𝑢

4
(𝑧))

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

,

�̃�
4
(𝑧, 𝜁) =

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝑢

3
(𝑧) , 𝜁)

𝑈 (𝑢
1
(𝑧) , 𝑢

2
(𝑧) , 𝑢

3
(𝑧) , 𝑢

4
(𝑧))

.

(269)

All the polynomials �̃�
𝑘
(𝑧, 𝜁), 1 ≤ 𝑘 ≤ 4, have the form

𝐴
𝑘,𝑎−1

(𝑧) + 𝐴
𝑘,𝑎
(𝑧)𝜁 + 𝐴

𝑘,𝑏
(𝑧)𝜁

𝑏−𝑎+1

+ 𝐴
𝑘,𝑏+1

(𝑧)𝜁
𝑏−𝑎+2.

Remark 41. By expanding the determinant 𝐷
𝑘
(𝑧, 𝜁) with

respect to its 𝑘th raw, we obtain an expansion for the
polynomial �̃�(𝑧, 𝜁) as a linear combination of 1, 𝜁, . . . , 𝜁𝑁−1

,

𝜁
𝑏−𝑎+𝑁−1

, 𝜁
𝑏−𝑎+𝑁

, . . . , 𝜁
𝑏−𝑎+2𝑁−2, that is, an expansion of the

form

�̃�
𝑘
(𝑧, 𝜁) =

𝑁−1

∑

ℓ=0

𝐴
𝑘,ℓ+𝑎−𝑁+1

(𝑧) 𝜁
ℓ

+

𝑏−𝑎+2𝑁−2

∑

ℓ=𝑏−𝑎+𝑁−1

𝐴
𝑘,ℓ+𝑎−𝑁+1

(𝑧) 𝜁
ℓ

= 𝜁
𝑁−𝑎−1

∑

ℓ∈E

𝐴
𝑘ℓ
(𝑧) 𝜁

ℓ

.

(270)

Hence,

E (𝑧
𝜎
𝑎𝑏𝜁

𝑆
𝑎𝑏1

{𝜎
𝑎𝑏
<+∞}

) =

2𝑁

∑

𝑘=1

(∑

ℓ∈E

𝐴
𝑘ℓ
(𝑧) 𝜁

ℓ

) V
𝑘
(𝑧)

𝑎−𝑁+1

= ∑

ℓ∈E

(

2𝑁

∑

𝑘=1

𝐴
𝑘ℓ
(𝑧) V

𝑘
(𝑧)

𝑎−𝑁+1

)𝜁
ℓ

(271)

from which we extract, for any ℓ ∈ E, that

E (𝑧
𝜎
𝑎𝑏1

{𝑆
𝑎𝑏
=ℓ,𝜎
𝑎𝑏
<+∞}

) =

2𝑁

∑

𝑘=1

𝐴
𝑘ℓ
(𝑧) 𝑢

𝑘
(𝑧)

𝑁−𝑎−1

. (272)

Actually, the foregoing sum comes from the quotient
𝑈
ℓ
(𝑢

1
(𝑧), . . . , 𝑢

2𝑁
(𝑧))/𝑈(𝑢

1
(𝑧), . . . , 𝑢

2𝑁
(𝑧)) given by (231)

by expanding the determinant 𝑈
ℓ
(𝑢

1
(𝑧), . . . , 𝑢

2𝑁
(𝑧)) with

respect to the (ℓ + 𝑁 − 𝑎)th column or (ℓ + 𝑁 − 𝑏 + 1)th
column according as the number ℓ satisfies 𝑎−𝑁+1 ≤ ℓ ≤ 𝑎

or 𝑏 ≤ ℓ ≤ 𝑏 + 𝑁 − 1.

4.1.2. Pseudodistribution of 𝑆
𝑎𝑏
. In order to derive the pseu-

dodistribution of 𝑆
𝑎𝑏

which is characterized by the numbers
𝐻

𝑎𝑏,ℓ
(1), ℓ ∈ E, we solve the systems obtained by taking the

limit in (262) as 𝑧 → 1
−.

Lemma 42. The following identities hold: for𝑁 ≤ 𝑘 ≤ 2𝑁−1,

𝑏+𝑁−1

∑

ℓ=𝑏

(
ℓ + 𝑁 − 𝑎 − 1

𝑘
)𝐻

𝑎𝑏,ℓ
(1) = (

𝑁 − 𝑎 − 1

𝑘
) , (273)

𝑎

∑

ℓ=𝑎−𝑁+1

(
𝑏 + 𝑁 − 1 − ℓ

𝑘
)𝐻

𝑎𝑏,ℓ
(1) = (

𝑏 + 𝑁 − 1

𝑘
) . (274)

Proof. By (85), we have the expansion 𝑢
𝑗
(𝑧) = 1+𝜀

𝑗
(𝑧), where

𝜀
𝑗
(𝑧) =

𝑧→1
−

O(
2𝑁

√1 − 𝑧) for any 𝑗 ∈ {1, . . . , 𝑁}. Actually such
asymptotics holds true for any 𝑗 ∈ {1, . . . , 2𝑁} because of the
equality 𝑢

𝑗
= 1/𝑢

𝑗−𝑁
for 𝑗 ∈ {𝑁 + 1, . . . , 2𝑁}. We put this

into systems (240) and (241). For doing this, it is convenient
to rewrite the latter as

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

ℓ+𝑁−𝑎−1

= 𝑢
𝑗
(𝑧)

𝑁−𝑎−1

, 1 ≤ 𝑗 ≤ 2𝑁,

∑

ℓ∈E

𝐻
𝑎𝑏,ℓ

(𝑧) 𝑢
𝑗
(𝑧)

𝑏+𝑁−1−ℓ

= 𝑢
𝑗
(𝑧)

𝑏+𝑁−1

, 1 ≤ 𝑗 ≤ 2𝑁.

(275)

We obtain that

∑

ℓ∈E

(1 + 𝜀
𝑗
(𝑧))

ℓ+𝑁−𝑎−1

𝐻
𝑎𝑏,ℓ

(𝑧)

= (1 + 𝜀
𝑗
(𝑧))

𝑁−𝑎−1

, 1 ≤ 𝑗 ≤ 2𝑁,

(276)

∑

ℓ∈E

(1 + 𝜀
𝑗
(𝑧))

𝑏+𝑁−1−ℓ

𝐻
𝑎𝑏,ℓ

(𝑧)

= (1 + 𝜀
𝑗
(𝑧))

𝑏+𝑁−1

, 1 ≤ 𝑗 ≤ 2𝑁.

(277)

System (276) writes

𝑏−𝑎+2𝑁−2

∑

𝑘=0

( ∑

ℓ∈E:
ℓ≥𝑘+𝑎−𝑁+1

(
ℓ + 𝑁 − 𝑎 − 1

𝑘
)𝐻

𝑎𝑏,ℓ
(𝑧)) 𝜀

𝑗
(𝑧)

𝑘

=

𝑁−𝑎−1

∑

𝑘=0

(
𝑁 − 𝑎 − 1

𝑘
) 𝜀

𝑗
(𝑧)

𝑘

.

(278)

Set

𝑀
𝑘
(𝑧) = ∑

ℓ∈E:
ℓ≥𝑘+𝑎−𝑁+1

(
ℓ + 𝑁 − 𝑎 − 1

𝑘
)𝐻

𝑎𝑏,ℓ
(𝑧) − (

𝑁 − 𝑎 − 1

𝑘
) ,

𝑅
𝑗
(𝑧) = −

𝑏−𝑎+2𝑁−2

∑

𝑘=2𝑁

𝑀
𝑘
(𝑧) 𝜀

𝑗
(𝑧)

𝑘

.

(279)

Then, equality (278) reads

2𝑁−1

∑

𝑘=0

𝑀
𝑘
(𝑧) 𝜀

𝑗
(𝑧)

𝑘

= 𝑅
𝑗
(𝑧) , 1 ≤ 𝑗 ≤ 2𝑁. (280)
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This is a Vandermonde system which can be solved as in the
proof of Lemma 21 upon changing𝑁 into 2𝑁. We can check
that lim

𝑧→1
−𝑀

𝑘
(𝑧) = 0, which entails that

∑

ℓ∈E:
ℓ≥𝑘+𝑎−𝑁+1

(
ℓ + 𝑁 − 𝑎 − 1

𝑘
)𝐻

𝑎𝑏,ℓ
(1)

= (
𝑁 − 𝑎 − 1

𝑘
) , 0 ≤ 𝑘 ≤ 2𝑁 − 1.

(281)

Similarly, using (277), we can prove that

∑

ℓ∈E:
ℓ≤𝑏+𝑁−1−𝑘

(
𝑏 + 𝑁 − ℓ − 1

𝑘
)𝐻

𝑎𝑏,ℓ
(1)

= (
𝑁 + 𝑏 − 1

𝑘
) , 0 ≤ 𝑗 ≤ 2𝑁 − 1.

(282)

Actually, we will only use (281) and (282) restricted to 𝑗 ∈

{𝑁, . . . , 2𝑁 − 1} which immediately yields system (273) and
(274).

Now, we state one of the most important result of this
work. We solve the famous problem of the “gambler’s ruin”
in the context of the pseudorandom walk.

Theorem 43. The pseudodistribution of 𝑆
𝑎𝑏

is given, for ℓ ∈

{0, 1, . . . , 𝑁 − 1}, by

P {𝑆
𝑎𝑏
= 𝑎 − ℓ, 𝜎

𝑎𝑏
< +∞} =

(−1)
ℓ

(𝐾𝑁/ (ℓ − 𝑎)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

,

P {𝑆
𝑎𝑏
= 𝑏 + ℓ, 𝜎

𝑎𝑏
< +∞} =

(−1)
ℓ

(𝐾𝑁/ (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

,

(283)

where

𝐾 = (
𝑁 − 𝑎 − 1

𝑁
)(

𝑁 + 𝑏 − 1

𝑁
)

=
(−1)

𝑁

𝑁!
𝑎 (𝑎 − 1) ⋅ ⋅ ⋅ (𝑎 − 𝑁 + 1) 𝑏 (𝑏 + 1) ⋅ ⋅ ⋅ (𝑏 + 𝑁 − 1) .

(284)

Moreover, P{𝜎
𝑎𝑏
< +∞} = 1 and

P {𝜎
+

𝑏
< 𝜎

−

𝑎
}

= 𝐾𝑁
2

∬
D+
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑏−1(1 − V)𝑁−1 d𝑢 dV,

P {𝜎
−

𝑎
< 𝜎

+

𝑏
}

= 𝐾𝑁
2

∬
D−
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑏−1(1 − V)𝑁−1 d𝑢 dV,

(285)

where

D
+

= {(𝑢, V) ∈ R
2

: 0 ≤ V ≤ 𝑢 ≤ 1} ,

D
−

= {(𝑢, V) ∈ R
2

: 0 ≤ 𝑢 ≤ V ≤ 1} .
(286)

Proof. We have to solve system (273) and (274). For (273), for
instance, the principal matrix and the right-hand side matrix
are

[(
ℓ + 𝑏 − 𝑎 + 𝑁 − 1

𝑘 + 𝑁
)]

0≤𝑘,ℓ≤𝑁−1

, [(
𝑁 − 𝑎 − 1

𝑘 + 𝑁
)]

0≤𝑘≤𝑁−1

(287)

and the matrix form of the solution is given by

[(
ℓ + 𝑏 − 𝑎 + 𝑁 − 1

𝑘 + 𝑁
)]

−1

0≤𝑘,ℓ≤𝑁−1

[(
𝑁 − 𝑎 − 1

𝑘 + 𝑁
)]

0≤𝑘≤𝑁−1

.

(288)

The computation of this product being quite fastidious,
we postponed it to Appendix A.3. The result is given by
Theorem A.8:

[
(−1)

ℓ

(𝐾𝑁/ (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

]

0≤ℓ≤𝑁−1

. (289)

The entries of this matrix provide the pseudo-probabilities
P{𝑆

𝑎𝑏
= 𝑏 + ℓ, 𝜎

𝑎𝑏
< +∞}, 0 ≤ ℓ ≤ 𝑁 − 1, which are

exhibited in Theorem 43. The analogous formula for P{𝑆
𝑎𝑏
=

𝑎 − ℓ, 𝜎
𝑎𝑏
< +∞} holds true in the same way.

Next, by observing that 𝜎
𝑎𝑏
= min(𝜎−

𝑎
, 𝜎

+

𝑏
) and that {𝜎

𝑎𝑏
<

+∞} = {𝜎
−

𝑎
< +∞} ∪ {𝜎

+

𝑏
< +∞}, we have that

P {𝜎
+

𝑏
< 𝜎

−

𝑎
}

= P {𝜎
+

𝑏
< 𝜎

−

𝑎
, 𝜎

𝑎𝑏
< +∞} = P {𝑆

𝑎𝑏
≥ 𝑏, 𝜎

𝑎𝑏
< +∞}

(290)

=

𝑁−1

∑

ℓ=0

P {𝑆
𝑎𝑏
= 𝑏 + ℓ, 𝜎

𝑎𝑏
< +∞}

= 𝐾

𝑁−1

∑

ℓ=0

(−1)
ℓ

(𝑁/ (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

.

(291)

Noticing that 1/(ℓ + 𝑏) = ∫
1

0

𝑦
ℓ+𝑏−1 d𝑦 and 1/ ( ℓ+𝑏−𝑎+𝑁−1

𝑁
) =

𝑁∫
1

0

𝑥
ℓ+𝑏−𝑎−1

(1 − 𝑥)
𝑁−1 d𝑥, we get that

𝑁−1

∑

ℓ=0

(−1)
ℓ

(𝑁/ (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

= 𝑁
2

∫

1

0

∫

1

0

(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (𝑥𝑦)

ℓ

)

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
𝑏−1d𝑥 d𝑦

= 𝑁
2

∫

1

0

∫

1

0

𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
𝑏−1

(1 − 𝑥𝑦)
𝑁−1d𝑥 d𝑦.

(292)
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The computations can be pursued by performing the change
of variables (𝑢, V) = (𝑥, 𝑥𝑦) in the above integral:

𝑁−1

∑

ℓ=0

(−1)
ℓ

(𝑁/ (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

= 𝑁
2

∬
D+
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑏−1(1 − V)𝑁−1d𝑢 dV.

(293)

Putting (293) into (291) yields the expression of P{𝜎+
𝑏
< 𝜎

−

𝑎
}

displayed in Theorem 43. The similar expression for P{𝜎−
𝑎
<

𝜎
+

𝑏
} holds true. Finally,

P {𝜎
𝑎𝑏
< +∞}

= P {𝜎
−

𝑎
< 𝜎

+

𝑏
, 𝜎

𝑎𝑏
< +∞} + P {𝜎

+

𝑏
< 𝜎

−

𝑎
, 𝜎

𝑎𝑏
< +∞}

= P {𝜎
−

𝑎
< 𝜎

+

𝑏
} + P {𝜎

+

𝑏
< 𝜎

−

𝑎
}

= 𝐾𝑁
2

∫

1

0

∫

1

0

𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑏−1(1 − V)𝑁−1d𝑢 dV.

(294)

The foregoing integral is quite elementary:

∫

1

0

∫

1

0

𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑏−1(1 − V)𝑁−1d𝑢 dV

= ∫

1

0

𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1d𝑢∫

1

0

V𝑏−1(1 − V)𝑁−1dV

= 𝐵 (𝑁, −𝑎) 𝐵 (𝑁, 𝑏)

=
1

𝑁2 (
𝑁−𝑎−1

𝑁
) ( 𝑏+𝑁−1

𝑁
)
=

1

𝐾𝑁2
,

(295)

which entails that P{𝜎
𝑎𝑏
< +∞} = 1.

In the sequel, when considering 𝑆
𝑎𝑏
, we will omit the

condition 𝜎
𝑎𝑏
< +∞.

Example 44. Let us have a look on the particular values 1, 2, 3
of𝑁.

(i) Case𝑁 = 1. In this case 𝑆
𝑎𝑏
∈ {𝑎, 𝑏} and

P {𝑆
𝑎𝑏
= 𝑎} = P {𝜎

−

𝑎
< 𝜎

+

𝑏
} =

𝑏

𝑏 − 𝑎
,

P {𝑆
𝑎𝑏
= 𝑏} = P {𝜎

+

𝑏
< 𝜎

−

𝑎
} = −

𝑎

𝑏 − 𝑎
.

(296)

We retrieve one of the most well-known and important
results for the ordinary random walk: this is the famous
problem of the gambler’s ruin!

(ii) Case 𝑁 = 2. In this case, the pseudorandom variables
𝜉
𝑛
, 𝑛 ∈ N∗, have two-valued upward jumps and two-valued

downward jumps. Hence, the exit place must be either 𝑎 − 1,
𝑎, 𝑏 or 𝑏 + 1: 𝑆

𝑎𝑏
∈ {𝑎 − 1, 𝑎, 𝑏, 𝑏 + 1}. We have that

P {𝑆
𝑎𝑏
= 𝑎 − 1} =

𝑎𝑏 (𝑏 + 1)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

P {𝑆
𝑎𝑏
= 𝑎} = −

(𝑎 − 1) 𝑏 (𝑏 + 1)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1)
,

P {𝑆
𝑎𝑏
= 𝑏} =

𝑎 (𝑎 − 1) (𝑏 + 1)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1)
,

P {𝑆
𝑎𝑏
= 𝑏 + 1} = −

𝑎 (𝑎 − 1) 𝑏

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

P {𝜎
−

𝑎
< 𝜎

+

𝑏
} =

𝑏 (𝑏 + 1) (𝑏 − 3𝑎 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

P {𝜎
+

𝑏
< 𝜎

−

𝑎
} =

𝑎 (𝑎 − 1) (3𝑏 − 𝑎 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
.

(297)

We can easily check thatP{𝑆
𝑎𝑏
= 𝑎}+P{𝑆

𝑎𝑏
= 𝑎−1}+P{𝑆

𝑎𝑏
=

𝑏}+P{𝑆
𝑎𝑏
= 𝑏+1} = 1 as well asP{𝜎−

𝑎
< 𝜎

+

𝑏
}+P{𝜎+

𝑏
< 𝜎

−

𝑎
} = 1.

(iii) Case𝑁 = 3. In this case 𝑆
𝑎𝑏
∈ {𝑎−2, 𝑎−1, 𝑎, 𝑏, 𝑏+1, 𝑏+2}

and

P {𝑆
𝑎𝑏
= 𝑎 − 2} =

𝑎 (𝑎 − 1) 𝑏 (𝑏 + 1) (𝑏 + 2)

(𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3) (𝑏 − 𝑎 + 4)
,

P {𝑆
𝑎𝑏
= 𝑎 − 1} = −

𝑎 (𝑎 − 2) 𝑏 (𝑏 + 1) (𝑏 + 2)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3)
,

P {𝑆
𝑎𝑏
= 𝑎} =

(𝑎 − 1) (𝑎 − 2) 𝑏 (𝑏 + 1) (𝑏 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

P {𝑆
𝑎𝑏
= 𝑏} = −

𝑎 (𝑎 − 1) (𝑎 − 2) (𝑏 + 1) (𝑏 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

P {𝑆
𝑎𝑏
= 𝑏 + 1} =

𝑎 (𝑎 − 1) (𝑎 − 2) 𝑏 (𝑏 + 2)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3)
,

P {𝑆
𝑎𝑏
= 𝑏 + 2} = −

𝑎 (𝑎 − 1) (𝑎 − 2) 𝑏 (𝑏 + 1)

(𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3) (𝑏 − 𝑎 + 4)
,

P {𝜎
−

𝑏
< 𝜎

+

𝑎
}

=

𝑏 (𝑏 + 1) (𝑏 + 2) (10𝑎
2

− 5𝑎𝑏 + 𝑏
2

− 25𝑎 + 7𝑏 + 12)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3) (𝑏 − 𝑎 + 4)
,

P {𝜎
+

𝑏
< 𝜎

−

𝑎
}

= −

𝑎 (𝑎 − 1) (𝑎 − 2) (𝑎
2

− 5𝑎𝑏 + 10𝑏
2

− 7𝑎 + 25𝑏 + 12)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2) (𝑏 − 𝑎 + 3) (𝑏 − 𝑎 + 4)
.

(298)

4.1.3. Pseudomoments of 𝑆
𝑎𝑏
. Let us recall the notation we

previously introduced in Section 3.1.3: (𝑖)
𝑛
= 𝑖(𝑖 − 1)(𝑖 −

2) ⋅ ⋅ ⋅ (𝑖 − 𝑛 + 1) for any 𝑖 ∈ Z and any 𝑛 ∈ N∗ and (𝑖)
0
= 1, as

well as the conventions 1/𝑖! = 0 for any negative integer 𝑖 and
∑

𝑗

𝑘=𝑖
= 0 if 𝑖 > 𝑗.
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In this section, we compute several functionals related
to the pseudomoments of 𝑆

𝑎𝑏
. Namely, we provide formulae

for E[𝑆
𝑎𝑏
(𝑆

𝑎𝑏
−𝑏)

𝑛−1
] (Theorem 46), E[(𝑆

𝑎𝑏
)
𝑛

] (Corollary 47),
and E[(𝑆

𝑎𝑏
− 𝑏)

𝑛
] (Theorem 48). This schedule may seem

surprising; actually, we have been able to carry out the
calculations by following this chronology.

Putting the identities 1/ ( ℓ+𝑏−𝑎+𝑁−1

𝑁
) = 𝑁∫

1

0

𝑥
ℓ+𝑏−𝑎−1

(1 −

𝑥)
𝑁−1 d𝑥 and 1/(ℓ + 𝑏) = ∫1

0

𝑦
ℓ+𝑏−1 d𝑦 into the equality

E [𝑓 (𝑆
𝑎𝑏
) 1

{𝑆
𝑎𝑏
≥𝑏}
]

= 𝐾𝑁

𝑁−1

∑

ℓ=0

(−1)
ℓ

(𝑓 (ℓ + 𝑏) / (ℓ + 𝑏)) (
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

,

(299)

we immediately get the following integral representations
for E[𝑓(𝑆

𝑎𝑏
)1

{𝑆
𝑎𝑏
≥𝑏}
], and the analogous ones hold true for

E[𝑓(𝑆
𝑎𝑏
)1

{𝑆
𝑎𝑏
≤𝑎}
].

Theorem 45. For any function 𝑓 defined on E,

E [𝑓 (𝑆
𝑎𝑏
) 1

{𝑆
𝑎𝑏
≥𝑏}
]

= 𝐾𝑁
2

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)
𝑓 (ℓ + 𝑏)

ℓ + 𝑏
𝑥
ℓ

]

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1 d𝑥

(300)

= 𝐾𝑁
2

∫

1

0

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑓 (ℓ + 𝑏) (𝑥𝑦)

ℓ

]

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
𝑏−1d𝑥 d𝑦,

(301)

E [𝑓 (𝑆
𝑎𝑏
) 1

{𝑆
𝑎𝑏
≥𝑎}
]

= 𝐾𝑁
2

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)

𝑓 (𝑎 − ℓ)

ℓ − 𝑎
𝑥
ℓ

]

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1d𝑥

(302)

= 𝐾𝑁
2

∫

1

0

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑓 (𝑎 − ℓ) (𝑥𝑦)

ℓ

]

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
−𝑎−1d𝑥 d𝑦.

(303)

In view of (300) and (302) and in order to compute
the pseudomoments of 𝑆

𝑎𝑏
, it is convenient to introduce the

function𝑓
𝑛
defined by𝑓

𝑛
(𝑖) = 𝑖(𝑖−𝑏)

𝑛−1
for any integers 𝑖 and

𝑛 such that 𝑛 ≥ 1. In particular, 𝑓
1
(𝑖) = 𝑖. We immediately

see that, by choosing 𝑓 = 𝑓
1
in Theorem 45, quantities (300)

and (302) are opposite. As a byproduct, E[𝑆
𝑎𝑏
] = 0. More

generally, we have the results below.

Theorem 46. For any positive integer 𝑛,

E [𝑆
𝑎𝑏
(𝑆

𝑎𝑏
− 𝑏)

𝑛−1
1
{𝑆
𝑎𝑏
≥𝑏}
]

=

{{{

{{{

{

(−1)
𝑛−1

(𝐾𝑁/ (2𝑁 − 𝑛)) (𝑁!/ (𝑁 − 𝑛)!)

( 2𝑁+𝑏−𝑎−2

2𝑁−𝑛
)

if 1 ≤ 𝑛 ≤ 𝑁,
0 if 𝑛 ≥ 𝑁 + 1,

(304)

E [𝑆
𝑎𝑏
(𝑆

𝑎𝑏
− 𝑏)

𝑛−1
1
{𝑆
𝑎𝑏
≤𝑎}
]

=

{{{{{{{{{

{{{{{{{{{

{

(−1)
𝑛

(𝐾𝑁/ (2𝑁 − 𝑛)) (𝑁!/ (𝑁 − 𝑛)!)

( 2𝑁+𝑏−𝑎−2

2𝑁−𝑛
)

if 1 ≤ 𝑛 ≤ 𝑁,
0 if 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 − 1,

(−1)
𝑁+𝑛−1

𝐾𝑁𝑁! (𝑛 − 𝑁 − 1)! (
𝑛 + 𝑏 − 𝑎 − 2

𝑛 − 2𝑁
)

if 𝑛 ≥ 2𝑁.
(305)

In particular, for any 𝑛 ∈ {1, . . . , 2𝑁 − 1},

E [𝑆
𝑎𝑏
(𝑆

𝑎𝑏
− 𝑏)

𝑛−1
] = 0. (306)

Proof. By (300), we get that

E [𝑓
𝑛
(𝑆

𝑎𝑏
) 1

{𝑆
𝑎𝑏
≥𝑏}
]

= 𝐾𝑁
2

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ)

𝑛−1
𝑥
ℓ+𝑏−𝑎−1

]

× (1 − 𝑥)
𝑁−1 d𝑥.

(307)

By noticing that (ℓ)
𝑛−1

= 0 for ℓ ∈ {0, . . . , 𝑛 − 2} and
(
𝑁−1

ℓ
) (ℓ)

𝑛−1
= (

𝑁−𝑛

ℓ−𝑛+1
) (𝑁 − 1)

𝑛−1
for ℓ ≥ 𝑛 − 1, we obtain

that

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ)

𝑛−1
𝑥
ℓ

= (𝑁 − 1)
𝑛−1

1
{1≤𝑛≤𝑁}

𝑁−1

∑

ℓ=𝑛−1

(−1)
ℓ

(
𝑁 − 𝑛

ℓ − 𝑛 + 1
)𝑥

ℓ

= (𝑁 − 1)
𝑛−1

1
{1≤𝑛≤𝑁}

𝑥
𝑛−1

𝑁−𝑛

∑

ℓ=0

(−1)
ℓ+𝑛−1

(
𝑁 − 𝑛

ℓ
)𝑥

ℓ

=
{

{

{

(−1)
𝑛−1

(𝑁 − 1)!

(𝑁 − 𝑛)!
𝑥
𝑛−1

(1 − 𝑥)
𝑁−𝑛 if 1 ≤ 𝑛 ≤ 𝑁,

0 if 𝑛 ≥ 𝑁 + 1.

(308)
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Hence, if 1 ≤ 𝑛 ≤ 𝑁,

E [𝑓
𝑛
(𝑆

𝑎𝑏
) 1

{𝑆
𝑎𝑏
≥𝑏}
]

= (−1)
𝑛−1

𝐾𝑁
2 (𝑁 − 1)!

(𝑁 − 𝑛)!
∫

1

0

𝑥
𝑛+𝑏−𝑎−2

(1 − 𝑥)
2𝑁−𝑛−1 d𝑥

= (−1)
𝑛−1

𝐾𝑁𝑁!

(𝑁 − 𝑛)!

(𝑛 + 𝑏 − 𝑎 − 2)! (2𝑁 − 𝑛 − 1)!

(2𝑁 + 𝑏 − 𝑎 − 2)!

(309)

and we arrive at (304). Moreover, if 𝑛 ≥ 𝑁 + 1 and 𝑆
𝑎𝑏
≥ 𝑏,

we have 𝑆
𝑎𝑏
∈ {𝑏, 𝑏 + 1,. . . , 𝑏 + 𝑁 − 1}. Then, it is clear that

𝑓
𝑛
(𝑆

𝑎𝑏
) = 0 and (304) still holds in this case.

On the other hand, byTheorem 43, we get that

E [𝑓
𝑛
(𝑆

𝑎𝑏
) 1

{𝑆
𝑎𝑏
≤𝑎}
]

=

𝑁−1

∑

ℓ=0

P {𝑆
𝑎𝑏
= 𝑎 − ℓ} 𝑓

𝑛
(𝑎 − ℓ)

= 𝐾𝑁

𝑁−1

∑

ℓ=0

(−1)
ℓ−1

(𝑎 − 𝑏 − ℓ)
𝑛−1

(
𝑁−1

ℓ
)

( ℓ+𝑏−𝑎+𝑁−1

𝑁
)

= (−1)
𝑛

𝐾𝑁𝑁!

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)
(ℓ + 𝑏 − 𝑎 + 𝑛 − 2)!

(ℓ + 𝑏 − 𝑎 + 𝑁 − 1)!
.

(310)

For 𝑛 ≤ 𝑁, we can write that

(ℓ + 𝑏 − 𝑎 + 𝑛 − 2)!

(ℓ + 𝑏 − 𝑎 + 𝑁 − 1)!

=
1

(𝑁 − 𝑛)!

1

(ℓ + 𝑏 − 𝑎 + 𝑁 − 1) (
ℓ+𝑏−𝑎+𝑁−2

𝑁−𝑛
)

=
1

(𝑁 − 𝑛)!
∫

1

0

𝑥
ℓ+𝑛+𝑏−𝑎−2

(1 − 𝑥)
𝑁−𝑛d𝑥.

(311)

Then,

E [𝑓
𝑛
(𝑆

𝑎𝑏
) 1

{𝑆
𝑎𝑏
≤𝑎}
]

= (−1)
𝑛
𝐾𝑁𝑁!

(𝑁 − 𝑛)!

× ∫

1

0

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑥

ℓ+𝑛+𝑏−𝑎−2

(1 − 𝑥)
𝑁−𝑛 d𝑥

= (−1)
𝑛
𝐾𝑁𝑁!

(𝑁 − 𝑛)!
∫

1

0

𝑥
𝑛+𝑏−𝑎−2

(1 − 𝑥)
2𝑁−𝑛−1 d𝑥

= (−1)
𝑛
𝐾𝑁𝑁!

(𝑁 − 𝑛)!
×
(𝑛 + 𝑏 − 𝑎 − 2)! (2𝑁 − 𝑛 − 1)!

(2𝑁 + 𝑏 − 𝑎 − 2)!

(312)

which proves (305). For 𝑛 ≥ 𝑁 + 1, we write instead that

(ℓ + 𝑏 − 𝑎 + 𝑛 − 2)!

(ℓ + 𝑏 − 𝑎 + 𝑁 − 1)!
=

d𝑛−𝑁−1

d𝑥𝑛−𝑁−1
(𝑥

ℓ+𝑛+𝑏−𝑎−2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

. (313)

Therefore,

E [𝑓
𝑛
(𝑆

𝑎𝑏
) 1

{𝑆
𝑎𝑏
≤𝑎}
]

= (−1)
𝑛

𝐾𝑁𝑁!

×
d𝑛−𝑁−1

d𝑥𝑛−𝑁−1
(

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)𝑥

ℓ+𝑛+𝑏−𝑎−2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

= (−1)
𝑛

𝐾𝑁𝑁!
d𝑛−𝑁−1

d𝑥𝑛−𝑁−1
(𝑥

𝑛+𝑏−𝑎−2

(1 − 𝑥)
𝑁−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

.

(314)

If 𝑁 + 1 ≤ 𝑛 ≤ 2𝑁 − 1, the above derivative vanishes
since 1 is a root of multiplicity 𝑁 − 1 of the polynomial
𝑥
ℓ+𝑛+𝑏−𝑎−2

(1−𝑥)
𝑁−1. Finally, for 𝑛 ≥ 2𝑁, we appeal to Leibniz

rule for evaluating the derivative of interest:

d𝑛−𝑁−1

d𝑥𝑛−𝑁−1
(𝑥

𝑛+𝑏−𝑎−2

(1 − 𝑥)
𝑁−1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=

𝑛−𝑁−1

∑

𝑘=0

(−1)
𝑘

(
𝑛 − 𝑁 − 1

𝑘
)

×
(𝑛 + 𝑏 − 𝑎 − 2)!

(𝑘 + 𝑁 + 𝑏 − 𝑎 − 1)!
(𝑁 − 1)

𝑘
𝛿
𝑘,𝑁−1

= (−1)
𝑁−1

(𝑁 − 1)!
(𝑛 + 𝑏 − 𝑎 − 2)!

(2𝑁 + 𝑏 − 𝑎 − 2)!
(
𝑛 − 𝑁 − 1

𝑁 − 1
)

= (−1)
𝑁−1

(𝑛 − 𝑁 − 1)! (
𝑛 + 𝑏 − 𝑎 − 2

𝑛 − 2𝑁
) .

(315)

This proves (305) in this case.

Corollary 47. For 𝑛 ∈ {1, . . . , 2𝑁− 1}, the pseudo-moment of
𝑆
𝑎𝑏
of order 𝑛 vanishes:

E [(𝑆
𝑎𝑏
)
𝑛

] = 0. (316)

Moreover,

E [(𝑆
𝑎𝑏
)
2𝑁

]

= −𝑎 (𝑎 − 1) ⋅ ⋅ ⋅ (𝑎 − 𝑁 + 1) 𝑏 (𝑏 + 1) ⋅ ⋅ ⋅ (𝑏 + 𝑁 − 1) .

(317)

Proof. As in the proof of Theorem 27, we appeal to the
following argument: the polynomial 𝑋𝑛 is a linear combi-
nation of 𝑓

1
(𝑋), . . . , 𝑓

𝑛
(𝑋). Then E[(𝑆

𝑎𝑏
)
𝑛

] can be written
as a linear combination of E[𝑓

1
(𝑆

𝑎𝑏
)], . . . ,E[𝑓

𝑛
(𝑆

𝑎𝑏
)] which

vanish when 1 ≤ 𝑛 ≤ 2𝑁 − 1. Thus, E[(𝑆
𝑎𝑏
)
𝑛

] = 0. The same
argument entails that

E [(𝑆
𝑎𝑏
)
2𝑁

] = E [𝑓
2𝑁
(𝑆

𝑎𝑏
)] = (−1)

𝑁−1

𝐾𝑁!
2 (318)

which proves (317).
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In the following theorem, we provide an integral repre-
sentation for certain factorial pseudomoments of (𝑆

𝑎𝑏
−𝑎) and

(𝑆
𝑎𝑏
− 𝑏) which will be used in the next section.

Theorem 48. For any integer 𝑛 ∈ {0, . . . , 𝑁 − 1},

E [(𝑆
𝑎𝑏
− 𝑏)

𝑛
1
{𝑆
𝑎𝑏
≥𝑏}
]

= (−1)
𝑛

𝐾𝑁
2

(𝑁 − 1)
𝑛

×∬
D+
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑛+𝑏−1(1 − V)𝑁−𝑛−1d𝑢 dV,

(319)

E [(𝑎 − 𝑆
𝑎𝑏
)
𝑛
1
{𝑆
𝑎𝑏
≤𝑎}
]

= (−1)
𝑛

𝐾𝑁
2

(𝑁 − 1)
𝑛

×∬
D−
𝑢
𝑛−𝑎−1

(1 − 𝑢)
𝑁−𝑛−1V𝑏−1(1 − V)𝑁−1d𝑢 dV.

(320)

The above identities can be rewritten as

E [(
𝑆
𝑎𝑏
− 𝑏

𝑛
) 1

{𝑆
𝑎𝑏
≥𝑏}
]

= (−1)
𝑛

𝐾𝑁
2

(
𝑁 − 1

𝑛
)

×∬
D+
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑛+𝑏−1(1 − V)𝑁−𝑛−1d𝑢 dV,

(321)

E [(
𝑎 − 𝑆

𝑎𝑏

𝑛
) 1

{𝑆
𝑎𝑏
≤𝑎}
]

= (−1)
𝑛

𝐾𝑁
2

(
𝑁 − 1

𝑛
)

×∬
D−
𝑢
𝑛−𝑎−1

(1 − 𝑢)
𝑁−𝑛−1V𝑏−1(1 − V)𝑁−1d𝑢 dV.

(322)

Proof. By (301), we have that

E [(𝑆
𝑎𝑏
− 𝑏)

𝑛
1
{𝑆
𝑎𝑏
≥𝑏}
]

= 𝐾𝑁
2

∫

1

0

∫

1

0

[

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ)

𝑛
(𝑥𝑦)

ℓ

]

× 𝑥
𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
𝑏−1d𝑥 d𝑦.

(323)

The sum lying in the above integral can be easily calculated:

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
) (ℓ)

𝑛
(𝑥𝑦)

ℓ

= (𝑁 − 1)
𝑛

𝑁−1

∑

ℓ=𝑛

(−1)
ℓ

(
𝑁 − 𝑛 − 1

ℓ − 𝑛
) (𝑥𝑦)

ℓ

= (−1)
𝑛

(𝑁 − 1)
𝑛
(𝑥𝑦)

𝑛

(1 − 𝑥𝑦)
𝑁−𝑛−1

.

(324)

Hence,

E [(𝑆
𝑎𝑏
− 𝑏)

𝑛
1
{𝑆
𝑎𝑏
≥𝑏}
]

= (−1)
𝑛

(𝑁 − 1)
𝑛
𝐾𝑁

2

× ∫

1

0

∫

1

0

𝑥
𝑛+𝑏−𝑎−1

(1 − 𝑥)
𝑁−1

𝑦
𝑛+𝑏−1

(1 − 𝑥𝑦)
𝑁−𝑛−1d𝑥 d𝑦.

(325)

Performing the change of variables (𝑢, V) = (𝑥, 𝑥𝑦) in the
foregoing integral immediately yields (319). Formula (320)
can be deduced from (303) exactly in the same way.

4.2. Link with High-Order Finite-Difference Equations. Set
Δ
+

𝑓(𝑖) = 𝑓(𝑖 + 1) − 𝑓(𝑖) and Δ−

𝑓(𝑖) = 𝑓(𝑖) − 𝑓(𝑖 − 1) for
any 𝑖 ∈ Z and (Δ+

)
𝑗

= Δ
+

∘ ⋅ ⋅ ⋅ ∘ Δ
+

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 times
and (Δ−

)
𝑗

= Δ
−

∘ ⋅ ⋅ ⋅ ∘ Δ
−

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗 times

for any 𝑗 ∈ N∗. Set also (Δ+

)
0

𝑓 = (Δ
−

)
0

𝑓 = 𝑓. The quantities
(Δ

+

)
𝑗 and (Δ−

)
𝑗 are the iterated forward and backward finite-

difference operators given by

(Δ
+

)
𝑗

𝑓 (𝑖) =

𝑗

∑

𝑘=0

(−1)
𝑗+𝑘

(
𝑗

𝑘
)𝑓 (𝑖 + 𝑘) ,

(Δ
−

)
𝑗

𝑓 (𝑖) =

𝑗

∑

𝑘=0

(−1)
𝑘

(
𝑗

𝑘
)𝑓 (𝑖 − 𝑘) .

(326)

Conversely, 𝑓(𝑖 + 𝑘) and 𝑓(𝑖 − 𝑘) can be expressed by means
of (Δ+

)
𝑗

𝑓(𝑖), (Δ
−

)
𝑗

𝑓(𝑖), 0 ≤ 𝑗 ≤ 𝑘, according to

𝑓 (𝑖 + 𝑘) =

𝑘

∑

𝑗=0

(
𝑘

𝑗
) (Δ

+

)
𝑗

𝑓 (𝑖) ,

𝑓 (𝑖 − 𝑘) =

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑘

𝑗
) (Δ

−

)
𝑗

𝑓 (𝑖) .

(327)

We have the following expression for any functional of the
pseudorandom variable 𝑆

𝑎𝑏
.

Theorem 49. One has, for any function 𝑓 defined on E, that

E [𝑓 (𝑆
𝑎𝑏
)] =

𝑁−1

∑

𝑗=0

𝐼
−

𝑎𝑏,𝑗
(Δ

−

)
𝑗

𝑓 (𝑎) +

𝑁−1

∑

𝑗=0

𝐼
+

𝑎𝑏,𝑗
(Δ

+

)
𝑗

𝑓 (𝑏)

(328)
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with

𝐼
−

𝑎𝑏,𝑗
= 𝐾𝑁

2

(
𝑁 − 1

𝑗
)

×∬
D−
𝑢
𝑗−𝑎−1

(1 − 𝑢)
𝑁−𝑗−1V𝑏−1(1 − V)𝑁−1d𝑢 dV,

𝐼
+

𝑎𝑏,𝑗
= (−1)

𝑗

𝐾𝑁
2

(
𝑁 − 1

𝑗
)

×∬
D+
𝑢
−𝑎−1

(1 − 𝑢)
𝑁−1V𝑗+𝑏−1(1 − V)𝑁−𝑗−1d𝑢 dV.

(329)

Proof. By (327), we see that

E [𝑓 (𝑆
𝑎𝑏
)] = E(1

{𝑆
𝑎𝑏
≤𝑎}

𝑎−𝑆
𝑎𝑏

∑

𝑗=0

(−1)
𝑗

(
𝑎 − 𝑆

𝑎𝑏

𝑗
) (Δ

−

)
𝑗

𝑓 (𝑎))

+ E(1
{𝑆
𝑎𝑏
≥𝑏}

𝑆
𝑎𝑏
−𝑏

∑

𝑗=0

(
𝑆
𝑎𝑏
− 𝑏

𝑗
) (Δ

+

)
𝑗

𝑓 (𝑏))

=

𝑁−1

∑

𝑗=0

(−1)
𝑗

E [1
{𝑆
𝑎𝑏
≤𝑎}

(
𝑎 − 𝑆

𝑎𝑏

𝑗
)] (Δ

−

)
𝑗

𝑓 (𝑎)

+

𝑁−1

∑

𝑗=0

E [1
{𝑆
𝑎𝑏
≥𝑏}
(
𝑆
𝑎𝑏
− 𝑏

𝑗
)] (Δ

+

)
𝑗

𝑓 (𝑏)

(330)

which immediately yields (328) thanks to (321) and (322).

Corollary 50. The generating function of 𝑆
𝑎𝑏
is given by

E (𝜁
𝑆
𝑎𝑏) = 𝜁

𝑎

𝑁−1

∑

𝑗=0

𝐼
−

𝑎𝑏,𝑗
(1 −

1

𝜁
)

𝑗

+ 𝜁
𝑏

𝑁−1

∑

𝑗=0

𝐼
+

𝑎𝑏,𝑗
(𝜁 − 1)

𝑗

. (331)

Proof. Let us apply Theorem 49 to the function 𝑓(𝑖) = 𝜁𝑖 for
which we plainly have (Δ+

)
𝑗

𝑓(𝑖) = 𝜁
𝑖

(𝜁 − 1)
𝑗 and (Δ−

)
𝑗

𝑓(𝑖) =

𝜁
𝑖

(1 − 1/𝜁)
𝑗. This immediately yields (331).

Of special interest is the case when the starting point of
the pseudorandom walk is some point 𝑥 ∈ Z. By translating
𝑎, 𝑏 into 𝑎 − 𝑥, 𝑏 − 𝑥 and the function 𝑓 into the shifted
function 𝑓(⋅ + 𝑥), we have that

E
𝑥
[𝑓 (𝑆

𝑎𝑏
)] = E [𝑓 (𝑥 + 𝑆

𝑎−𝑥,𝑏−𝑥
)]

=

𝑁−1

∑

𝑗=0

𝐼
−

𝑎−𝑥,𝑏−𝑥,𝑗
(Δ

−

)
𝑗

𝑓 (𝑎)

+

𝑁−1

∑

𝑗=0

𝐼
+

𝑎−𝑥,𝑏−𝑥,𝑗
(Δ

+

)
𝑗

𝑓 (𝑏) .

(332)

More precisely, we have the following result.

Theorem 51. One has, for any function 𝑓 defined on E, that

E
𝑥
[𝑓 (𝑆

𝑎𝑏
)] =

𝑁−1

∑

𝑗=0

𝑃
−

𝑎𝑏,𝑗
(𝑥) (Δ

−

)
𝑗

𝑓 (𝑎)

+

𝑁−1

∑

𝑗=0

𝑃
+

𝑎𝑏,𝑗
(𝑥) (Δ

+

)
𝑗

𝑓 (𝑏) ,

(333)

where 𝑃−

𝑎𝑏,𝑗
and 𝑃+

𝑎𝑏,𝑗
, 0 ≤ 𝑗 ≤ 𝑁− 1, are polynomials of degree

not greater than 2𝑁 − 1 characterized, for any 𝑘 ∈ {0, . . . ,

𝑁 − 1}, by

(Δ
−

)
𝑘

𝑃
−

𝑎𝑏,𝑗
(𝑎) = (Δ

+

)
𝑘

𝑃
+

𝑎𝑏,𝑗
(𝑏) = 𝛿

𝑗𝑘
,

(Δ
−

)
𝑘

𝑃
+

𝑎𝑏,𝑗
(𝑎) = (Δ

+

)
𝑘

𝑃
−

𝑎𝑏,𝑗
(𝑏) = 0.

(334)

Proof. By setting 𝑃−

𝑎𝑏,𝑗
(𝑥) = 𝐼

−

𝑎−𝑥,𝑏−𝑥,𝑗
and 𝑃+

𝑎𝑏,𝑗
(𝑥) = 𝐼

+

𝑎−𝑥,𝑏−𝑥,𝑗
,

(330) immediately yields (333). By observing that 𝑃−

𝑎𝑏,𝑗
(𝑥) =

(−1)
𝑗

𝑃
+

𝑎𝑏,𝑗
(𝑎 + 𝑏 − 𝑥), it is enough to work with, for example,

𝑃
+

𝑎𝑏,𝑗
. Coming back to the proof ofTheorem 49 and appealing

to Theorem 43, we write that

𝑃
+

𝑎𝑏,𝑗
(𝑥) = E

𝑥
[1

{𝑆
𝑎𝑏
≥𝑏}
(
𝑆
𝑎𝑏
− 𝑏

𝑗
)]

=

𝑁−1

∑

𝑚=𝑗

(
𝑚

𝑗
)P

𝑥
{𝑆

𝑎𝑏
= 𝑏 + 𝑚}

=
1

(𝑁 − 1)!𝑁!

×

𝑁−1

∑

𝑚=𝑗

(−1)
𝑚

[
(
𝑚

𝑗 ) (
𝑁−1

𝑚
)

(𝑚+𝑏−𝑎+𝑁−1

𝑁
)
] �̃�

𝑚
(𝑥) ,

(335)

where, for any𝑚 ∈ {0, . . . , 𝑁 − 1},

�̃�
𝑚
(𝑥) =

(∏
𝑁−1

𝑘=0
[(𝑥 − 𝑎 + 𝑘) (𝑏 − 𝑥 + 𝑘)])

(𝑏 − 𝑥 + 𝑚)

=

𝑁−1

∏

𝑘=0

(𝑥 − 𝑎 + 𝑘) ∏

0≤𝑘≤𝑁−1

𝑘 ̸=𝑚

(𝑏 − 𝑥 + 𝑘) .

(336)

The expression �̃�
𝑚
(𝑥) defines a polynomial of the variable 𝑥

of degree 2𝑁−1, so 𝑃+

𝑎𝑏,𝑗
is a polynomial of degree not greater

than 2𝑁 − 1.
It is obvious that �̃�

𝑚
(𝑎 − ℓ) = 0 for ℓ,𝑚 ∈ {0, . . . , 𝑁 − 1}.

Then, 𝑃+

𝑎𝑏,𝑗
(𝑎 − ℓ) = 0 which implies that (Δ−

)
𝑘

𝑃
+

𝑎𝑏,𝑗
(𝑎) = 0

for any 𝑘 ∈ {0, . . . , 𝑁 − 1}. Now, let us evaluate 𝑃+

𝑎𝑏,𝑗
(𝑏 + ℓ) for

ℓ ∈ {0, . . . , 𝑁 − 1}. We plainly have that �̃�
𝑚
(𝑏 + ℓ) = 0 for

ℓ ̸=𝑚 and that

�̃�
ℓ
(𝑏 + ℓ) =

(−1)
ℓ

(𝑁 − 1)!𝑁! (
ℓ+𝑏−𝑎+𝑁−1

𝑁
)

(
𝑁−1

ℓ
)

. (337)
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By putting this into (335), we get that

𝑃
+

𝑎𝑏,𝑗
(𝑏 + ℓ) = (

ℓ

𝑗
) 1

{𝑗≤ℓ}
. (338)

Next, we obtain, for any 𝑘 ∈ {0, . . . , 𝑁 − 1}, that

(Δ
+

)
𝑘

𝑃
+

𝑎𝑏,𝑗
(𝑏) =

𝑘

∑

ℓ=0

(−1)
𝑘+ℓ

(
𝑘

ℓ
)𝑃

+

𝑎𝑏,𝑗
(𝑏 + ℓ)

=

𝑘

∑

ℓ=𝑗

(−1)
𝑘+ℓ

(
𝑘

ℓ
)(

ℓ

𝑗
)

= (−1)
𝑗+𝑘

(
𝑘

𝑗
)

𝑘−𝑗

∑

ℓ=0

(−1)
ℓ

(
𝑘 − 𝑗

ℓ
) = 𝛿

𝑗𝑘
.

(339)

The proof of Theorem 51 is finished.

Example 52. In the case where𝑁 = 2, (333) writes as

E
𝑥
[𝑓 (𝑆

𝑎𝑏
)] = 𝑃

−

𝑎𝑏,0
(𝑥) 𝑓 (𝑎) + 𝑃

−

𝑎𝑏,1
(𝑥) Δ

−

𝑓 (𝑎)

+ 𝑃
+

𝑎𝑏,0
(𝑥) 𝑓 (𝑏) + 𝑃

+

𝑎𝑏,1
(𝑥) Δ

+

𝑓 (𝑏)

(340)

with

𝑃
−

𝑎𝑏,0
(𝑥) =

(𝑥 − 𝑏) (𝑥 − 𝑏 − 1) (2𝑥 − 3𝑎 + 𝑏 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

𝑃
−

𝑎𝑏,1
(𝑥) =

(𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 − 𝑏 − 1)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

𝑃
+

𝑎𝑏,0
(𝑥) = −

(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (2𝑥 + 𝑎 − 3𝑏 − 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
,

𝑃
+

𝑎𝑏,1
(𝑥) =

(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (𝑥 − 𝑏)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
.

(341)

Below, we state a strong pseudo-Markov property related
to time 𝜎

𝑎𝑏
.

Theorem 53. One has, for any function 𝑓 defined on Z and
any 𝑛 ∈ N, that

E
𝑥
[𝑓 (𝑆

𝜎
𝑎𝑏
+𝑛
)] =

𝑁−1

∑

𝑗=0

𝑃
−

𝑎𝑏,𝑗
(𝑥) (Δ

−

)
𝑗

E
𝑎
[𝑓 (𝑆

𝑛
)]

+

𝑁−1

∑

𝑗=0

𝑃
+

𝑎𝑏,𝑗
(𝑥) (Δ

+

)
𝑗

E
𝑏
[𝑓 (𝑆

𝑛
)] .

(342)

In (342), the operators (Δ−

)
𝑗 and (Δ+

)
𝑗 act on the variables 𝑎

and 𝑏.

Proof. Formula (342) can be proved exactly in the same
way as (206): by setting 𝑔(𝑥) = E

𝑥
[𝑓(𝑆

𝑛
)], we have that

E
𝑥
[𝑓(𝑆

𝜎
𝑎𝑏
+𝑛
)] = E

𝑥
[𝑔(𝑆

𝑎𝑏
)]. This proves (342) thanks to

(333).

Example 54. Below, we display the form of (342) for the
particular values 1, 2 of𝑁.

(i) For𝑁 = 1, (206) reads as

E
𝑥
[𝑓 (𝑆

𝜎
𝑎𝑏
+𝑛
)] =

𝑏 − 𝑥

𝑏 − 𝑎
E
𝑎
[𝑓 (𝑆

𝑛
)] +

𝑥 − 𝑎

𝑏 − 𝑎
E
𝑏
[𝑓 (𝑆

𝑛
)]

(343)

which is of course well known! This is the strong
Markov property for the ordinary random walk.

(ii) For𝑁 = 2, (206) reads as

E
𝑥
[𝑓 (𝑆

𝜎
𝑎𝑏
+𝑛
)]

=
(𝑥 − 𝑏) (𝑥 − 𝑏 − 1) (2𝑥 − 3𝑎 + 𝑏 + 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
E
𝑎
[𝑓 (𝑆

𝑛
)]

+
(𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 − 𝑏 − 1)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
Δ
−

E
𝑎
[𝑓 (𝑆

𝑛
)]

−
(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (2𝑥 + 𝑎 − 3𝑏 − 2)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
E
𝑏
[𝑓 (𝑆

𝑛
)]

+
(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (𝑥 − 𝑏)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
Δ
+

E
𝑏
[𝑓 (𝑆

𝑛
)]

=
(𝑥 − 𝑎 + 1) (𝑥 − 𝑏) (𝑥 − 𝑏 − 1)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1)
E
𝑎
[𝑓 (𝑆

𝑛
)]

−
(𝑥 − 𝑎) (𝑥 − 𝑏) (𝑥 − 𝑏 − 1)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
E
𝑎−1

[𝑓 (𝑆
𝑛
)]

−
(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (𝑥 − 𝑏 − 1)

(𝑏 − 𝑎) (𝑏 − 𝑎 + 1)
E
𝑏
[𝑓 (𝑆

𝑛
)]

+
(𝑥 − 𝑎) (𝑥 − 𝑎 + 1) (𝑥 − 𝑏)

(𝑏 − 𝑎 + 1) (𝑏 − 𝑎 + 2)
E
𝑏+1

[𝑓 (𝑆
𝑛
)] .

(344)

Now, we consider the discrete Laplacian Δ = Δ
+

∘ Δ
−

=

Δ
−

∘ Δ
+. It is explicitly defined by Δ𝑓(𝑖) = 𝑓(𝑖 + 1) − 2𝑓(𝑖) +

𝑓(𝑖−1). Let us introduce the iterated Laplacian Δ𝑁

= (Δ
+

)
𝑁

∘

(Δ
−

)
𝑁

= (Δ
−

)
𝑁

∘(Δ
+

)
𝑁. We computeΔ𝑁

𝑓(𝑖) for any function
𝑓 and any 𝑖 ∈ Z:

Δ
𝑁

𝑓 (𝑖)

= (Δ
−

)
𝑁

(

𝑁

∑

𝑗=0

(−1)
𝑗+𝑁

(
𝑁

𝑗
)𝑓 (⋅ + 𝑗)) (𝑖)

=

𝑁

∑

𝑗=0

(−1)
𝑗+𝑁

(
𝑁

𝑗
)(

𝑁

∑

𝑘=0

(−1)
𝑘

(
𝑁

𝑘
)𝑓 (𝑖 + 𝑗 − 𝑘))

= (−1)
𝑁

∑

0≤𝑗,𝑘≤𝑁

(−1)
𝑗−𝑘

(
𝑁

𝑗
)(

𝑁

𝑘
)𝑓 (𝑖 + 𝑗 − 𝑘)

= (−1)
𝑁

𝑁

∑

ℓ=−𝑁

(−1)
ℓ

(

(𝑁−ℓ)∧𝑁

∑

𝑘=(−ℓ)∨0

(
𝑁

𝑘
)(

𝑁

𝑘 + ℓ
))𝑓 (𝑖 + ℓ) .

(345)
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By using the elementary identity ∑
𝑝∧ℓ

𝑘=(ℓ−𝑞)∨0
(
𝑝

𝑘
) (

𝑞

ℓ−𝑘
) =

(
𝑝+𝑞

ℓ
), we get that

(𝑁−ℓ)∧𝑁

∑

𝑘=(−ℓ)∨0

(
𝑁

𝑘
)(

𝑁

𝑘 + ℓ
) =

(𝑁−ℓ)∧𝑁

∑

𝑘=(−ℓ)∨0

(
𝑁

𝑘
)(

𝑁

𝑁 − 𝑘 − ℓ
)

= (
2𝑁

ℓ + 𝑁
) .

(346)

As a result, we obtain the expression of Δ𝑁

𝑓(𝑖) announced in
the introduction, namely,

Δ
𝑁

𝑓 (𝑖) =

𝑁

∑

ℓ=−𝑁

(−1)
ℓ+𝑁

(
2𝑁

ℓ + 𝑁
)𝑓 (𝑖 + ℓ) . (347)

Example 55. Fix a nonnegative integer 𝑗 and put 𝑓
𝑗
(𝑖) = (𝑖)

𝑗

for any 𝑖 ∈ Z. It is plain that, if 𝑘 ≤ 𝑗, (Δ+

)
𝑘

𝑓
𝑗
(𝑖) =

(𝑗)
𝑘
𝑓
𝑗−𝑘
(𝑖), (Δ

−

)
𝑘

𝑓
𝑗
(𝑖) = (𝑗)

𝑘
𝑓
𝑗−𝑘
(𝑖 − 1) and if 𝑘 > 𝑗,

(Δ
+

)
𝑘

𝑓
𝑗
(𝑖) = (Δ

−

)
𝑘

𝑓
𝑗
(𝑖) = 0. Therefore, if 2𝑘 ≤ 𝑗, Δ𝑘

𝑓
𝑗
(𝑖) =

(𝑗)
𝑘
(𝑗 − 𝑘)

𝑘
𝑓
𝑗−2𝑘

(𝑖 − 1) and if 2𝑘 > 𝑗, Δ𝑘

𝑓
𝑗
(𝑖) = 0. By

using a linear algebra argument, we deduce that Δ𝑁

𝑃 = 0

for any polynomial 𝑃 of degree not greater than 2𝑁 − 1. As a
byproduct,

Δ
𝑁

𝑃
+

𝑎𝑏,𝑗
= Δ

𝑁

𝑃
−

𝑎𝑏,𝑗
= 0. (348)

Now, themain link between time 𝜎
𝑎𝑏
and finite-difference

equations is the following one.

Theorem 56. Let 𝜑 be a function defined on E. The function
Φ defined on Z by Φ(𝑥) = E

𝑥
[𝜑(𝑆

𝑎𝑏
)] is the solution to the

discrete Lauricella’s problem

Δ
𝑁

Φ (𝑥) = 0 for 𝑥 ∈ Z,

(Δ
−

)
𝑘

Φ (𝑎) = (Δ
−

)
𝑘

𝜑 (𝑎) for 𝑗 ∈ {0, . . . , 𝑁 − 1} ,

(Δ
+

)
𝑘

Φ (𝑏) = (Δ
+

)
𝑘

𝜑 (𝑏) for 𝑗 ∈ {0, . . . , 𝑁 − 1} .

(349)

Proof. By (333) we write that

Φ (𝑥) =

𝑁−1

∑

𝑗=0

𝑃
−

𝑎𝑏,𝑗
(𝑥) (Δ

−

)
𝑗

𝜑 (𝑎) +

𝑁−1

∑

𝑗=0

𝑃
+

𝑎𝑏,𝑗
(𝑥) (Δ

+

)
𝑗

𝜑 (𝑏) .

(350)

With this representation at hand, identities (334) and (348)
immediately yield equations (349).

4.3. Joint Pseudodistribution of (𝜏
𝑎𝑏
, 𝑋

𝑎𝑏
). As in Section 3.3,

we choose for the family ((𝑋𝜀

𝑡
)
𝑡≥0
)
𝜀>0

the pseudoprocesses
defined, for any 𝜀 > 0, by

𝑋
𝜀

𝑡
= 𝜀𝑆

⌊𝑡/𝜀
2𝑁

⌋
, 𝑡 ≥ 0, (351)

and for the pseudoprocess (𝑋
𝑡
)
𝑡≥0

the pseudo-Brownian
motion. In Definition 34, we choose for 𝐼 the interval (𝑎, 𝑏);
then 𝜏𝜀

𝐼
= 𝜏

𝜀

𝑎𝑏
,𝑋𝜀

𝐼
= 𝑋

𝜀

𝑎𝑏
and 𝜏

𝐼
= 𝜏

𝑎𝑏
,𝑋

𝐼
= 𝑋

𝑎𝑏
. Set 𝑎

𝜀
= ⌊𝑎/𝜀⌋

and 𝑏
𝜀
= ⌊𝑏/𝜀⌋, where ⌊⋅⌋ and ⌈⋅⌉, respectively stand for the

usual floor and ceiling functions. We have 𝜏𝜀
𝑎𝑏
= 𝜀

2𝑁

𝜎
𝑎
𝜀
,𝑏
𝜀

and
𝑋

𝜀

𝑎𝑏
= 𝜀𝑆

𝑎
𝜀
,𝑏
𝜀

.

Theorem 57. The following convergence holds:

(𝜏
𝜀

𝑎𝑏
, 𝑋

𝜀

𝑎𝑏
) 󳨀→
𝜀→0
+

(𝜏
𝑎𝑏
, 𝑋

𝑎𝑏
) , (352)

where, for any 𝜆 > 0 and any 𝜇 ∈ R,

E ( e −𝜆𝜏
𝑎𝑏
+𝑖𝜇𝑋
𝑎𝑏1

{𝜏
𝑎𝑏
<+∞}

)

= e𝑖𝜇𝑎
𝑁

∑

𝑘=1

D−

𝑘
(𝜆, 𝜇)

D (𝜆)
+ e𝑖𝜇𝑏

𝑁

∑

𝑘=1

D+

𝑘
(𝜆, 𝜇)

D (𝜆)
.

(353)

In the foregoing formula,D(𝜆),D−

𝑘
(𝜆, 𝜇), andD+

𝑘
(𝜆, 𝜇) are the

respective determinants

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜑
1

⋅ ⋅ ⋅ 𝜑
𝑁−1

1
e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
1

⋅ ⋅ ⋅ e−𝜑1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

1

...
...

...
...

...
...

1 𝜑
2𝑁

⋅ ⋅ ⋅ 𝜑
𝑁−1

2𝑁
e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
2𝑁

⋅ ⋅ ⋅ e−𝜑2𝑁
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜑
1

⋅ ⋅ ⋅ 𝜑
𝑁−1

1
e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
1

⋅ ⋅ ⋅ e−𝜑1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

1

...
...

...
...

...
...

1 𝜑
𝑘−1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘−1
e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘−1

⋅ ⋅ ⋅ e−𝜑𝑘−1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘−1

1 𝛿 ⋅ ⋅ ⋅ 𝛿
𝑁−1

0 0 ⋅ ⋅ ⋅ 0

1 𝜑
𝑘+1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘+1
e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘+1

⋅ ⋅ ⋅ e−𝜑𝑘+1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘+1

...
...

...
...

...
...

1 𝜑
2𝑁

⋅ ⋅ ⋅ 𝜑
𝑁−1

2𝑁
e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
2𝑁

⋅ ⋅ ⋅ e−𝜑2𝑁
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,



36 International Journal of Stochastic Analysis

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜑
1

⋅ ⋅ ⋅ 𝜑
𝑁−1

1
e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
1

⋅ ⋅ ⋅ e−𝜑1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

1

...
...

...
...

...
...

1 𝜑
𝑘−1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘−1
e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘−1

⋅ ⋅ ⋅ e−𝜑𝑘−1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘−1

0 0 ⋅ ⋅ ⋅ 0 1 𝛿 ⋅ ⋅ ⋅ 𝛿
𝑁−1

1 𝜑
𝑘+1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘+1
e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘+1

⋅ ⋅ ⋅ e−𝜑𝑘+1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘+1

...
...

...
...

...
...

1 𝜑
2𝑁

⋅ ⋅ ⋅ 𝜑
𝑁−1

2𝑁
e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
2𝑁

⋅ ⋅ ⋅ e−𝜑2𝑁
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (354)

In the two last determinants, we have put 𝛿 = −𝑖𝜇/ 2𝑁√𝜆/𝑐.

In Theorem 57, we obtain the joint pseudodistribution
of (𝜏

𝑎𝑏
, 𝑋

𝑎𝑏
) characterized by its Laplace-Fourier transform.

This is a new result for pseudo-Brownian motion that we will
develop in a forthcoming paper [14].

Proof. By Definition 34 andTheorem 39, we have that

E (e−𝜆𝜏𝑎𝑏+𝑖𝜇𝑋𝑎𝑏1
{𝜏
𝑎𝑏
<+∞}

)

= lim
𝜀→0
+

E (e−𝜆𝜏
𝜀

𝑎𝑏
+𝑖𝜇𝑋
𝜀

𝑎𝑏1
{𝜏
𝜀

𝑎𝑏
<+∞}

)

= lim
𝜀→0
+

E (e−𝜆𝜀
2𝑁

𝜎
𝑎
𝜀
,𝑏
𝜀

+𝑖𝜇𝜀𝑆
𝑎
𝜀
,𝑏
𝜀1

{𝜎
𝑎
𝜀
,𝑏
𝜀

<+∞}
)

= lim
𝜀→0
+

2𝑁

∑

𝑘=1

�̃�
𝑘
(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) (e𝑖𝜇𝜀V
𝑘
(𝜆, 𝜀))

𝑎
𝜀
−𝑁

= e𝑖𝜇𝑎
2𝑁

∑

𝑘=1

lim
𝜀→0
+

�̃�
𝑘
(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀) V
𝑘
(𝜆, 𝜀)

𝑎
𝜀 .

(355)

Recall that �̃�
𝑘
(𝑧, 𝜁) = 𝐷

𝑘
(𝑧, 𝜁)/𝐷(𝑧) and that the quantities

𝐷 and𝐷
𝑘
are expressed by means of the determinant

𝑈 (𝑢
1
, . . . , 𝑢

2𝑁
) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

𝑢
2

1
⋅ ⋅ ⋅ 𝑢

𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
𝑢
𝑏−𝑎+𝑁

1
𝑢
𝑏−𝑎+𝑁+1

1
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁

𝑢
2

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁

2𝑁
𝑢
𝑏−𝑎+𝑁+1

2𝑁
⋅ ⋅ ⋅ 𝑢

𝑏−𝑎+2𝑁−2

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (356)

By replacing the columns labeled as 𝐶
𝑗
, 1 ≤ 𝑗 ≤ 2𝑁, by the

linear combinations 𝐶󸀠

𝑗
= ∑

𝑗

𝑘=0
(−1)

𝑗+𝑘

(
𝑗

𝑘
) 𝐶

𝑘
if 1 ≤ 𝑗 ≤ 𝑁,

and 𝐶
󸀠

𝑗
= ∑

𝑗

𝑘=𝑁
(−1)

𝑗+𝑘

(
𝑗

𝑘
) 𝐶

𝑘
if 𝑁 + 1 ≤ 𝑗 ≤ 2𝑁, the

foregoing determinant remains invariant and can be rewrit-
ten as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1
− 1 (𝑢

1
− 1)

2

⋅ ⋅ ⋅ (𝑢
1
− 1)

𝑁−1

𝑢
𝑏−𝑎+𝑁−1

1
𝑢
𝑏−𝑎+𝑁−1

1
(𝑢 − 1) 𝑢

𝑏−𝑎+𝑁−1

1
(𝑢 − 1)

2

⋅ ⋅ ⋅ 𝑢
𝑏−𝑎+2𝑁−2

1
(𝑢

1
− 1)

𝑁−1

...
...

...
...

...
...

...
...

1 𝑢
2𝑁
− 1 (𝑢

2𝑁
− 1)

2

⋅ ⋅ ⋅ (𝑢
2𝑁
− 1)

𝑁−1

𝑢
𝑏−𝑎+𝑁−1

2𝑁
𝑢
𝑏−𝑎+𝑁−1

2𝑁
(𝑢 − 1) 𝑢

𝑏−𝑎+𝑁−1

2𝑁
(𝑢 − 1)

2

⋅ ⋅ ⋅ 𝑢
𝑏−𝑎+2𝑁−2

2𝑁
(𝑢

1
− 1)

𝑁−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(357)

Then, by replacing the 𝑢
𝑗
’s by 𝑢

𝑗
(𝜆, 𝜀), 𝑏 − 𝑎 by 𝑏

𝜀
− 𝑎

𝜀
and by

using the asymptotics (𝑢
𝑗
(𝜆, 𝜀)−1)

𝑘

∼
𝜀→0
+

(−𝜑
𝑗

2𝑁

√𝜆/𝑐)
𝑘

𝜀
𝑘 and

𝑢
𝑗
(𝜆, 𝜀)

𝑏
𝜀
−𝑎
𝜀
+𝑁−1

→
𝜀→0
+

e −𝜑
𝑗

2𝑁
√𝜆/𝑐(𝑏−𝑎) coming from (119), we

get that
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𝐷(e−𝜆𝜀
2𝑁

) = 𝑈 (𝑢
1
(𝜆, 𝜀) , . . . , 𝑢

2𝑁
(𝜆, 𝜀))

∼
𝜀→0
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 (−𝜑
1

2𝑁

√
𝜆

𝑐
) 𝜀 ⋅ ⋅ ⋅ (−𝜑

1

2𝑁

√
𝜆

𝑐
)

𝑁−1

𝜀
𝑁−1 e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

...
...

...
...

1 (−𝜑
2𝑁

2𝑁

√
𝜆

𝑐
) 𝜀 ⋅ ⋅ ⋅ (−𝜑

2𝑁

2𝑁

√
𝜆

𝑐
)

𝑁−1

𝜀
𝑁−1 e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

(−𝜑
1

2𝑁

√
𝜆

𝑐
) e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜀 ⋅ ⋅ ⋅ (−𝜑
1

2𝑁

√
𝜆

𝑐
)

𝑁−1

e−𝜑1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜀
𝑁−1

...
...

(−𝜑
2𝑁

2𝑁

√
𝜆

𝑐
) e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜀 ⋅ ⋅ ⋅ (−𝜑
2𝑁

2𝑁

√
𝜆

𝑐
)

𝑁−1

e−𝜑2𝑁
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜀
𝑁−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (
𝜆

𝑐
)

(𝑁−1)/2

𝜀
𝑁(𝑁−1)D (𝜆) .

(358)

Similarly, by using the elementary asymptotics e𝑖𝜇𝜀 − 1 ∼
𝜀→0
+

𝑖𝜇𝜀 and e𝑖𝜇𝜀(𝑏𝜀−𝑎𝜀+𝑁−1)

→
𝜀→0
+

e𝑖𝜇(𝑏−𝑎), we obtain that

e𝑖𝜇𝑎𝐷
𝑘
(e−𝜆𝜀

2𝑁

, e𝑖𝜇𝜀)

= e𝑖𝜇𝑎𝑈(𝑢
1
(𝜆, 𝜀) , . . . , 𝑢

𝑘−1
(𝜆, 𝜀) ,

e𝑖𝜇𝜀, 𝑢
𝑘+1

(𝜆, 𝜀) , . . . , 𝑢
2𝑁
(𝜆, 𝜀))

∼
𝜀→0
+

(
𝜆

𝑐
)

(𝑁−1)/2

𝜀
𝑁(𝑁−1)D

𝑘
(𝜆, 𝜇) ,

(359)

whereD
𝑘
(𝜆, 𝜇) denotes the determinant

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝜑
1

⋅ ⋅ ⋅ 𝜑
𝑁−1

1
e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
1

⋅ ⋅ ⋅ e−𝜑1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

1

...
...

...
...

...
...

1 𝜑
𝑘−1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘−1
e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘−1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘−1

⋅ ⋅ ⋅ e−𝜑𝑘−1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘−1

e𝑖𝜇𝑎 e𝑖𝜇𝑎𝛿 ⋅ ⋅ ⋅ e𝑖𝜇𝑎𝛿𝑁−1 e𝑖𝜇𝑏 e𝑖𝜇𝑏𝛿 ⋅ ⋅ ⋅ e𝑖𝜇𝑏𝛿𝑁−1

1 𝜑
𝑘+1

⋅ ⋅ ⋅ 𝜑
𝑁−1

𝑘+1
e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑𝑘+1

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑘+1

⋅ ⋅ ⋅ e−𝜑𝑘+1
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

𝑘+1

...
...

...
...

...
...

1 𝜑
2𝑁

⋅ ⋅ ⋅ 𝜑
𝑁−1

2𝑁
e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎) e−𝜑2𝑁

2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
2𝑁

⋅ ⋅ ⋅ e−𝜑2𝑁
2𝑁
√𝜆/𝑐(𝑏−𝑎)

𝜑
𝑁−1

2𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (360)

By putting (358) and (359) into (355), we derive that

E (e−𝜆𝜏𝑎𝑏+𝑖𝜇𝑋𝑎𝑏1
{𝜏
𝑎𝑏
<+∞}

) =

2𝑁

∑

𝑘=1

D
𝑘
(𝜆, 𝜇)

D (𝜆)
. (361)

It is plain that D
𝑘
(𝜆, 𝜇) = e𝑖𝜇𝑎D−

𝑘
(𝜆, 𝜇) + e𝑖𝜇𝑏D−

𝑘
(𝜆, 𝜇) which

finishes the proof of Theorem 57.

Theorem 58. The following convergence holds:

𝑋
𝜀

𝑎𝑏
󳨀→
𝜀→0
+

𝑋
𝑎𝑏
, (362)

where, for any 𝜇 ∈ R,

E (e𝑖𝜇𝑋𝑎𝑏1
{𝜏
𝑎𝑏
<+∞}

) = e𝑖𝜇𝑎
𝑁−1

∑

𝑗=0

I−
𝑎𝑏,𝑗
(𝑖𝜇)

𝑗

+ e𝑖𝜇𝑏
𝑁−1

∑

𝑗=0

I+
𝑎𝑏,𝑗
(𝑖𝜇)

𝑗

(363)

with

I−
𝑎𝑏,𝑗

= (
𝑏

𝑏 − 𝑎
)

𝑁

(−𝑎)
𝑗

𝑗!

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

−𝑎

𝑏 − 𝑎
)

𝑘

,

I+
𝑎𝑏,𝑗

= (
−𝑎

𝑏 − 𝑎
)

𝑁
(−𝑏)

𝑗

𝑗!

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑏

𝑏 − 𝑎
)

𝑘

.

(364)
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Moreover,

P {𝜏
𝑎𝑏
< +∞} = 1. (365)

Proof. By Definition 34 and by (331),

E (e𝑖𝜇𝑋𝑎𝑏1
{𝜏
𝑎𝑏
<+∞}

) = lim
𝜀→0
+

E (e𝑖𝜇𝑋
𝜀

𝑎𝑏1
{𝜏
𝜀

𝑎𝑏
<+∞}

)

= lim
𝜀→0
+

E (e𝑖𝜇𝜀𝑆𝑎𝜀,𝑏𝜀1
{𝜎
𝑎
𝜀
,𝑏
𝜀

<+∞}
)

= lim
𝜀→0
+

(e𝑖𝜇𝜀𝑎𝜀
𝑁−1

∑

𝑗=0

𝐼
−

𝑎
𝜀
,𝑏
𝜀
,𝑗
(1 − e−𝑖𝜇𝜀)

𝑗

+ e𝑖𝜇𝜀𝑏𝜀
𝑁−1

∑

𝑗=0

𝐼
+

𝑎
𝜀
,𝑏
𝜀
,𝑗
(e𝑖𝜇𝜀 − 1)

𝑗

)

= e𝑖𝜇𝑎 lim
𝜀→0
+

𝑁−1

∑

𝑗=0

𝐼
−

𝑎
𝜀
,𝑏
𝜀
,𝑗
(1 − e−𝑖𝜇𝜀)

𝑗

+ e𝑖𝜇𝑏 lim
𝜀→0
+

𝑁−1

∑

𝑗=0

𝐼
+

𝑎
𝜀
,𝑏
𝜀
,𝑗
(e𝑖𝜇𝜀 − 1)

𝑗

.

(366)

Concerning, for example, the quantity 𝐼+
𝑎
𝜀
,𝑏
𝜀
,𝑗
, we have that

𝐼
+

𝑎
𝜀
,𝑏
𝜀
,𝑗

=
(−1)

𝑗

(𝑁 − 1) !
2
(
𝑁 − 1

𝑗
)

𝑁−1

∏

𝑘=0

[(𝑘 − 𝑎
𝜀
) (𝑘 + 𝑏

𝜀
)]

×∬
D+
𝑢
−𝑎
𝜀
−1

(1 − 𝑢)
𝑁−1V𝑗+𝑏𝜀−1(1 − V)𝑁−𝑗−1d𝑢 dV.

(367)

By performing the change of variables (𝑢, V) = (𝑥, 𝑥𝑦) in the
above integral and by expanding (1 − 𝑥𝑦)𝑁−𝑗−1 as

(1 − 𝑥𝑦)
𝑁−𝑗−1

= [(1 − 𝑥) + 𝑥 (1 − 𝑦)]
𝑁−𝑗−1

=

𝑁−𝑗−1

∑

𝑘=0

(
𝑁 − 𝑗 − 1

𝑘
) (1 − 𝑥)

𝑘

𝑥
𝑁−𝑗−𝑘−1

(1 − 𝑦)
𝑁−𝑗−𝑘−1

,

(368)

we get that

∬
D+
𝑢
−𝑎
𝜀
−1

(1 − 𝑢)
𝑁−1V𝑗+𝑏𝜀−1(1 − V)𝑁−𝑗−1 d𝑢 dV

= ∫

1

0

∫

1

0

𝑥
𝑗+𝑏
𝜀
−𝑎
𝜀
−1

(1 − 𝑥)
𝑁−1

𝑦
𝑗+𝑏
𝜀
−1

× (1 − 𝑥𝑦)
𝑁−𝑗−1 d𝑥 d𝑦

=

𝑁−𝑗−1

∑

𝑘=0

(
𝑁 − 𝑗 − 1

𝑘
)

× ∫

1

0

𝑥
𝑏
𝜀
−𝑎
𝜀
+𝑁−𝑘−2

(1 − 𝑥)
𝑘+𝑁−1d𝑥

× ∫

1

0

𝑦
𝑗+𝑏
𝜀
−1

(1 − 𝑦)
𝑁−𝑗−𝑘−1d𝑦

=

𝑁−𝑗−1

∑

𝑘=0

(
𝑁 − 𝑗 − 1

𝑘
)

×
(𝑏

𝜀
− 𝑎

𝜀
+ 𝑁 − 𝑘 − 2)! (𝑘 + 𝑁 − 1)!

(𝑏
𝜀
− 𝑎

𝜀
+ 2𝑁 − 2)!

×
(𝑗 + 𝑏

𝜀
− 1)! (𝑁 − 𝑗 − 𝑘 − 1)!

(𝑏
𝜀
+ 𝑁 − 𝑘 − 1)!

=
(𝑁 − 1)! (𝑁 − 𝑗 − 1)! (𝑗 + 𝑏

𝜀
− 1)!

(𝑏
𝜀
− 𝑎

𝜀
+ 2𝑁 − 2)!

×

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)
(𝑏

𝜀
− 𝑎

𝜀
+ 𝑁 − 𝑘 − 2)!

(𝑏
𝜀
+ 𝑁 − 𝑘 − 1)!

.

(369)

By putting the asymptotics

(𝑗 + 𝑏
𝜀
− 1)!

(𝑏
𝜀
+ 𝑁 − 𝑘 − 1)!

=
1

(𝑏
𝜀
+ 𝑁 − 𝑘 − 1)

𝑁−𝑗−𝑘

∼
𝜀→0
+

(
𝜀

𝑏
)

𝑁−𝑗−𝑘

,

(𝑏
𝜀
− 𝑎

𝜀
+ 𝑁 − 𝑘 − 2)!

(𝑏
𝜀
− 𝑎

𝜀
+ 2𝑁 − 2)!

=
1

(𝑏
𝜀
− 𝑎

𝜀
+ 2𝑁 − 2)

𝑁+𝑘

∼
𝜀→0
+

(
𝜀

𝑏 − 𝑎
)

𝑁+𝑘

(370)

into (369), we obtain that

∬
D+
𝑢
−𝑎
𝜀
−1

(1 − 𝑢)
𝑁−1V𝑗+𝑏𝜀−1(1 − V)𝑁−𝑗−1d𝑢 dV

∼
𝜀→0
+

(𝑁 − 1)! (𝑁 − 𝑗 − 1)!

𝑏 𝑁−𝑗
(𝑏 − 𝑎)

𝑁

× 𝜀
2𝑁−𝑗

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑏

𝑏 − 𝑎
)

𝑘

.

(371)

Next, using the asymptotics

𝑁−1

∏

𝑘=0

[(𝑘 − 𝑎
𝜀
) (𝑘 + 𝑏

𝜀
)] ∼

𝜀→0
+

(−1)
𝑁 (𝑎𝑏)

𝑁

𝜀2𝑁
, (372)
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expression (367) admits the following asymptotics:

𝐼
+

𝑎
𝜀
,𝑏
𝜀
,𝑗

∼
𝜀→0
+

(−1)
𝑗+𝑁

𝑏
𝑗

𝑗!𝜀𝑗
(

𝑎

𝑏 − 𝑎
)

𝑁

×

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑏

𝑏 − 𝑎
)

𝑘

.

(373)

Then, we see that the second limit lying in (366) equals

(
−𝑎

𝑏 − 𝑎
)

𝑁 𝑁−1

∑

𝑗=0

(−𝑖𝜇𝑏)
𝑗

𝑗!
[

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑏

𝑏 − 𝑎
)

𝑘

] .

(374)

In the same way, it may be seen that the first term of the sum
lying in (366) tends to

(
𝑏

𝑏 − 𝑎
)

𝑁 𝑁−1

∑

𝑗=0

(−𝑖𝜇𝑎)
𝑗

𝑗!
[

𝑁−𝑗−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

−𝑎

𝑏 − 𝑎
)

𝑘

] .

(375)

As a result, we derive (363).
Finally, let us have a look on the pseudoprobability

P{𝜏
𝑎𝑏
< +∞}. We have that

I−
𝑎𝑏,0

= (
𝑏

𝑏 − 𝑎
)

𝑁 𝑁−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

−𝑎

𝑏 − 𝑎
)

𝑘

=
𝑏
𝑁

(𝑏 − 𝑎)
2𝑁−1

𝑁−1

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
) (−𝑎)

𝑘

(𝑏 − 𝑎)
𝑁−1−𝑘

=
𝑏
𝑁

(𝑏 − 𝑎)
2𝑁−1

∑

0≤𝑘≤𝑁−1

0≤ℓ≤𝑁−1−𝑘

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑁 − 1 − 𝑘

ℓ
)

× (−𝑎)
𝑘+ℓ

𝑏
𝑁−1−𝑘−ℓ

=
1

(𝑏 − 𝑎)
2𝑁−1

𝑁−1

∑

𝑚=0

[

𝑚

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑁 − 1 − 𝑘

𝑚 − 𝑘
)]

× (−𝑎)
𝑚

𝑏
2𝑁−1−𝑚

.

(376)

By using the elementary identity ∑
𝑛

𝑘=0
(
𝑘+𝑝

𝑘
) (

𝑛+𝑞−𝑘

𝑛−𝑘
) =

(
𝑛+𝑝+𝑞+1

𝑛
)which comes from the equality (1+𝑥)−𝑝(1+𝑥)−𝑞 =

(1 + 𝑥)
−𝑝−𝑞 together with the expansion, for example, for 𝑝,

(1 + 𝑥)
−𝑝

= ∑
∞

𝑘=0
(−1)

𝑘

(
𝑘+𝑝−1

𝑘
) 𝑥

𝑘, we get that

𝑚

∑

𝑘=0

(
𝑘 + 𝑁 − 1

𝑘
)(

𝑁 − 1 − 𝑘

𝑚 − 𝑘
) = (

2𝑁 − 1

𝑚
) . (377)

As a byproduct,

I−
𝑎𝑏,0

=
1

(𝑏 − 𝑎)
2𝑁−1

𝑁−1

∑

𝑚=0

(
2𝑁 − 1

𝑚
) (−𝑎)

𝑚

𝑏
2𝑁−1−𝑚

. (378)

Similarly,

I+
𝑎𝑏,0

=
1

(𝑏 − 𝑎)
2𝑁−1

2𝑁−1

∑

𝑚=𝑁

(
2𝑁 − 1

𝑚
) (−𝑎)

𝑚

𝑏
2𝑁−1−𝑚 (379)

and we deduce that

P {𝜏
𝑎𝑏
< +∞} = I−

𝑎𝑏,0
+ I+

𝑎𝑏,0

=
1

(𝑏 − 𝑎)
2𝑁−1

2𝑁−1

∑

𝑚=0

(
2𝑁 − 1

𝑚
) (−𝑎)

𝑚

𝑏
2𝑁−1−𝑚

= 1.

(380)

The proof of Theorem 58 is finished.

Corollary 59. The pseudodensity of 𝑋
𝑎𝑏
is given by

P {𝑋
𝑎𝑏
∈ d𝑧}

d𝑧
=

𝑁−1

∑

𝑗=0

(−1)
𝑗I−

𝑎𝑏,𝑗
𝛿
(𝑗)

𝑎
(𝑧) +

𝑁−1

∑

𝑗=0

(−1)
𝑗I+

𝑎𝑏,𝑗
𝛿
(𝑗)

𝑏
(𝑧) .

(381)

In particular,

P {𝜏
−

𝑎
< 𝜏

+

𝑏
} = I−

𝑎𝑏,0
, P {𝜏

+

𝑏
< 𝜏

−

𝑎
} = I+

𝑎𝑏,0
. (382)

This result has been announced in [13] without any proof.
We will develop it in a forthcoming paper.

Appendix

A.

A.1. Lacunary Vandermonde Systems. Let us introduce the
“lacunary” Vandermonde determinant (of type (𝑝 + 𝑟) × (𝑝 +
𝑟)):

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
1 𝑢

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.1)

We put 𝑠
0
:= 𝑠

0
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) = 1 and, for ℓ ∈ {1, . . . , 𝑝 + 𝑟},

𝑠
ℓ
:= 𝑠

ℓ
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) = ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
ℓ
≤𝑝+𝑟

𝑢
𝑖
1

⋅ ⋅ ⋅ 𝑢
𝑖
ℓ

. (A.2)

We say “lacunary” because it comes from a genuine Vander-
monde determinant where the powers from𝑝 to (𝑝+𝑞−1) are
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missing. More precisely, the determinant 𝑈
𝑝𝑞𝑟
(𝑢

1
, . . .,𝑢

𝑝+𝑟
)

is extracted from the classical Vandermonde determinant
𝑉
𝑝+𝑞+𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑞+𝑟
) of type (𝑝 + 𝑞 + 𝑟) × (𝑝 + 𝑞 + 𝑟) by

removing the 𝑞 last rows and the (𝑝 + 1)st, (𝑝 + 2)nd, . . .,(𝑝 +
𝑞)th columns. We decompose 𝑉

𝑝+𝑞+𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑞+𝑟
) into

blocks as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑝−1

1
𝑢
𝑝

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
...

...
1 𝑢

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑟
𝑢
𝑝

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

1 𝑢
𝑝+𝑟+1

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑝+𝑟+1
𝑢
𝑝

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑟+1
𝑢
𝑝+𝑞

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟+1

...
...

...
...

...
...

...
1 𝑢

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑞+𝑟
𝑢
𝑝

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑞+𝑟
𝑢
𝑝+𝑞

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑞+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (A.3)

By moving the 𝑟 last columns before the 𝑞 previous ones, this
determinant can be rewritten as

(−1)
𝑞𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1
𝑢
𝑝

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

1

...
...

...
...

...
...

...
1 𝑢

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟
𝑢
𝑝

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑟

1 𝑢
𝑝+𝑟+1

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑝+𝑟+1
𝑢
𝑝+𝑞

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟+1
𝑢
𝑝

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑟+1

...
...

...
...

...
...

...
1 𝑢

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑞+𝑟
𝑢
𝑝+𝑞

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑞+𝑟
𝑢
𝑝

𝑝+𝑞+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑞+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (A.4)

By appealing to an expansion by blocks of a deter-
minant, it may be seen that 𝑈

𝑝𝑞𝑟
(𝑢

1
,. . . , 𝑢

𝑝+𝑟
) is the

cofactor of the “south-east” block of the above deter-
minant. Since the product of, for example, the diago-
nal terms of this last block is 𝑢𝑝

𝑝+𝑟+1
𝑢
𝑝+1

𝑝+𝑟+2
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑞+𝑟
, the

determinant 𝑈
𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) is also the coefficient of

𝑢
𝑝

𝑝+𝑟+1
𝑢
𝑝+1

𝑝+𝑟+2
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑞+𝑟
in 𝑉

𝑝+𝑞+𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑞+𝑟
). Now, let us

expand 𝑉
𝑝+𝑞+𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑞+𝑟
):

𝑉
𝑝+𝑞+𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑞+𝑟
) = ∏

1≤𝑖<𝑗≤𝑝+𝑞+𝑟

(𝑢
𝑗
− 𝑢

𝑖
) = ∏

1

∏

2

∏

3

(A.5)
with

∏

1

= ∏

1≤𝑖<𝑗≤𝑝+𝑟

(𝑢
𝑗
− 𝑢

𝑖
) ,

∏

2

= ∏

1≤𝑖≤𝑝+𝑟

𝑝+𝑟+1≤𝑗≤𝑝+𝑞+𝑟

(𝑢
𝑗
− 𝑢

𝑖
) ,

∏

3

= ∏

𝑝+𝑟+1≤𝑖<𝑗≤𝑝+𝑞+𝑟

(𝑢
𝑗
− 𝑢

𝑖
) .

(A.6)

We have that

∏

2

=

𝑝+𝑞+𝑟

∏

𝑗=𝑝+𝑟+1

[(𝑢
𝑗
− 𝑢

1
) ⋅ ⋅ ⋅ (𝑢

𝑗
− 𝑢

𝑝+𝑟
)]

=

𝑝+𝑞+𝑟

∏

𝑗=𝑝+𝑟+1

𝑝+𝑟

∑

𝑘=0

(−1)
𝑝+𝑟−𝑘

𝑠
𝑝+𝑟−𝑘

𝑢
𝑘

𝑗

= ∑

0≤𝑘
1
,...,𝑘
𝑞
≤𝑝+𝑟

(−1)
𝑞(𝑝+𝑟)−𝑘

1
−⋅⋅⋅−𝑘

𝑞

× 𝑠
𝑝+𝑟−𝑘

1

⋅ ⋅ ⋅ 𝑠
𝑝+𝑟−𝑘

𝑞

𝑢
𝑘
1

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑘
𝑞

𝑝+𝑞+𝑟
,

∏

3

= 𝑉
𝑞
(𝑢

𝑝+𝑟+1
, . . . , 𝑢

𝑝+𝑞+𝑟
)

= ∑

𝜍∈S
𝑞

𝜖 (𝜍) 𝑢
𝜍(1)−1

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝜍(𝑞)−1

𝑝+𝑞+𝑟

= ∑

0≤ℓ
1
,...,ℓ
𝑞
≤𝑞−1

ℓ
1
,...,ℓ
𝑞
all different

𝜖 (ℓ
1
. . . , ℓ

𝑞
) 𝑢

ℓ
1

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

ℓ
𝑞

𝑝+𝑞+𝑟
.

(A.7)

The symbol S
𝑞
in the above sum denotes the set of the

permutations of the numbers 1, 2, . . . , 𝑞, 𝜖(𝜍) is the signature
of the permutation 𝜍 and 𝜖(ℓ

1
. . . , ℓ

𝑞
) ∈ {−1, +1} is the

signature of the permutation mapping 1, . . . , 𝑞 into ℓ
1
. . . , ℓ

𝑞
.

The product∏
2
∏

3
is given by

(−1)
𝑞(𝑝+1)

∑

0≤𝑘
1
,...,𝑘
𝑞
≤𝑝+𝑟

0≤ℓ
1
,...,ℓ
𝑞
≤𝑞−1

ℓ
1
,...,ℓ
𝑞
all different

(−1)
𝑘
1
+⋅⋅⋅+𝑘

𝑞𝜖 (ℓ
1
. . . , ℓ

𝑞
)

× 𝑠
𝑝+𝑟−𝑘

1

⋅ ⋅ ⋅ 𝑠
𝑝+𝑟−𝑘

𝑞

𝑢
𝑘
1
+ℓ
1

𝑝+𝑟+1
⋅ ⋅ ⋅ 𝑢

𝑘
𝑞
+ℓ
𝑞

𝑝+𝑞+𝑟
.

(A.8)

For obtaining the coefficient of 𝑢𝑝
𝑝+𝑟+1

𝑢
𝑝+1

𝑝+𝑟+2
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞−1

𝑝+𝑞+𝑟
, we

only keep in the foregoing sum the indices 𝑘
1
, . . . , 𝑘

𝑞
,
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ℓ
1
, . . . , ℓ

𝑞
such that 𝑘

1
+ ℓ

1
= 𝑝, 𝑘

2
+ ℓ

2
= 𝑝 + 1, . . ., 𝑘

𝑞
+ ℓ

𝑞
=

𝑝 + 𝑞 − 1 and 0 ≤ 𝑘
1
, . . . , 𝑘

𝑞
≤ 𝑝 + 𝑟, 0 ≤ ℓ

1
, . . . , ℓ

𝑞
≤ 𝑞 − 1,

the indices ℓ
1
, . . . , ℓ

𝑞
being all distinct. This gives that

∏

2

∏

3

= ∑

for 𝑖∈{1,...,𝑞}:
(𝑖−𝑟−1)∨0≤ℓ

𝑖
≤(𝑝+𝑖−1)∧(𝑞−1)

ℓ
1
,...,ℓ
𝑞
all different

𝜖 (ℓ
1
. . . , ℓ

𝑞
)

× 𝑠
ℓ
1
+𝑟
𝑠
ℓ
2
+𝑟−1

⋅ ⋅ ⋅ 𝑠
ℓ
𝑞
+𝑟−𝑞+1

.

(A.9)

Finally, we can observe that the foregoing sum is nothing but
the expansion of the determinant

S
𝑝𝑞𝑟

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑟

𝑠
𝑟−1

⋅ ⋅ ⋅ 𝑠
𝑟−𝑞+1

𝑠
𝑟+1

𝑠
𝑟

⋅ ⋅ ⋅ 𝑠
𝑟−𝑞+2

...
...

...
𝑠
𝑟+𝑞−1

𝑠
𝑟+𝑞−2

⋅ ⋅ ⋅ 𝑠
𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (A.10)

As a result, we obtain the result below.

Proposition A.1. The determinant 𝑈
𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) admits

the following expression:

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
) = ∏

1≤𝑖<𝑗≤𝑝+𝑟

(𝑢
𝑗
− 𝑢

𝑖
) ×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) 𝑠

𝑟−1
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑟−𝑞+1
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

𝑠
𝑟+1

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
) 𝑠

𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑟−𝑞+2
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

...
...

...
𝑠
𝑟+𝑞−1

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
) 𝑠

𝑟+𝑞−2
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (A.11)

Let now 𝑈
𝑝𝑞𝑟,ℓ

(
𝑢
1
,...,𝑢
𝑝+𝑟

𝛼
1
,...,𝛼
𝑝+𝑟

) be the determinant deduced from
𝑈
𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) by replacing one column by a general

column 𝛼
1
, . . . , 𝛼

𝑝+𝑟
, that is, the determinant given, if 0 ≤ ℓ ≤

𝑝 − 1, by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
ℓ−1

1
𝛼
1

𝑢
ℓ+1

1
⋅ ⋅ ⋅ 𝑢

𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
...

...
...

1 𝑢
𝑝+𝑟

⋅ ⋅ ⋅ 𝑢
ℓ−1

𝑝+𝑟
𝛼
𝑝+𝑟

𝑢
ℓ+1

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(A.12)
and, if 𝑝 + 𝑞 ≤ ℓ ≤ 𝑝 + 𝑞 + 𝑟 − 1, by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

ℓ−1

1
𝛼
1

𝑢
ℓ+1

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
...

...
...

1 𝑢
𝑝+𝑟

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

ℓ−1

𝑝+𝑟
𝛼
𝑝+𝑟

𝑢
ℓ+1

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.13)
We have that

𝑈
𝑝𝑞𝑟,ℓ

(
𝑢
1
, . . . , 𝑢

𝑝+𝑟

𝛼
1
, . . . , 𝛼

𝑝+𝑟

)

=

𝑝+𝑟

∑

𝑘=1

𝛼
𝑘
𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ,

(A.14)

where 𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) is the determinant

given, if 0 ≤ ℓ ≤ 𝑝 − 1, by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
ℓ−1

1
0 𝑢

ℓ+1

1
⋅ ⋅ ⋅ 𝑢

𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
...

...
...

1 𝑢
𝑘−1

⋅ ⋅ ⋅ 𝑢
ℓ−1

𝑘−1
0 𝑢

ℓ+1

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑘−1
𝑢
𝑝+𝑞

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘−1

1 𝑢
𝑘

⋅ ⋅ ⋅ 𝑢
ℓ−1

𝑘
1 𝑢

ℓ+1

𝑘
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑘
𝑢
𝑝+𝑞

𝑘
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘

1 𝑢
𝑘+1

⋅ ⋅ ⋅ 𝑢
ℓ−1

𝑘+1
0 𝑢

ℓ+1

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑘+1
𝑢
𝑝+𝑞

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘+1

...
...

...
...

...
...

...
...

1 𝑢
𝑝+𝑟

⋅ ⋅ ⋅ 𝑢
ℓ−1

𝑝+𝑟
0 𝑢

ℓ+1

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(A.15)

and, if 𝑝 + 𝑞 ≤ ℓ ≤ 𝑝 + 𝑞 + 𝑟 − 1, by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 𝑢
1

⋅ ⋅ ⋅ 𝑢
𝑝−1

1
𝑢
𝑝+𝑞

1
⋅ ⋅ ⋅ 𝑢

ℓ−1

1
0 𝑢

ℓ+1

1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

1

...
...

...
...

...
...

...
...

1 𝑢
𝑘−1

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑘−1
𝑢
𝑝+𝑞

𝑘−1
⋅ ⋅ ⋅ 𝑢

ℓ−1

𝑘−1
0 𝑢

ℓ+1

𝑘−1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘−1

1 𝑢
𝑘

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑘
𝑢
𝑝+𝑞

𝑘
⋅ ⋅ ⋅ 𝑢

ℓ−1

𝑘
1 𝑢

ℓ+1

𝑘
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘

1 𝑢
𝑘+1

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑘+1
𝑢
𝑝+𝑞

𝑘+1
⋅ ⋅ ⋅ 𝑢

ℓ−1

𝑘+1
0 𝑢

ℓ+1

𝑘+1
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑘+1

...
...

...
...

...
...

...
...

1 𝑢
𝑝+𝑟

⋅ ⋅ ⋅ 𝑢
𝑝−1

𝑝+𝑟
𝑢
𝑝+𝑞

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

ℓ−1

𝑝+𝑟
0 𝑢

ℓ+1

𝑝+𝑟
⋅ ⋅ ⋅ 𝑢

𝑝+𝑞+𝑟−1

𝑝+𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.16)

In fact,𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) is the coefficient of

𝑢
ℓ

𝑘
in 𝑈

𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
). Let us introduce 𝑠

𝑘,0
:= 𝑠

𝑘,0
(𝑢

1
, . . . ,

𝑢
𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) = 1, 𝑠

𝑘,𝑚
:= 𝑠

𝑘,𝑚
(𝑢

1
, . . . , 𝑢

𝑘−1
,𝑢

𝑘+1
, . . . ,

𝑢
𝑝+𝑟
) = 0 for any integer 𝑚 such that 𝑚 ≤ −1 or 𝑚 ≥ 𝑝 + 𝑟

and, for𝑚 ∈ {1, . . . , 𝑝 + 𝑟 − 1},

𝑠
𝑘,𝑚

:= 𝑠
𝑘,𝑚

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

= ∑

1≤𝑖
1
<⋅⋅⋅<𝑖
𝑚
≤𝑝+𝑟

𝑖
1
,...,𝑖
𝑚

̸= 𝑘

𝑢
𝑖
1

⋅ ⋅ ⋅ 𝑢
𝑖
𝑚

. (A.17)

We need to isolate 𝑢
𝑘
in∏

1≤𝑖<𝑗≤𝑝+𝑟
(𝑢

𝑗
− 𝑢

𝑖
) and S

𝑝𝑞𝑟
. First,

we write that
∏

1≤𝑖<𝑗≤𝑝+𝑟

(𝑢
𝑗
− 𝑢

𝑖
)

= (−1)
𝑝+𝑟−𝑘

∏

1≤𝑖<𝑗≤𝑝+𝑟

𝑖,𝑗 ̸= 𝑘

(𝑢
𝑗
− 𝑢

𝑖
) × ∏

1≤𝑖≤𝑝+𝑟

𝑗 ̸= 𝑘

(𝑢
𝑘
− 𝑢

𝑖
)

= (−1)
𝑘−1

∏

1≤𝑖<𝑗≤𝑝+𝑟

𝑖,𝑗 ̸= 𝑘

(𝑢
𝑗
− 𝑢

𝑖
)

𝑝+𝑟−1

∑

𝑚=0

(−1)
𝑚

𝑠
𝑘,𝑝+𝑟−𝑚−1

𝑢
𝑚

𝑘
.

(A.18)
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Second, by isolating 𝑢
𝑘
in 𝑠

𝑚
according to 𝑠

𝑚
= 𝑠

𝑘,𝑚
+

𝑢
𝑘
𝑠
𝑘,𝑚−1

, we get that the determinantS
𝑝𝑞𝑟

can be rewritten as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑘,𝑟
+ 𝑢

𝑘
𝑠
𝑘,𝑟−1

𝑠
𝑘,𝑟−1

+ 𝑢
𝑘
𝑠
𝑘,𝑟−2

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟−𝑞+1

+ 𝑢
𝑘
𝑠
𝑘,𝑟−𝑞

𝑠
𝑘,𝑟+1

+ 𝑢
𝑘
𝑠
𝑘,𝑟

𝑠
𝑘,𝑟
+ 𝑢

𝑘
𝑠
𝑘,𝑟−1

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟−𝑞+2

+ 𝑢
𝑘
𝑠
𝑘,𝑟−𝑞+1

...
...

...
𝑠
𝑘,𝑟+𝑞−1

+ 𝑢
𝑘
𝑠
𝑘,𝑟+𝑞−2

𝑠
𝑘,𝑟+𝑞−2

+ 𝑢
𝑘
𝑠
𝑘,𝑟+𝑞−3

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟
+ 𝑢

𝑘
𝑠
𝑘,𝑟−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.19)

By introducing vectors �⃗�
𝑚
with coordinates (𝑠

𝑘,𝑚
, 𝑠

𝑘,𝑚+1
, . . . ,

𝑠
𝑘,𝑚+𝑞−1

) (written as a column), this determinant can be
rewritten as

S
𝑝𝑞𝑟

= det (�⃗�
𝑟
+ 𝑢

𝑘
�⃗�
𝑟−1
, �⃗�

𝑟−1
+ 𝑢

𝑘
�⃗�
𝑟−2
, . . . , �⃗�

𝑟−𝑞+1
+ 𝑢

𝑘
�⃗�
𝑟−𝑞
) .

(A.20)

By appealing to multilinearity, it is easy to see that

S
𝑝𝑞𝑟

=

𝑞

∑

𝑛=0

det (�⃗�
𝑟
, �⃗�

𝑟−1
, . . . , �⃗�

𝑟−𝑞+𝑛+1
, �⃗�

𝑟−𝑞+𝑛−1
, . . . , �⃗�

𝑟−𝑞
) 𝑢

𝑛

𝑘
.

(A.21)

Now, let us multiply the sum lying in (A.18) by (A.21):

(

𝑝+𝑟−1

∑

𝑚=0

(−1)
𝑚

𝑠
𝑘,𝑝+𝑟−𝑚−1

𝑢
𝑚

𝑘
)

× (

𝑞

∑

𝑛=0

det (�⃗�
𝑟
, �⃗�

𝑟−1
, . . . , �⃗�

𝑟−𝑞+𝑛+1
, �⃗�

𝑟−𝑞+𝑛−1
, . . . , �⃗�

𝑟−𝑞
) 𝑢

𝑛

𝑘
)

=

𝑝+𝑞+𝑟−1

∑

ℓ=0

(

(𝑝+𝑟−1)∧ℓ

∑

𝑚=0∨(ℓ−𝑞)

(−1)
𝑚

𝑠
𝑘,𝑝+𝑟−𝑚−1

× det (�⃗�
𝑟
, �⃗�

𝑟−1
, . . . , �⃗�

ℓ+𝑟−𝑞−𝑚+1
,

�⃗�
ℓ+𝑟−𝑞−𝑚−1

, . . . , �⃗�
𝑟−𝑞
))𝑢

ℓ

𝑘
.

(A.22)

Recalling the convention that 𝑠
𝑘,𝑚

= 0 if𝑚 ≤ −1 or𝑚 ≥ 𝑝+𝑟,
the coefficient of 𝑢ℓ

𝑘
in (A.22) can be written as

ℓ

∑

𝑚=ℓ−𝑞

(−1)
𝑚

𝑠
𝑘,𝑝+𝑟−𝑚−1

× det (�⃗�
𝑟
, �⃗�

𝑟−1
, . . . , �⃗�

ℓ+𝑟−𝑞−𝑚+1
, �⃗�

ℓ+𝑟−𝑞−𝑚−1
, . . . , �⃗�

𝑟−𝑞
)

= (−1)
ℓ

𝑞

∑

𝑚=0

(−1)
𝑚+𝑞

𝑠
𝑘,𝑝+𝑞+𝑟−ℓ−𝑚−1

× det (�⃗�
𝑟
, �⃗�

𝑟−1
, . . . , �⃗�

𝑟−𝑚+1
, �⃗�

𝑟−𝑚−1
, . . . , �⃗�

𝑟−𝑞
) .

(A.23)

In this form, we see that the coefficient of 𝑢ℓ
𝑘
in (A.22) is

nothing but the product of (−1)ℓ by the expansion of the
determinant

S
𝑝𝑞𝑟,𝑘ℓ

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑘,𝑟

𝑠
𝑘,𝑟−1

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟−𝑞

𝑠
𝑘,𝑟+1

𝑠
𝑘,𝑟

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟−𝑞+1

...
...

...
𝑠
𝑘,𝑟+𝑞−1

𝑠
𝑘,𝑟+𝑞−2

⋅ ⋅ ⋅ 𝑠
𝑘,𝑟−1

𝑠
𝑘,𝑝+𝑞+𝑟−ℓ−1

𝑠
𝑘,𝑝+𝑞+𝑟−ℓ−2

⋅ ⋅ ⋅ 𝑠
𝑘,𝑝+𝑟−ℓ−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.24)

Proposition A.2. The determinant 𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
,

𝑢
𝑘+1
, . . . , 𝑢

𝑝+𝑟
) admits the following expression:

𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

= (−1)
𝑘+ℓ−1

∏

1≤𝑖<𝑗≤𝑝+𝑟

𝑖,𝑗 ̸= 𝑘

(𝑢
𝑗
− 𝑢

𝑖
)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑘,𝑟
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑘,𝑟−𝑞
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

𝑠
𝑘,𝑟+1

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑘,𝑟−𝑞+1
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

...
...

𝑠
𝑘,𝑟+𝑞−1

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑘,𝑟−1
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

𝑠
𝑘,𝑝+𝑞+𝑟−ℓ−1

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ⋅ ⋅ ⋅ 𝑠

𝑘,𝑝+𝑟−ℓ−1
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(A.25)
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As a consequence of Propositions A.1 and A.2, we get the
result below. Set

𝑝
𝑘
:= 𝑝

𝑘
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) = ∏

1≤𝑖≤𝑝+𝑟

𝑖 ̸= 𝑘

(𝑢
𝑘
− 𝑢

𝑖
) .

(A.26)

Proposition A.3. Let 𝑝, 𝑞, 𝑟 be positive integers, let 𝑢
1
, . . . ,

𝑢
𝑝+𝑟

be distinct complex numbers, and let 𝛼
1
, . . . , 𝛼

𝑝+𝑟
be com-

plex numbers. Set 𝐼 = {0, . . . , 𝑝 − 1}∪ {𝑝+𝑞, . . . , 𝑝 + 𝑞+ 𝑟−1}.
The solution of the system ∑

ℓ∈𝐼
𝑢
ℓ

𝑘
𝑥
ℓ
= 𝛼

𝑘
, 1 ≤ 𝑘 ≤ 𝑝 + 𝑟, or,

more explicitly,

𝑥
0
+ 𝑢

1
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑝−1

1
𝑥
𝑝−1

+ 𝑢
𝑝+𝑞

1
𝑥
𝑝+𝑞

+ ⋅ ⋅ ⋅ + 𝑢
𝑝+𝑞+𝑟−1

1
𝑥
𝑝+𝑞+𝑟−1

= 𝛼
1

...

𝑥
0
+ 𝑢

𝑝+𝑟
𝑥
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑝−1

𝑝+𝑟
𝑥
𝑝−1

+ 𝑢
𝑝+𝑞

𝑝+𝑟
𝑥
𝑝+𝑞

+ ⋅ ⋅ ⋅ + 𝑢
𝑝+𝑞+𝑟−1

𝑝+𝑟
𝑥
𝑝+𝑞+𝑟−1

= 𝛼
𝑝+𝑟

(A.27)

is given by

𝑥
ℓ
=

(−1)
ℓ+𝑝+𝑟−1

S
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)

×

𝑝+𝑟

∑

𝑘=1

𝛼
𝑘

S
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

𝑝
𝑘
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

, ℓ ∈ 𝐼.

(A.28)

Proof. Cramer’s formulae yield that

𝑥
ℓ
=

𝑈
𝑝𝑞𝑟,ℓ

(
𝑢
1
,...,𝑢
𝑝+𝑟

𝛼
1
,...,𝛼
𝑝+𝑟

)

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)

=

𝑝+𝑟

∑

𝑘=1

𝛼
𝑘

𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)

.

(A.29)

By using the factorisations provided by Propositions A.1 and
A.2, namely,

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)

= 𝑉
𝑝+𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
)S

𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

= (−1)
𝑝+𝑟−𝑘

𝑝
𝑘
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
)

× 𝑉
𝑝+𝑟−1

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)S

𝑝𝑞𝑟
(𝑢

1
, . . . , 𝑢

𝑝+𝑟
) ,

𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

= (−1)
𝑘+ℓ−1

𝑉
𝑝+𝑟−1

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

× S
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
) ,

(A.30)

we immediately get (A.28).

A.2. A Combinatoric Identity

Lemma A.4. The following identity holds for any positive
integers 𝛼, 𝛽 , 𝑛:

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)
(𝑘 + 𝛼)!

(𝑘 + 𝛽)!
=

𝛼!

(𝛽 + 𝑛)!
(𝛽 − 𝛼 + 𝑛 − 1)

𝑛
. (A.31)

It can be rewritten as
𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)(

𝑘 + 𝛼

𝑘 + 𝛽
) = (−1)

𝑛

(
𝛼

𝛽 + 𝑛
) if 𝛼 ≥ 𝛽,

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)

(
𝑘+𝛽

𝑘+𝛼
)

=
(𝛽 − 𝛼) / (𝛽 − 𝛼 + 𝑛)

(
𝛽+𝑛

𝛼
)

if 𝛼 < 𝛽.
(A.32)

Proof. Suppose first that 𝛼 ≥ 𝛽. Noticing that

(𝑘 + 𝛼)!

(𝑘 + 𝛽)!
=

d𝛼−𝛽

d𝑥𝛼−𝛽
(𝑥

𝑘+𝛼

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

, (A.33)

we immediately get that
𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)
(𝑘 + 𝛼)!

(𝑘 + 𝛽)!
=

d𝛼−𝛽

d𝑥𝛼−𝛽
(

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)𝑥

𝑘+𝛼

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=
d𝛼−𝛽

d𝑥𝛼−𝛽
(𝑥

𝛼

(1 − 𝑥)
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

.

(A.34)

We expand the last displayed derivative by using Leibniz rule:

d𝛼−𝛽

d𝑥𝛼−𝛽
(𝑥

𝛼

(1 − 𝑥)
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

=

𝛼−𝛽

∑

𝑘=0

(
𝛼 − 𝛽

𝑘
)

d𝛼−𝛽−𝑘

d𝑥𝛼−𝛽−𝑘
(𝑥

𝛼

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

d𝑘

d𝑥𝑘
((1 − 𝑥)

𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

.

(A.35)

Since (d𝑘/d𝑥𝑘)((1 − 𝑥)𝑛)|
𝑥=1

= (−1)
𝑛

𝛿
𝑛𝑘
𝑛!, we have that

(d𝛼−𝛽/d𝑥𝛼−𝛽)(𝑥𝛼(1 − 𝑥)𝑛)|
𝑥=1

= 0 if 𝛼 − 𝛽 < 𝑛, and, if
𝛼 − 𝛽 ≥ 𝑛,

d𝛼−𝛽

d𝑥𝛼−𝛽
(𝑥

𝛼

(1 − 𝑥)
𝑛

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

= (−1)
𝑛

𝑛! (
𝛼 − 𝛽

𝑛
)

d𝛼−𝛽−𝑛

d𝑥𝛼−𝛽−𝑛
(𝑥

𝛼

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=1

= (−1)
𝑛

𝛼! (𝛼 − 𝛽)!

(𝛼 − 𝛽 − 𝑛)! (𝛽 + 𝑛)!

(A.36)

which coincides with the announced result. Second, suppose
that 𝛼 < 𝛽. Noticing that

(𝑘 + 𝛼)!

(𝑘 + 𝛽)!
=

1

(𝛽 − 𝛼 − 1)!
∫

1

0

𝑥
𝑘+𝛼

(1 − 𝑥)
𝛽−𝛼−1d𝑥, (A.37)

we get that
𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)
(𝑘 + 𝛼)!

(𝑘 + 𝛽)!

=
1

(𝛽 − 𝛼 − 1)!
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× ∫

1

0

(

𝑛

∑

𝑘=0

(−1)
𝑘

(
𝑛

𝑘
)𝑥

𝑘

)𝑥
𝛼

(1 − 𝑥)
𝛽−𝛼−1d𝑥

=
1

(𝛽 − 𝛼 − 1)!
∫

1

0

𝑥
𝛼

(1 − 𝑥)
𝛽−𝛼+𝑛−1d𝑥

=
𝛼! (𝛽 − 𝛼 + 𝑛 − 1)!

(𝛽 − 𝛼 − 1)! (𝛽 + 𝑛)!

(A.38)

which coincides with the announced result.

A.3. Some Matrices. Let 𝛼, 𝛽 ∈ N such that 𝛼 > 𝛽 ≥ 𝑁 and
set

A = [(
𝑗 + 𝛼

𝑖 + 𝑁
)]

0≤𝑖,𝑗≤𝑁−1

, B = [(
𝛽

𝑖 + 𝑁
)]

0≤𝑖≤𝑁−1

(A.39)

with the convention of settings ( 𝑖

𝑗
) = 0 if 𝑖 > 𝑗. These

matrices have been used for solving systems (273) and (274)
with the choices 𝛼 = 𝑏−𝑎+𝑁−1 and 𝛽 = 𝑁−𝑎−1. The aim
of this section is to compute the product of the inverse of A
by B, namely, A−1B. For this, we use Gauss elimination. The
result is displayed inTheorem A.8. The calculations are quite
technical, so we perform themprogressively, the intermediate
steps being stated in several lemmas (Lemmas A.4, A.5, A.6,
and A.7).

LemmaA.5. ThematrixA can be decomposed intoA = LU−1,
where the matrices U and L are given by

U = [(−1)
𝑖+𝑗1

{𝑖≤𝑗}
(
𝑗

𝑖
)
(𝑗 + 𝛼)

𝑁

(𝑖 + 𝛼)
𝑁

]

0≤𝑖,𝑗≤𝑁−1

,

L = [1{𝑖≥𝑗} (
𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗

(𝑗 + 𝛼 − 𝑁)
𝑗

]

0≤𝑖,𝑗≤𝑁−1

.

(A.40)

The regular matricesU and L, are respectively, upper and lower
triangular.

Proof. We begin by detailing the algorithm providing the
matrix U. Call C(0)

0
,C(0)

1
, . . . ,C(0)

𝑁−1
the columns of A, that is,

for 𝑗 ∈ {0, . . . , 𝑁 − 1},

C(0)

𝑗
= [(

𝑗 + 𝛼

𝑖 + 𝑁
)]

0≤𝑖≤𝑁−1

. (A.41)

Apply to them, except for C(0)

0
, the transformation defined,

for 𝑗 ∈ {1, . . . , 𝑁 − 1}, by

C(1)

𝑗
= C(0)

𝑗
−

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(0)

𝑗−1
. (A.42)

The C(0)

0
,C(1)

1
, . . . ,C(1)

𝑁−1
are the columns of a new matrix

L
1
. Actually, this transformation corresponds to a matrix

multiplication acting on A: L
1
= AU

1
with

U
1
=

[
[
[
[
[
[
[
[
[
[

[

1 −
𝛼 + 1

𝛼 + 1 − 𝑁
0 0

0 1 −
𝛼 + 2

𝛼 + 2 − 𝑁

...
0 0 1 d 0

...
... d −

𝛼 + 𝑁 − 1

𝛼 − 1
0 0 0 1

]
]
]
]
]
]
]
]
]
]

]

.

(A.43)

Simple computations show that

L
1
= [(𝛿

𝑗0
+ 1

{𝑗≥1}

𝑖

𝑗 + 𝛼 − 𝑁
)(

𝑗 + 𝛼

𝑖 + 𝑁
)]

0≤𝑖,𝑗≤𝑁−1

= [(
𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗∧1

(𝑗 + 𝛼 − 𝑁)
𝑗∧1

]

0≤𝑖,𝑗≤𝑁−1

.

(A.44)

Next, apply the second transformation to the columns of L
1

except for C(0)

0
and C(1)

1
, defined, for 𝑗 ∈ {2, . . . , 𝑁 − 1}, by

C(2)

𝑗
= C(1)

𝑗
−

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(1)

𝑗−1

= C(0)

𝑗
− 2

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(0)

𝑗−1

+
(𝑗 + 𝛼) (𝑗 + 𝛼 − 1)

(𝑗 + 𝛼 − 𝑁) (𝑗 + 𝛼 − 𝑁 − 1)
C(1)

𝑗−2
.

(A.45)

TheC(0)

0
,C(1)

1
,C(2)

2
, . . . ,C(2)

𝑁−1
are the columns of a newmatrix

L
2
= AU

2
, where

U
2
=

[
[
[
[
[
[
[
[
[
[
[
[

[

1 −
𝛼 + 1

𝛼 + 1 − 𝑁

(𝛼 + 2) (𝛼 + 1)

(𝛼 + 2 − 𝑁) (𝛼 + 1 − 𝑁)
0

0 1 −2
𝛼 + 2

𝛼 + 2 − 𝑁
d

...

0 0 1 d
(𝛼 + 𝑁 − 1) (𝛼 + 𝑁 − 2)

(𝛼 − 1) (𝛼 − 2)

...
... d −2

𝛼 + 𝑁 − 1

𝛼 − 1
0 0 0 1

]
]
]
]
]
]
]
]
]
]
]
]

]

. (A.46)
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Straightforward algebra yields that

L
2
= [(𝛿

𝑗0
+

𝑖

𝑗 + 𝛼 − 𝑁
𝛿
𝑗1

+ 1
{𝑗≥2}

𝑖 (𝑖 − 1)

(𝑗 + 𝛼 − 𝑁) (𝑗 + 𝛼 − 𝑁 − 1)
)

× (
𝑗 + 𝛼

𝑖 + 𝑁
)]

0≤𝑖,𝑗≤𝑁−1

= [(
𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗∧2

(𝑗 + 𝛼 − 𝑁)
𝑗∧2

]

0≤𝑖,𝑗≤𝑁−1

.

(A.47)

Thismethod can be recursively extended: apply the 𝑘th trans-
formation (1 ≤ 𝑘 ≤ 𝑁 − 1) defined, for 𝑗 ∈ {𝑘, . . . , 𝑁 − 1}, by

C(𝑘)

𝑗
= C(𝑘−1)

𝑗
−

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(𝑘−1)

𝑗−1

= C(𝑘−2)

𝑗
− 2

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(𝑘−2)

𝑗−1

+
(𝑗 + 𝛼) (𝑗 + 𝛼 − 1)

(𝑗 + 𝛼 − 𝑁) (𝑗 + 𝛼 − 𝑁 − 1)
C(𝑘−2)

𝑗−2

...

= C(0)

𝑗
− (

𝑘

1
)

𝑗 + 𝛼

𝑗 + 𝛼 − 𝑁
C(0)

𝑗−1

+ (
𝑘

2
)

(𝑗 + 𝛼) (𝑗 + 𝛼 − 1)

(𝑗 + 𝛼 − 𝑁) (𝑗 + 𝛼 − 𝑁 − 1)
C(0)

𝑗−2

+ ⋅ ⋅ ⋅ + (−1)
𝑘

(
𝑘

𝑘
)

×
(𝑗 + 𝛼) (𝑗 + 𝛼 − 1) ⋅ ⋅ ⋅ (𝑗 + 𝛼 − 𝑘 + 1)

(𝑗 + 𝛼 − 𝑁) (𝑗 + 𝛼 − 𝑁 −1) ⋅ ⋅ ⋅ (𝑗 + 𝛼 − 𝑘 − 𝑁+ 1)

× C(0)

𝑗−𝑘

=

𝑘

∑

ℓ=0

(−1)
ℓ

(
𝑘

ℓ
)

(𝑗 + 𝛼)
ℓ

(𝑗 + 𝛼 − 𝑁)
ℓ

C(0)

𝑗−ℓ

=

𝑘

∑

ℓ=0

(−1)
ℓ

(
𝑘

ℓ
)

(𝑗 + 𝛼)
𝑁

(𝑗 + 𝛼 − ℓ)
𝑁

C(0)

𝑗−ℓ

=

𝑗

∑

ℓ=𝑗−𝑘

(−1)
𝑗−ℓ

(
𝑘

𝑗 − ℓ
)

(𝑗 + 𝛼)
𝑗−ℓ

(𝑗 + 𝛼 − 𝑁)
𝑗−ℓ

C(0)

ℓ

=

𝑗

∑

ℓ=𝑗−𝑘

(−1)
𝑗−ℓ

(
𝑘

𝑗 − ℓ
)
(𝑗 + 𝛼)

𝑁

(ℓ + 𝛼)
𝑁

C(0)

ℓ
.

(A.48)

In particular,

C(𝑘)

𝑘
=

𝑘

∑

ℓ=0

(−1)
𝑘−ℓ

(
𝑘

ℓ
)
(𝑘 + 𝛼)

𝑁

(ℓ + 𝛼)
𝑁

C(0)

ℓ
. (A.49)

The C(0)

0
,C(1)

1
,C(2)

2
, . . . ,C(𝑘)

𝑘
,C(𝑘)

𝑘+1
, . . . ,C(𝑘)

𝑁−1
are the columns

of the 𝑘th matrix L
𝑘
= AU

𝑘
with U

𝑘
= [U󸀠

𝑘

... U󸀠󸀠

𝑘
], where U󸀠

𝑘

is the matrix

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 −
𝛼 + 1

𝛼 + 1 − 𝑁

(𝛼 + 2) (𝛼 + 1)

(𝛼 + 2 − 𝑁) (𝛼 + 1 − 𝑁)
(−1)

𝑘−1

(
𝑘 − 1

𝑘 − 1
)

(𝛼 + 𝑘 − 1) ⋅ ⋅ ⋅ (𝛼 + 1)

(𝛼 + 𝑘 − 𝑁 − 1) ⋅ ⋅ ⋅ (𝛼 + 1 − 𝑁)

0 1 −2
𝛼 + 2

𝛼 + 2 − 𝑁
d (−1)

𝑘−2

(
𝑘 − 1

𝑘 − 2
)

(𝛼 + 𝑘 − 1) ⋅ ⋅ ⋅ (𝛼 + 2)

(𝛼 + 𝑘 − 𝑁 − 1) ⋅ ⋅ ⋅ (𝛼 + 2 − 𝑁)

0 0 1 d d (−1)
𝑘−3

(
𝑘 − 1

𝑘 − 3
)

(𝛼 + 𝑘 − 1) ⋅ ⋅ ⋅ (𝛼 + 3)

(𝛼 + 𝑘 − 𝑁 − 1) ⋅ ⋅ ⋅ (𝛼 + 3 − 𝑁)

...
... d d d

...
...

... d d (
𝑘 − 1

2
)

(𝛼 + 𝑘 − 1) (𝛼 + 𝑘 − 2)

(𝛼 + 𝑘 − 𝑁 − 1) (𝛼 + 𝑘 − 𝑁 − 2)

...
... d −(

𝑘 − 1

1
)

𝛼 + 𝑘 − 1

𝛼 + 𝑘 − 𝑁 − 1

0 0 (
𝑘 − 1

0
)

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

...
...

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(A.50)

and U󸀠󸀠

𝑘
is the matrix
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(−1)
𝑘

(
𝑘

𝑘
)

(𝛼 + 𝑘) ⋅ ⋅ ⋅ (𝛼 + 1)

(𝛼 + 𝑘 − 𝑁) ⋅ ⋅ ⋅ (𝛼 + 1 − 𝑁)
0 0

... (−1)
𝑘

(
𝑘

𝑘
)

(𝛼 + 𝑘 + 1) ⋅ ⋅ ⋅ (𝛼 + 2)

(𝛼 + 𝑘 − 𝑁 + 1) ⋅ ⋅ ⋅ (𝛼 + 2 − 𝑁)

...

(
𝑘

2
)

(𝛼 + 𝑘) (𝛼 + 𝑘 − 1)

(𝛼 + 𝑘 − 𝑁) (𝛼 + 𝑘 − 𝑁 − 1)

... d 0

− (
𝑘

1
)

𝛼 + 𝑘

𝛼 + 𝑘 − 𝑁
(
𝑘

2
)

(𝛼 + 𝑘 + 1) (𝛼 + 𝑘)

(𝛼 + 𝑘 − 𝑁 + 1) (𝛼 + 𝑘 − 𝑁)
(−1)

𝑘

(
𝑘

𝑘
)
(𝛼 + 𝑁 − 1) ⋅ ⋅ ⋅ (𝛼 + 𝑁 − 𝑘)

(𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘)

(
𝑘

0
) −(

𝑘

1
)

𝛼 + 𝑘 + 1

𝛼 + 𝑘 − 𝑁 + 1
d

...

0 (
𝑘

0
) d (

𝑘

2
)
(𝛼 + 𝑁 − 1) (𝛼 + 𝑁 − 2)

(𝛼 − 1) (𝛼 − 2)

... d −(
𝑘

1
)
𝛼 + 𝑁 − 1

𝛼 − 1

0 (
𝑘

0
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(A.51)

The matrices U󸀠

𝑘
and U󸀠󸀠

𝑘
can be simply written as

U󸀠

𝑘
= [(−1)

𝑗−𝑖1
{𝑖≤𝑗}

(
𝑗

𝑖
)
(𝑗 + 𝛼)

𝑁

(𝑖 + 𝛼)
𝑁

]
0≤𝑖≤𝑁−1

0≤𝑗≤𝑘−1

,

U󸀠󸀠

𝑘
= [(−1)

𝑗−𝑖1
{𝑖∨𝑘≤𝑗≤𝑖+𝑘}

(
𝑘

𝑗 − 𝑖
)
(𝑗 + 𝛼)

𝑁

(𝑖 + 𝛼)
𝑁

]
0≤𝑖≤𝑁−1

𝑘≤𝑗≤𝑁−1

.

(A.52)

Clever algebra yields that

L
𝑘
= [(

𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗∧𝑘

(𝑗 + 𝛼 − 𝑁)
𝑗∧𝑘

]

0≤𝑖,𝑗≤𝑁−1

. (A.53)

We will not prove (A.53); we will only check it below in the
case 𝑘 = 𝑁 − 1.

We progressively arrive at the last transformation which
corresponds to 𝑘 = 𝑁 − 1:

C(𝑁−1)

𝑁−1
= C(0)

𝑁−1
− (

𝑁 − 1

1
)
𝑁 + 𝛼 − 1

𝛼 − 1
C(0)

𝑁−2

+ (
𝑁 − 1

2
)
(𝑁 + 𝛼 − 1) (𝑁 + 𝛼 − 2)

(𝛼 − 1) (𝛼 − 2)
C(0)

𝑁−3

+ (−1)
𝑁−1

(
𝑁 − 1

𝑁 − 1
)

×
(𝑁 + 𝛼 − 1) (𝑁 + 𝛼 − 2) ⋅ ⋅ ⋅ (𝛼 + 1)

(𝛼 − 1) (𝛼 − 2) ⋅ ⋅ ⋅ (𝛼 − 𝑁 + 1)
C(0)

0

=

𝑁−1

∑

ℓ=0

(−1)
ℓ

(
𝑁 − 1

ℓ
)
(𝑁 + 𝛼 − 1)

ℓ

(𝛼 − 1)
ℓ

C(0)

𝑁−1−ℓ

=

𝑁−1

∑

ℓ=0

(−1)
𝑁−1−ℓ

(
𝑁 − 1

ℓ
)

×
(𝑁 + 𝛼 − 1)

𝑁−ℓ−1

(𝛼 − 1)
𝑁−ℓ−1

C(0)

ℓ
.

(A.54)

The C(0)

0
,C(1)

1
,C(2)

2
, . . . ,C(𝑁−1)

𝑁−1
are the columns of the last

matrix given by L
𝑁−1

= AU
𝑁−1

, where

U
𝑁−1

= [(−1)
𝑗−𝑖

(
𝑗

𝑖
)
(𝑗 + 𝛼)

𝑁

(𝑖 + 𝛼)
𝑁

]

0≤𝑖,𝑗≤𝑁−1

. (A.55)

Formula (A.53) gives the following expression for L
𝑁−1

that
will be checked below:

L
𝑁−1

= [(
𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗

(𝑗 + 𝛼 − 𝑁)
𝑗

]

0≤𝑖,𝑗≤𝑁−1

. (A.56)

Hence, by putting L = L
𝑁−1

and U = U
𝑁−1

, we see that L is a
lower triangular matrix and U is an upper triangular matrix
and we have obtained that L = AU.

Finally, we directly check the decomposition L = AU.
The generic term of AU is

𝑗

∑

𝑘=0

(−1)
𝑗+𝑘

(
𝑘 + 𝛼

𝑖 + 𝑁
)(

𝑗

𝑘
)
(𝑗 + 𝛼)

𝑁

(𝑘 + 𝛼)
𝑁

. (A.57)

Observing that

(
𝑘 + 𝛼

𝑖 + 𝑁
)
(𝑗 + 𝛼)

𝑁

(𝑘 + 𝛼)
𝑁

=

( 𝑘+𝛼−𝑁
𝑖

) (
𝑗+𝛼

𝑁
)

(
𝑖+𝑁

𝑁
)

, (A.58)

this term can be rewritten as

(−1)
𝑗

(
𝑗+𝛼

𝑁
)

(
𝑖+𝑁

𝑁
)

×

𝑗

∑

𝑘=0

(−1)
𝑘

(
𝑗

𝑘
)(

𝑘 + 𝛼 − 𝑁

𝑖
) . (A.59)
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The sum ∑
𝑗

𝑘=0
(−1)

𝑘

(
𝑗

𝑘
) ( 𝑘+𝛼−𝑁

𝑖
) can be explicitly evaluated

thanks to Lemma A.4. Its value is (−1)𝑗 ( 𝛼−𝑁

𝑖−𝑗
). Therefore,

we can easily get the generic term of L, and the proof of
Lemma A.5 is finished.

Lemma A.6. The inverse of the matrix L is given by

L−1 = [(−1)𝑖+𝑗1
{𝑖≥𝑗}

(𝑗 + 𝑁)!(𝑖 + 𝛼 − 𝑁)
𝑖+1

𝑗! (𝑖 − 𝑗)!(𝑖 + 𝛼)
𝑗+𝑁+1

]

0≤𝑖,𝑗≤𝑁−1

.

(A.60)

Proof. We simplify the entries of the product

[1{𝑖≥𝑗} (
𝑗 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑗

(𝑗 + 𝛼 − 𝑁)
𝑗

]

0≤𝑖,𝑗≤𝑁−1

× [(−1)
𝑖+𝑗1

{𝑖≥𝑗}

(𝑗 + 𝑁)!(𝑖 + 𝛼 − 𝑁)
𝑖+1

𝑗! (𝑖 − 𝑗)!(𝑖 + 𝛼)
𝑗+𝑁+1

]

0≤𝑖,𝑗≤𝑁−1

.

(A.61)

The generic term of this matrix is

𝑁−1

∑

𝑘=0

1
{𝑖≥𝑘}

(
𝑘 + 𝛼

𝑖 + 𝑁
)

(𝑖)
𝑘

(𝑘 + 𝛼 − 𝑁)
𝑘

× (−1)
𝑗+𝑘1

{𝑘≥𝑗}

(𝑗 + 𝑁)!(𝑘 + 𝛼 − 𝑁)
𝑘+1

𝑗! (𝑘 − 𝑗)!(𝑘 + 𝛼)
𝑗+𝑁+1

= 1
{𝑖≥𝑗}

𝑖! (𝑗 + 𝑁)! (𝛼 − 𝑁)!

𝑗! (𝑖 + 𝑁)! (𝛼 − 𝑁 − 1)!

×

𝑖

∑

𝑘=𝑗

(−1)
𝑗+𝑘

(𝑘 + 𝛼 − 𝑗 − 𝑁 − 1)!

(𝑖 − 𝑘)! (𝑘 − 𝑗)! (𝑘 + 𝛼 − 𝑖 − 𝑁)!
.

(A.62)

The last sum can be computed as follows: clearly, it vanishes
when 𝑖 < 𝑗 and it equals 1 when 𝑖 = 𝑗. If 𝑖 > 𝑗, by using
Lemma A.4,

𝑖

∑

𝑘=𝑗

(−1)
𝑗+𝑘

(𝑘 + 𝛼 − 𝑗 − 𝑁 − 1)!

(𝑖 − 𝑘)! (𝑘 − 𝑗)! (𝑘 + 𝛼 − 𝑖 − 𝑁)!

=
1

(𝑖 − 𝑗)!

𝑖

∑

𝑘=𝑗

(−1)
𝑗+𝑘

(
𝑖 − 𝑗

𝑘 − 𝑗
)
(𝑘 + 𝛼 − 𝑗 − 𝑁 − 1)!

(𝑘 + 𝛼 − 𝑖 − 𝑁)!

=
1

(𝑖 − 𝑗)!

𝑖−𝑗

∑

𝑘=0

(−1)
𝑘

(
𝑖 − 𝑗

𝑘
) (𝑘 + 𝛼 − 𝑁 − 1)

𝑖−𝑗−1
= 0.

(A.63)

As a consequence, the entries of the product (A.61) are 𝛿
𝑖𝑗

which proves that the second factor of (A.61) coincides with
L−1.

Lemma A.7. The matrix L−1B is given by

L−1B = [
(−1)

𝑖

(
𝛽

𝑁
) (

𝑖+𝛼−𝛽−1

𝛼−𝛽−1
)

(
𝑖+𝛼

𝑁
)

]

0≤𝑖≤𝑁−1

. (A.64)

Proof. The generic term of L−1B is

𝑁−1

∑

𝑗=0

(−1)
𝑖+𝑗

1
{𝑖≥𝑗}

(𝑗 + 𝑁)!(𝑖 + 𝛼 − 𝑁)
𝑖+1

𝑗! (𝑖 − 𝑗)!(𝑖 + 𝛼)
𝑗+𝑁+1

(
𝛽

𝑗 + 𝑁
)

=
𝛽! (𝑖 + 𝛼 − 𝑁)!

(𝑖 + 𝛼)! (𝛼 − 𝑁 − 1)!

×

𝑖

∑

𝑗=0

(−1)
𝑖+𝑗

(𝑖 − 𝑗 + 𝛼 − 𝑁 − 1)!

𝑗! (𝑖 − 𝑗)! (𝛽 − 𝑗 − 𝑁)!

=
𝛽! (𝑖 + 𝛼 − 𝑁)! (𝑖 + 𝛼 − 𝛽 − 1)!

𝑖! (𝑖 + 𝛼)! (𝛼 − 𝑁 − 1)!

×

𝑖

∑

𝑗=0

(−1)
𝑖+𝑗

(
𝑖

𝑗
)(

𝑖 − 𝑗 + 𝛼 − 𝑁 − 1

𝑖 + 𝛼 − 𝛽 − 1
) .

(A.65)

By performing the change of index 𝑗 󳨃→ 𝑖 − 𝑗 and by using
Lemma A.4, the sum in (A.65) is equal to

𝑖

∑

𝑗=0

(−1)
𝑗

(
𝑖

𝑗
)(

𝑗 + 𝛼 − 𝑁 − 1

𝑖 + 𝛼 − 𝛽 − 1
) = (−1)

𝑖

(
𝛼 − 𝑁 − 1

𝛽 − 𝑁
)

= (−1)
𝑖 (𝛼 − 𝑁 − 1)!

(𝛼 − 𝛽 − 1)! (𝛽 − 𝑁)!
.

(A.66)

By putting this into (A.65), we see that the generic term of
L−1B writes

(−1)
𝑖
𝛽! (𝑖 + 𝛼 − 𝑁)! (𝑖 + 𝛼 − 𝛽 − 1)!

𝑖! (𝑖 + 𝛼)! (𝛼 − 𝛽 − 1)! (𝛽 − 𝑁)!
=

(−1)
𝑖

(
𝛽

𝑁
) (

𝑖+𝛼−𝛽−1

𝛼−𝛽−1
)

(
𝑖+𝛼

𝑁
)

(A.67)

which ends up the proof of Lemma A.7.

Theorem A.8. The matrix A−1B is given by

A−1B = [(−1)
𝑖

𝑁

𝑖 + 𝛼 − 𝛽

(
𝛽

𝑁
) (

𝛼−𝛽+𝑁−1

𝑁
) (

𝑁−1

𝑖
)

(
𝑖+𝛼

𝑁
)

]

0≤𝑖≤𝑁−1

.

(A.68)

Proof. Referring to Lemmas A.5 and A.7, we have that

A−1B = U (L−1B)

= [
(−1)

𝑖+𝑗1
{𝑖≤𝑗}

(
𝑗

𝑖
) (

𝑗+𝛼

𝑁
)

(
𝑖+𝛼

𝑁
)

]

0≤𝑖,𝑗≤𝑁−1

× [
(−1)

𝑖

(
𝛽

𝑁
) (

𝑖+𝛼−𝛽−1

𝛼−𝛽−1
)

(
𝑖+𝛼

𝑁
)

]

0≤𝑖≤𝑁−1

.

(A.69)

The generic term of A−1B is

(−1)
𝑖

(
𝛽

𝑁
)

(
𝑖+𝛼

𝑁
)

𝑁−1

∑

𝑗=𝑖

(
𝑗

𝑖
)(

𝑗 + 𝛼 − 𝛽 − 1

𝛼 − 𝛽 − 1
) . (A.70)
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Table 2: List of notations.

𝑎, 𝑏, 𝑐, 𝐾,𝑁, 𝜅
𝑁

, 𝑝
𝑘 Given parameters

𝜃
𝑗
, 𝜑

𝑗 Roots of ±1
𝜉
𝑘
, 𝑆

𝑛
, 𝑋

𝑡
, 𝑋

𝜀

𝑡
Pseudorandom variables, pseudoprocesses

G
𝑠
,G

𝑋 Infinitesimal generators
𝜎
−

𝑎
, 𝜎

+

𝑏
, 𝜎

𝑎𝑏
, 𝑆

−

𝑎
, 𝑆

+

𝑏
, 𝑆

𝑎𝑏 Overshooting times and locations related to pseudorandom walk
𝜏
−

𝑎
, 𝜏

+

𝑏
, 𝜏

𝑎𝑏
, 𝑋

−

𝑎
, 𝑋

+

𝑏
, 𝑋

𝑎𝑏 Overshooting times and locations related to pseudo-Brownian motion
𝜏
𝜀−

𝑎
, 𝜏

𝜀+

𝑏
, 𝜏

𝜀

𝑎𝑏
, 𝑋

𝜀−

𝑎
, 𝑋

𝜀+

𝑏
, 𝑋

𝜀

𝑎𝑏

Δ, Δ
+

, Δ
− Discrete Laplacian, finite difference operators

𝐴 (𝑎
1
, . . . , 𝑎

𝑁
) , 𝐴

𝑘
(
𝑎
1
, . . . , 𝑎

𝑁

𝛼
1
, . . . , 𝛼

𝑁

)

Vandermonde-like determinants

𝑈 (𝑢
1
, . . . , 𝑢

2𝑁
) , 𝑈

ℓ
(𝑢

1
, . . . , 𝑢

2𝑁
)

𝑈
𝑘ℓ
(𝑢

1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

2𝑁
)

𝑈
𝑝𝑞𝑟

(𝑢
1
, . . . , 𝑢

𝑝+𝑟
) , 𝑈

𝑝𝑞𝑟,ℓ
(
𝑢
1
, . . . , 𝑢

𝑝+𝑟

𝛼
1
, . . . , 𝛼

𝑝+𝑟

)

𝑈
𝑝𝑞𝑟,𝑘ℓ

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

𝑉 (V
1
, . . . , V

𝑁
) , 𝑉

ℓ
(V

1
, . . . , V

𝑁
)

𝑉
𝑘ℓ
(V

1
, . . . , V

𝑘−1
, V

𝑘+1
, . . . , V

𝑁
)

�̃�(𝑧), �̃�
𝑘ℓ
(𝑧), �̃�(𝑧), 𝑉

𝑘
(𝑧), 𝐷(𝑧), 𝐷

𝑘
(𝑧, 𝜁)

D(𝜆),D+

𝑘
(𝜆, 𝜇),D−

𝑘
(𝜆, 𝜇)

S
𝑝𝑞𝑟
,S

𝑝𝑞𝑟,𝑘ℓ Other determinants
𝐺

𝑘
(𝑧), 𝐺(𝑧, 𝜁),𝐻

−

𝑎,ℓ
(𝑧),𝐻

+

𝑏,ℓ
(𝑧),𝐻

𝑎𝑏,ℓ
(𝑧) Generating functions

𝐿
𝑘
(𝑧, 𝜁), �̃�

𝑘
(𝑧, 𝜁), 𝑃(𝑧, 𝜁), 𝑃

𝑘
(𝑧, 𝜁) Polynomials

𝑃
+

𝑏,𝑗
(𝑥), 𝑃

𝑎𝑏,𝑗
(𝑥), 𝐾

𝑚
(𝑥), �̃�

𝑚
(𝑥)

𝐼
+

𝑎𝑏,𝑗
, 𝐼

−

𝑎𝑏,𝑗
, I+

𝑎𝑏,𝑗
, I−

𝑎𝑏,𝑗
Integrals and sums

D+

,D−

,E Sets
𝑀

1
,𝑀

∞ Bounds
𝑎
𝑗
(𝑧), 𝑏

𝑗
(𝑧), 𝑢

𝑗
(𝑧), V

𝑗
(𝑧), 𝑤(𝑧)

Miscellaneous𝛼
𝑗
(𝑧), �̃�

𝑗
(𝑧), 𝜖

𝑗
, 𝜀

𝑗
(𝑧), u

𝑗
(𝑧), v

𝑗
(𝑧)

𝐴
𝑗
(𝑧), 𝐵

𝑗
(𝑧),𝑀

𝑘
(𝑧), 𝑅

𝑗
(𝑧), 𝑎

𝜀
, 𝑏

𝜀

𝑠
ℓ
(𝑧), 𝑝

𝑘
(𝑧), 𝑠

+

𝑘,ℓ
(𝑧), 𝑝

+

𝑘
(𝑧), 𝑠

−

𝑘,ℓ
(𝑧), 𝑝

−

𝑘
(𝑧) Sums and products

𝑠
𝑘,𝑚

(𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢

𝑘+1
, . . . , 𝑢

𝑝+𝑟
)

A,B,C(𝑘)

𝑖
, L,U,U󸀠

,U󸀠󸀠 Matrices
�⃗�
𝑚 Vectors

The foregoing sum can be easily evaluated as follows:

𝑁−1

∑

𝑗=𝑖

(
𝑗

𝑖
)(

𝑗 + 𝛼 − 𝛽 − 1

𝛼 − 𝛽 − 1
)

= (
𝑖 + 𝛼 − 𝛽 − 1

𝛼 − 𝛽 − 1
)

𝑁−1

∑

𝑗=𝑖

(
𝑗 + 𝛼 − 𝛽 − 1

𝑖 + 𝛼 − 𝛽 − 1
)

= (
𝑖 + 𝛼 − 𝛽 − 1

𝛼 − 𝛽 − 1
)

×

𝑁−1

∑

𝑗=𝑖

[(
𝑗 + 𝛼 − 𝛽

𝑖 + 𝛼 − 𝛽
) − (

𝑗 + 𝛼 − 𝛽 − 1

𝑖 + 𝛼 − 𝛽
)]

= (
𝑖 + 𝛼 − 𝛽 − 1

𝛼 − 𝛽 − 1
)(

𝛼 − 𝛽 + 𝑁 − 1

𝑖 + 𝛼 − 𝛽
)

=
𝑁

𝑖 + 𝛼 − 𝛽
(
𝛼 − 𝛽 + 𝑁 − 1

𝑁
)(

𝑁 − 1

𝑖
) .

(A.71)

Putting this into (A.70) yields the matrix A−1B displayed in
Theorem A.8.
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