Hindawi Publishing Corporation
International Journal of Stochastic Analysis
Volume 2014, Article ID 520136, 49 pages
http://dx.doi.org/10.1155/2014/520136

Research Article

Hindawi

From Pseudorandom Walk to Pseudo-Brownian Motion:
First Exit Time from a One-Sided or a Two-Sided Interval

Aimé Lachal'?

L Université de Lyon, Institut Camille Jordan, CNRS UMR5208, France
? Institut National des Sciences Appliquées de Lyon Péle de Mathématiques, Batiment Léonard de Vinci,
20 Avenue Albert Einstein, 69621 Villeurbanne Cedex, France

Correspondence should be addressed to Aimé Lachal; aime.lachal@insa-lyon.fr
Received 20 May 2013; Accepted 14 August 2013; Published 26 March 2014
Academic Editor: M. Lopez-Herrero

Copyright © 2014 Aimé Lachal. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let N be a positive integer, ¢ a positive constant and (£,,),.., be a sequence of independent identically distributed pseudorandom
variables. We assume that the & s take their values in the discrete set {~N,-N + 1,...,N — 1,N} and that their common
pseudodistribution is characterized by the (positive or negative) real numbers P{§, = k} = &, + (—1)k_1c( ZN,) for any
k € {~N,-N +1,...,N — 1, N}. Let us finally introduce (S,,),, the associated pseudorandom walk defined on Z by S, = 0
and S, = Z;‘zl & for n > 1. In this paper, we exhibit some properties of (S,),.. In particular, we explicitly determine the
pseudodistribution of the first overshooting time of a given threshold for (S,,),,., as well as that of the first exit time from a bounded
interval. Next, with an appropriate normalization, we pass from the pseudorandom walk to the pseudo-Brownian motion driven
by the high-order heat-type equation 0/0t = (=DM o™ 1ax*N. We retrieve the corresponding pseudodistribution of the first
overshooting time of a threshold for the pseudo-Brownian motion (Lachal, 2007). In the same way, we get the pseudodistribution
of the first exit time from a bounded interval for the pseudo-Brownian motion which is a new result for this pseudoprocess.

1. Introduction

Throughout the paper, we denote by Z the set of integers,
by N that of nonnegative integers, and by N* that of positive
integers: Z = {...,-1,0,1,...}, N = {0,1,2,...}, N* = {1,
2,...}. More generally, for any set of numbers E, we set E* =
E\ {0}.

Let N be a positive integer, ¢ a positive constant, and set
Ky = ()N Let (£,),cn+ be a sequence of independent
identically distributed pseudorandom variables taking their
values in the set of integers {-N,-N+1,...,-1,0,1,...,N -
1, N}. By pseudorandom variable, we mean a measurable
function defined on a space endowed with a signed measure
with a total mass equaling the unity. We assume that the
common pseudodistribution of the &, s is characterized by the
(positive or negative) real pseudo-probabilities p; = P{§, = k}
forany k € {-N,-N + 1,...,N — 1, N}. The parameters p;
sum to the unity: Y1 px = L.

Now, let us introduce (S,,),cy the associated pseudoran-
dom walk definedon Zby S, = 0and$, = }_, &; forn e N*.

The infinitesimal generator associated with (S,,), <y is defined,
for any function f defined on Z, as

GsfG)=E[f & +D]-f()

N )
=Y nf(i+k)-f(), jez
k=—N

Here we consider the pseudorandom walk which admits the
discrete N-iterated Laplacian as a generator infinitesimal.
More precisely, by introducing the so-called discrete Lapla-
cian A defined, for any function f defined on Z, by

Af()=fG+D)-2f()+f(G-1),

the discrete N-iterated Laplacian is the operator AN =
Ao---o Agiven by

N times

jeZ, (2

N
ANf(j)=k:Z_N(—l)’”N(sz\g\]>f(1'+k), jez. (3)
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We then choose the p,’s such that € = #cAY which yields,
by identification, for any k € {-N,-N +1,...,-1,1,...,N -

LN,
2, :1—c<2§>. (@)

When N = 1, (S,),.cy is the nearest neighbours pseudo-
random walk with a possible stay at its current location; it
is characterized by the numbers p;, = p_, = cand p, =
1 — 2c. Moreover, if 0 < ¢ < 1/2, then p, > 0; in this
case, we are dealing with an ordinary symmetric random walk
(with positive probabilities). If ¢ = 1/2, this is the classical
symmetric random walk: p;, = p_, = 1/2 and p, = 0.

Actually, with the additional assumption that p_, = p;
for any k € {-N,-N + 1,...,N — 1,N} (ie., the & s are
symmetric, or the pseudorandom walk has no drift), the p;’s
are the unique numbers such that

Gsf (j) = rnc f ()

+ terms with higher order derivatives,

- 2N
Pk =Pk = (_1)k lc <k+N>’

©)

where f is an analytical extension of f and f*N) stands for

the (2N)th derivative of f : f®™(x) = (d* f/dx*N)(x).

Our motivation for studying the pseudorandom walk
associated with the parameters defined by (4) is that it is
the discrete counterpart of the pseudo-Brownian motion as
the classical random walk is for Brownian motion. Let us
recall that pseudo-Brownian motion is the pseudo-Markov
process (X,)-, with independent and stationary increments,
associated with the signed heat-type kernel p(t; x) which is
the elementary solution of the high-order heat-type equation
d/ot = KNCBZN /0x*N . The kernel p(t; x) is characterized by
its Fourier transform:

E ( e i"X‘) = on e™p(t;x)dx = e e (6)

The corresponding infinitesimal generator is given, for any
C*N-function f, by

G f () = lim + [E[f (X, +%)] - £ (0]
h—0 h (7)

= Kch(ZN) (x).

The reader can find extensive literature on pseudo-Brownian
motion. For instance, let us quote the works of Beghin et al.
[1-20] and the references therein.

We observe that (5) and (7) are closely related to the
continuous N-iterated Laplacian d*V/dx*N. For N = 2,
the operator A” is the two-Laplacian related to the famous
biharmonic functions: in the discrete case,

N f(j)=f(j+2)—4f (j+1)+6f(j)
—4f(j-1)+f(j-2),

and in the continuous case,

(8)
jeZz,

4
Azf(x)=%(x), x € R. )
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In the discrete case, it has been considered by Sato [21] and
Vanderbei [22].

The link between the pseudorandom walk and pseudo-
Brownian motion is the following one: when normalizing the
pseudorandom walk (S,,),,c on a grid with small spatial step
¢ and temporal step ¢ (i.e., we construct the pseudoprocess
(€S¢/en )0 Where || denotes the usual floor function), the
limiting pseudoprocess as ¢ — 0" is exactly the pseudo-
Brownian motion.

Now, we consider the first overshooting time of a fixed
single threshold a < 0 or b > 0 (a,b being integers) for

(Sn)neN:
o, =min{neN":§, <a},
(10)
o, =min{n e N": S, > b}

as well as the first exit time from a bounded interval (a, b):

op=min{neN":§, <aorS, > b}

(11)

min{n e N":S, ¢ (a,b)}

with the usual convention that min@® = +oo. Hence, when
0 < +00,8,+_; <b—1andS,+ > b, the overshoot at time o},
which is Sg; — b can take the values 0, 1,2, ..., N — 1, that is,
Soy €1b,b+1,b+2,...,b+ N -1}. Similarly, when o, < +00,
So- € fa— N+ 1,a—- N +2,...,a}, and when 0, < +00,
Sy €l@a—1,...a-N+1JUfb,b+1,....b+N—1}. We
putS; = So+»S; =g and Sy, = S, .

In the same way, we introduce the first overshooting times
of the thresholds a < 0 and b > 0 (a,b being now real
numbers) for (X,),s¢:

7, =inf{t>0: X, <a}, 7, =inf{t >0: X, > b}
(12)

as well as the first exit time from a bounded interval (a, b):

T, =inf{t >0: X, <aorX, > b}
(13)
=inf{t>0:X, ¢ (a,b)}

with the similar convention that inf@ = +00, and we set,
when the corresponding time is finite,

Xy = X, X=X, .

X, = er b (14)

In this paper we provide a representation for the gen-
erating function of the joint distributions of the couples
(0,,5,), (0,S,), and (0,,S,;). In particular, we derive
simple expressions for the marginal distributions of S, S,
and S_;,. We also obtain explicit expressions for the famous
“ruin pseudoprobabilities” P{o, < o,} and P{o, < o,}.
The main tool employed in this paper is the use of generating
functions.

Taking that the limit as € goes to zero, we retrieve the joint
distributions of the couples (7, X,) and (7, , X, ) obtained in
(10, 11]. Therein, we used Spitzer’s identity for deriving these
distributions. Moreover, we obtain the joint distribution of
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the couple (7,;,, X,;) which is a new and an important result
for the study of pseudo-Brownian motion. In particular, we
deduce the “ruin pseudo-probabilities” P{r; < 7,} and
P{r, < 7,}; the results have been announced without any
proof in a survey on pseudo-Brownian motion [13], after a
conference held in Madrid (IWAP 2010).

In [11, 17, 18], the authors observed a curious fact
concerning the pseudodistributions of X, and X;: they
are linear combinations of the Dirac distribution and its
successive derivatives (in the sense of Schwarz distributions).
For instance,

N- 1
[I:D{Xb € dZ Z 6(" (z) (15)

The quantity 5éj ) is to be understood as the functional acting
on test functions ¢ according to (821), o) = (—l)jqb(j)(b). The
appearance of the 8,(9] "5 in (15), which is quite surprising for
probabilists, can be better understood thanks to the discrete
approach. Indeed, the 8(] ’s come from the location at the
overshooting time of b for the normalized pseudorandom
walk: the location takes place in the “cluster” of points b, b +
&b+2¢&...,b+ (N -1)e.
In order to facilitate the reading of the paper, we have
divided it into three parts:
Part [—some properties of the pseudorandom walk
Part II—first overshooting time of a single threshold

Part III—first exit time from a bounded interval.

The reader will find a list of notations in Table 2 which is
postponed to the end of the paper.

2. Part I—Some Properties of
the Pseudorandom Walk

2.1. Pseudodistribution of §, and S,,. We consider the pseudo-
random walk (S,,),,cy related to a family of real parameters
{pok € {-N,...,N}} satisfying p, = p_ for any
k € {1,...,N} and ZkN:_Npk = 1. Let us recall that the
infinitesimal generator associated with (S,,) -, is defined by

Gf (j Z pef (G+k) = £(j)

= (po Z [fGi+k)+f(i-k)].
. (16)

In this section, we look for the values of p;,k € {-N,..., N},
for which the infinitesimal generator & is of the form (5).
Next, we provide several properties for the corresponding
pseudorandom walk.

Suppose that f can be extended into an analytical func-
tion f. In this case, we can expand

00 2¢

PGB+ SR =22 gm0

Therefore,

510~ (=1 G+ 2203 o 7 )

1

= <Po + ZZPk - 1>f(j) (18)
%903)
+zz<z k) e

Since p, + 2 Zk:l Pr = 1, we see that the expression (5) of &
holds if and only if the p,’s satisfy the equations

N
Zkzepk =0 forl<f<N-1,

k=1 (19)
& 1

Y KN py = Srye @N)L

k=1 2

Proposition 1. The numbers p,, k € {1,...,
(19), are given by

N}, satisfying

pe= (1" ( kiNN> : (20)

In particular, py = Kyc.

Proof. First, we recall that the solution of a Vandermonde
system of the form Z,Ij:l a X, = a1 < £ < N, is given

by
Ak a5l
wotlin) oy @
Alay,...,ay)
with
al e aN
2 2
al RS aN
Alay,...,ay) = _ _ (22)
aV ..o al
and, forany k € {1,..., N},
ay ot Gy K Oy oAy
2 2 2 2
a ... a_ (X a LIS a
Ak(a"""aN)= N S M. (23)
Qs Oy oo :
N N N N
a ot Gy ON Gy Ay

In the notation of A, and that of forthcoming determinants,
we adopt the convention that when the index of certain
entries in the determinant lies out of the range of k, the

corresponding column is discarded. That is, for k = 1 and
k = N, the respective determinants write
“1 az DAY aN
a,...,a . .
141 <‘x1 )“N> = : N
Lee s Oy . .
“N az DAY aN
(24)
ap v aN !
A,y )
Ay =
Opsens Oy
N e N
9 anN-1 &N



It is well-known that, for any k € {1,..., N},

say)= [ []

1<jSN  1<b<ms<N

=" [T e ] (a-a)

Alay,..

1<jN T 1jEN (25)
j#k
H (am_aé)
1<l<m<N
em+k

In the particular case where a, = Ofor1 < £ < N — 1, we
have, for any k € {1,..., N}, that

A, <a1,...,aN) (1) Nay

Qpsenes Oy
ap ot ey Gy 0t AN
2 2 2
a0 G Fn T Ay
X
N-1 N-1 _N-1 N-1
a vt Gy Gyttt Ay

k+N
1) ochlaj || (a,,—ap).
1<jSN 1<€<m<N

j#k em#k

(26)
Therefore, the solution simply writes
AN
X = , 1<k<N.
ac[Ti<jen (ak - aj) (27)
j#k

Now, we see that system (19) is a Vandermonde system
with the choices @, = k% x; = pr,anda, = 0for1 < € <
N -1, ay = xc(2N)!/2. With these settings at hands, we

explicitly have
[T (-7

a [ (a-a;) =

1<j<N 1<j<N
j#k j#k
=[] =) [T (ki) (s
1<j<N 1<jsN
j#k j#k
= %(—1)”" (N + k)l (N - k)!
and the result of Proposition 1 ensues. O

Finally, the value of p, is obtained as follows: by using the
fact that ¥~ (~1)F (2N) = 0,

Po=1- Y p
—N<k<N
k+0

=l+e Z (=) <k+N)

—N<k<N
Kto (29)

()
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We find it interesting to compute the cumulative sums of the
pj’s: fork € {-N,...,N},

k k

> pi= ) [‘SjoJf(‘l)jflC(JiNN)]

AN AN
k+N
N-1 j 2N>
c -1 ..
> v (%

j=0

S ]]{kzo} + (—1)

The last displayed sum is classical and easy to compute by
appealing to Pascal’s formula which leads to a telescopic sum:

S ()
SACE

j=0

N [2N -1
=D N<k+N>'

Thus, for k € {-N,...,N},

Z P; = Tjooy + (D! (2](1\:__1\]1) (32)

j=—N

e ()

Observe that this sum is nothing but P{§, < k}. Next, we
compute the total sum of the |p;|’s: by using the fact that

o (1) = 47,
2N
" Z ¢ (k + N)
~N<ksN

3 =[r-<(R)
fee(@)eel-(R)])
=c4N—1+2[1—c<21\1;]>] .

As previously mentioned, there is an interpretation to this
sum: this is the total variation of the pseudodistribution of
&,. We can also explicitly determine the generating function
of & :forany { € C*,

N
E(C")= ) pd
k=—-N
N
=1l+c [ Y (~D)F! <k2+NN> ck]
k=—N

— 14 NIC[Zu( ) ]

(-0

o
We sum up below the results we have obtained concerning
the pseudodistribution of ;.

(34)

=1+xKyC
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Proposition 2. The pseudodistribution of &, is determined, for
ke {-N,...,N}, by

- 2N
Pl -k =00+ () 69
ot, equivalently, by
1 (2N -1
[FD{EI Sk} = ﬂ{k20}+(—1)k IC(k+N>. (36)

The total variation of the pseudodistribution of &, is given by

The generating function of & is given, for any { € C*, by

N
E (C'El) =1+ KNC%. (38)

In particular, the Fourier transform of &, admits the following
expression: for any 0 € [0, 27], by

E (") =1 - caVsin™ (g) : (39)

Remark 3. For ¢ = 1/(2Y), we have P{§, = 0} = 0; that is,
the pseudorandom walk does not stay at its current location.
If0 < ¢ < 1/ (311, it can be easily seen, by using the identity
() + () = (34, that P{&, = 0} > P{¢; = 1} > 0. On
the other hand, for any ¢ > 0, it is clear that P{&, = 1} >
|P{&, =2} > --- > |P{{; = N}|. In Table 1 and Figures 1 and
2, we provide some numerical values and (rescaled) profiles
of the pseudodistribution of ¢, for N = 3 and N = 4 and
several values of c.

In the sequel, we will use the total variation of &; as an
upper bound which we call M;:

N 2N\ . 1
1+c|4" -2 N if0<c< SN
M1: (N) (40)

caV -1 ifc>

Set f(0) = [E(e"egl) for any 0 € [0, 27r]. We notice that {(0) €
[1 - c4N, 1] and, more precisely,

[flloo = sup [F(O)
0¢[0,27]
= max('l - c4N| , 1)
(41)
B 1 if0<c< W,
caN -1 ifc>

22N—1 .

5
TABLE 1: Some numerical values in the cases N € {3, 4}.
(a)

¢ Po P &) Ps

1 -19 15 -6 1
1/20 0 0.75 —-0.30 0.050
1/32 0.38 0.47 -0.19 0.031
1/35 0.43 0.43 -0.17 0.029
1/64 0.69 0.23 -0.094 0.016

(b)

¢ Po P )3 P P4

1 -69 56 -28 8 -1
1/70 0 0.8 -0.4 0.114 -0.0143
1/126 0.44 0.44 -0.22 0.063 -0.0079
1/128 0.45 0.44 -0.22 0.062 —0.0078
1/256 0.73 0.22 —0.11 0.031 —0.0039

Let us denote this bound by M_:
1 if0<c
= 52N-1°
Mo=1 2 (42)
c4’ -1 lf Cc 2> W

In view of (40) and (42), since (%)) < 2*7', we see that
M, >M_ > 1.

Proposition 4. The pseudodistribution of S, is given, for any
k € {-Nn,...,Nn}, by

P (S, =K = (—1)"2(—@5 () () @

Actually, the foregoing sum is taken over the € such that € >
|k|/N. We also have that

P{Sy <k} = ooy + (‘l)k;("c)e (Z) <21<I\:L€Z\_7€1> '
(44)

Proof. By the independence of the &.’s which have the same
pseudoprobability distribution, we plainly have that

E () = f(0)" = [1 — c4Nsin N (g)]n (45)

Hence, by inverse Fourier transform, we extract that

1 21 .
Pis, =kl = 5 j H6)'e ™ 4o (46)
0
NN\ L[ ane (O ke
_;)( 4Nc) <€> P L sin <2>e de.
(47)
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FIGURE I: N = 3,c € {1,1/32,1/64}.

FIGURE 2: N = 4,c € {1,1/128,1/256}.

By writing sin(6/2) = (9% — 7012y /(2i), we get for the By plugging (48) into (47), we derive (43). Next, we write, for
integral lying in (47) that k € {~Nn,..., Nn}, that
k
2 P{SnSk}: P{Sn:]}
L J " sin?™* <Q> e 40 j=ZI:\In
2 0 2
n kA(N)
[ 02 _ 02 \2NE L SV <n) 1) < 2N¢ >
" J ) M DAY -=<_N§v<- no  MHNE
27 Jo 2i ]
n kA(NP)
i N¢
oM J)Ne (2 2N kN0 - V(o (n) (1) ( 2 )
e J >0 o (48) PR j:ZN S Ne
(49)
(=DM ZIZV:E 1) 2N € 1 J o (imk=-NOW 39 If k < 0, then the term in sum (49) corresponding to £ = 0
© 4Nt 21 Jo vanishes and

m=0

SE N, P{snsk}=§l<—c>"(2) S (%) o

4Nt \k+N¢ j=-Ne
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The second sum in the foregoing equality is easy to compute:

. N4
j
j:_zm( b (J+Ne>
. N4
- 2 [( 1)]<J+Nf

j=—Ne
B k(2N€ -1
=1 (k+N€>'

If k > 0, then the term in sum (49) corresponding to £ = 0 is
1and

P{S, <k} _1+Z( 0) ( )kMﬁ@( 1)/ (jiNz\e;e)' (52)

j=—N¢

1 (2N€ -1
)‘(‘”] l<j+Nf)]

(51)

By using the convention that (3) = 0if f > a, we see that
the second sum above also coincides with (51). Formula (44)
ensues in both cases. O

Proposition 5. The upper bound below holds true: for any
positive integer n and any integer k,

IP{S, =k}| < \P{S,, =0} < M, (53)

Assume that 0 < ¢ < 1/2*N7. The asymptotics below holds
true: for any § € (0,1/(2N)),

P{S,=0} = @(i&) (54)

n—+00 n

Proof. Let us introduce the usual norms of any suitable
function ¢:

1 2m
Iol = 5 | le@ae,

o [t
[l = sup [¢(©)
0e[0,27]

and recall the elementary inequalities [|ll; < l¢ll, < I}l
It is clear from (46) that, for any integer k,

1 2 " "
Pis, =Kl < o L IF @)1"d6 =[],

<[ ||2=J;L (6)*" d6 = [P {S,,, = 0}

< Iflle =
(56)

This proves (53). Next, by (46), since f(27—-0)
for any € € (0, ), that

= f(6), we have,

jzn 0y a0 =~ [ o0
7T Jo
(57)

(J 5(6)" d6 + rf(e)” d@).

The assumption0 < ¢ < 1 /2*N7L entails that [f(0)] < 1for any
0 € (0,7). We see that [f(0)] < 1 on [0, €], and |f(8)| < |f(e)]
on [, 1] for any ¢ € (0, ). Hence,

|P{S, =0} <e+[f(e)". (58)

Now, choose & = 1/’ for a positive §. We have that

I (f @) = nln (1= ca¥sin™ (-5 )) ~ en' ™ (59)

which clearly entails, for large enough #, that |f(e)]” <
exp(—(c/2)n' ). Thus, if & € (0,1/(2N)), [f(e)]" = ole)
which proves (54).

Ifc = 1/2°M§0) = 1 - 2sin*N(6/2). In this case,
the same holds true upon splitting the integral Ion into
j£+LTH+ " O

0 T—€

Remark 6. A better estimate for |P{S, =
in the same way:

k}| can be obtained

P{s, =0} if n is even,
vkez, |P{s,=kl|<{ *"
€ | {S, H < {Moolp {S,., =0} if nis odd.
(60)

Nevertheless, we will not use it. We also have the following
inequality for the total variation of S,,:

Nn
[P = Y IP{s. =kl <|Pe| =My (o)
k=—Nn

Proposition 7. For any bounded function F defined on Z",
[E[F (St SNl < IFlloo M7 (62)

Proof. Recall that we set p, = P{&; = k} for any k €
{-N, ..., N}. We extend these settings by putting p, = 0 for
ke Z\{-N,...,N}. We have that

[E[F (S, S,)]]

=l > F(kp....k,)P{S; =k;,....S, =k,}
(ysnnnke, ) €2
< Flle Z .pklpkz—kl “ Prok, |-
(ysnunk, ) €2
(63)



The foregoing sum can be easily evaluated as follows:

(64)

k" Pryk,

-y |pk1|< 5 |pk2_kl|(~-( S oo
kez k,ez k,ez

. (kezz|pk|)n .

which proves (62). ]

2.2. Generating Function of S,.. Let us introduce the generat-
ing functions, defined for complex numbers z, {, by

G (2)= Y P{s, = Y P{S,=k}z" forkez,

neN neN:
n=|k|/N
Gz= )Y Ps,=kz"= > Pfs, =k}
keZneN keZ,neN:
|k|[<Nn

(65)

We first study the problem of convergence of the foregoing
series. We start from

[P {s, =k} {2

keZ,neN

k n

keZ,neN:
|k|<Nn

If{ +0and |{| #1, then

> 1 Ml

keZ,neN:
|k|<Nn

1_|(an+1
_Z< - +

|C| (ZlM z| |C| Z|MOOZCN'")
n=0

1_1/|{|Nn+1 ) .
-1 ]|M

) S M

n=0
(67)

i (S - g

If we choose z, ¢ such that [M_z| < 1, IMOOzCNI <1
and IMOOZ/(NI < 1 (which is equivalent to |z|] < 1/My, X

[min((¢], 1/IED1Y, or ¥Myzl < [{] < 1/ §/[Myzl), then

the double sum defining the function G(z,{) is absolutely
summable. If |{| = 1, then

[oe)
Y [ Mael = Y @Nns DM (g
klek%nEN: n=0
<Nn
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If we choose z such that [M z| < 1, then the same conclusion
holds.
Now, we have that

Gz=) (Zp{sn =k}ck>z"

neN \kezZ

- YE@E) 7= )] ©)
neN neN

B 1

C1-zE(8%)

and, thanks to (38), we can state the following result.

Proposition 8. The double generating function of the P{S, =
kb, k € Z,n € N, is given, for any complex numbers z, { such

that NTM_z] < [¢| < 1/ X[M_z], by
(N

(1-2) N —kyez(1 - O

G(z0) =

(70)

In particular, for any 0 € [0,2n] and z € C such that |z| <
1/M,,

0y !
G(Z’ € ) C 1-z+c4Nzsin?N (0/2) 7
On the other hand,
G(Z,C)=Z<ZP )C —ZGk(z)C
keZ \neN kez

(72)

By substituting { = e
Fourier series of the function 6 — G(z, e

G(z, e ie) = ZGk (2) e'ko (73)

kez

in the foregoing equality, we get the
19

from which we extract the sequence of the coefficients
(Gi(2))ren- Indeed, since P{S,, = -k} = P{S,, = k}, we have

that G,(z) = G_i(z) and
G (z) = 1 rnG(z, eie) k40
21
271 . .
L J G (z, e ’6) AT (74)
21 Jo
1 _
- [ st
i Je

where € is the circle of radius 1 centered at the origin and
counter clockwise orientated. Then, referring to (70), we
obtain, for any z € C satistying |z| < 1/M,,, that

1 J Ck+N—

2ni Jg Pz, C) dé, 75

Gy (2) = —
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where P(z, () is the polynomial given by

P(z,0) = (1-2)" —xncz(( - 1)V, (76)

We are looking for the roots of { +— P(z,{) which lie inside
the circle €. For this, we introduce the Nth roots of x: 6; =
e (GIDINT for 1 < j < N 9?] = Ky-

From now on, in order to simplify the expression of the
roots of P, we make the assumption that z is a real number
lying in (0,1/M,) (and then z € (0, 1)). The roots of { —
P(z,{) are those of the equations C-201+ ij(z)]( +1=0,
1 < j < N, where

M-z
w(z) = e (77)
They can be written as
uj(z) =1+ ij (2)
—0,\w(z) [a;(z) +ieb; ()], 1<j<N, .

vi(z) =1+ ij (2)
+ Gj\/w(z) [aj (2) +ie;b; (z)] , 1<j<N,

with

C/2j-1
ejzsgn<sm< N 77.'))

(with the convention that sgn (0) = 0),

a; (z) = % [\jw(z)2 —4cos(2jz\; lrr
1/2

_17'[)] , (79)
_L 2 2j—-1

bj(z)—ﬁ[\/w(z) 4cos< N

1,

‘We notice that aj(z)b]-(z) = |sin(((2j — 1)/N)m)|. Because of

the last coefficient 1 in the polynomial =201+ Gju)(z)]( +1,
it is clear that the roots u]-(z) and vj(z) are inverse: vj(z) =
l/uj(z).

Let us check that |uj(z)| <1< |vj(z)| for any j €
{1,..., N}. Straightforward computations yield that

+w(z)—2cos<2J

>w(z)+4

1/2

2
- w(z)+2cos< J

;@ =4, -B;),
, (80)
'vj (z)| =A;(2) +B;(2),

9
where
A; (z) = w(z)2 +w(z)
X [\jw(z)z—élcos(z]_ n)w(z)+4
—2c0s<2j1\;171):|+1, (81)
B; (2) =2\/m[(w(z)—cos<2]_ 1n>>aj(z)
+ sin(zjl\;ln> bj(z)].

Since vj(z) = 1/uj(z), checking that Iuj(z)l <1« Ivj(z)l

is equivalent to checking that Iuj(z)l2 < Ivj(z)lz; that is,
Bj(z) > 0. If sin(((2j — 1)/N)m) # 0, we have aj(z)bj(z) +0,

a(2) = | sin(((2j - 1)/N)m)\/b;(z) and then
B, (2) = 24, (2) Vw @) [w(z) - cos<2] - 17:) + bj(z)z]
= a;(2) Vw (2)
x [\]w(z)2 —4cos<2jz\; lﬂ)w(z) ra+ w(z)]
> 0.
(82)

If sin(((2j—1)/N)m) = 0 (which happens only when N is odd
and]—(N+1/2)a(z Vw(z) + 2 b(z)—Oandthen
B; = Za](z) Vw(z)(w(z) +1) > 0.

The above discussion ensures that the roots we are looking
for (i.e., those lying inside €) are uj(z), 1 < j < N;wediscard
the vj(z)’s.

Remark 9. We notice that

2i-1
lim a; (z) = ﬁsin( J 71),
z—1" 2N

2j—-1 ®
hmb (2) =€; \/—cos< - 71)
z—1" 2N
and then
Zli_}n}ﬂj [aj (z) + iejbj (z)] = \/§<pj, (84)
where we set ¢; = —je (@PDNT The ¢1 < j<N,are
the (2N)th roots of k,, with positive real part: (p?N = Kk and

R(¢;) > 0. As a result, we derive the asymptotics, which will
be used further,

uj(z) =1+¢(z)

0 (85)
L NT=7 = 0 (Vi=2).

with ¢;(2) ~

z—1" - 2%
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Example 10. For N = 1, the roots explicitly write as

1

uy (2)
(86)

u (2) =1+ w(2) - a, (2) Vw(2),

vy (2) =

with

w@ =% a@=Vo@+2 67

2cz

If ¢ = 1/2, it can be simplified into

()= 2 V1=2 Vzl—zz (88)

For N = 2, the roots explicitly write as

Uy (2) = [1-b (2) Vw ()] - i [w(2) -~ ay (2) Vw ()]

w,(2) = 1 2), ww=;%, v, (2) = v @)
1
(89)
with
w(z) = Zi/z_zz’ a,(z) = %\j\lw(z)z +4+w(z),
1
b (z) = 75 \/ Vw(z)? +4-w(2).

(90)

For N = 3, the roots explicitly write as

uy (z) =

% [2 -w(z) - (al (2) - b (2) \/§) Vw (z)]
- % [w(2) V3 - (a,(2) V3 + b, (2) Vw @),
u,(z) =1-w(z)—a,(z) Vw (z),

us (2) = uy (2),

v3(2) = v, (2),

(o1

1 1
vy (2) = _“1 (Z)’ v, (2) = _uz (Z)’

with

a (2) = %\/\/w(z)z—Zw(z)+4+w(z)— 1,

1
b (2) = %\/\/w(z)z Cw@) +d-w(2)+1,  (92)

V1-z

Vw (z) + 2, ez

a,(z) = w(z) =
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Now, Gi(z) can be evaluated by residues theorem. Sup-
pose first that k > 0 (then k + N — 1 > 0) so that 0 is not a
pole in the integral defining G, (z):

N k+N-1

Gi(2) = ZRes( J(=u; (z))
2\ peyy
N u. (Z)kJerl

“@WH& (2))

(93)

L glow@ (2).

:N(l—z)jzzll+uj(z) j

The foregoing representation of Gy(z) is valid a priori for
any z € (0,1/M_,). Actually, in view of the expressions of
w(z) and uj(z), we can see that (93) defines an analytical
function in the interval (0, 1). Since G,(2) is a power series, by
analytical continuation, equality (93) holds true for any z €
(0, 1). Moreover, by symmetry, we have that G, (z) = G_,(2)
for k < 0. We display this result in the theorem below.

Theorem 11. For any k € Z, the generating function of the
P{S, = k}, n € N, is given, for any z € (0, 1), by

Nl—u (2)

1 Ik
N(l—z)zl+u() w2 ©4)

Gy (2) =

Remark 12. Another proof of Theorem 11 consists in expand-
ing the rational fraction { — G(z, {) into partial fractions. We
find it interesting to outline the main steps of this method. We
can write that

v; (2)

0= Y@ A O

with
- uj(z) l—uj(z)
uj (@) = N(1-2)1+u;@2)
(96)
vj(z)= vj(z) l—vj(z) B l/uj(z) l—uj(z)

N(1-2)1+v;(z) NQ1-2)1+u;(2)

We next expand the partial fractions 1/({ —u j(z))and 1/ ¢ -
vj(z)) into power series as follows. We have checked that
Iuj(z)l <1< Iv]-(z)l forany j € {1,..., N}. Now, ifluj(z)l <
1] < [v;(2)| forany j € {1,..., N},

(Z) -1 (k
J
(- u; (Z) = (k+1 - k;muj(z)kﬂ’
97)
C—v; (z) Z oV (z)"+1

from which (94) can be easily extracted.
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2.3. Limiting Pseudoprocess. In this section, by pseudoprocess
it is meant a continuous-time process driven by a signed
measure. Actually, this object is not properly defined on all
continuous times but only on dyadic times k/2/, j,k € N.
A proper definition consists in seeing it as the limit of a step
process associated with the observations of the pseudopro-
cess on the dyadic times. We refer the reader to [10, 18] for
precise details which are cumbersome to reproduce here.

Below, we give an ad hoc definition for the convergence
of a family of pseudoprocesses ((X}),5¢),>o towards a pseu-
doprocess (X;);so-

Definition 13. Let ((X});50)es0 be a family of pseudoprocesses
and (X,);5, a pseudoprocess. We say that

(XD 0 o (X0)is0 (98)
if and only if
vneN*, Vt,...t, >0, Yy,....u, €R,
-ZYI XE ~zfl X (99)
E 1 2k=1 Uit E 1 2g=1 Mt .
e e A Gl

This is the weak convergence of the finite-dimensional
projections of the family of pseudoprocesses.

In this part, we choose for the family ((X});5q)es0 the
continuous-time pseudoprocesses defined, for any ¢ > 0, by

X? = SSU/SZNJ’ t> O, (100)

where |- ] stands for the usual floor function. The quantity X7
takes its values on the discrete set éZ. Roughly speaking, we
normalize the pseudorandom walk on the time x space grid
NN x eZ. Let (X,) 5, be the pseudo-Brownian motion. It is
characterized by the following property: for any n € N*, any
.»t, = 0suchthatt, <--- <t andanyy,,..., 4, € R,

E ( e iYia .‘"kX!k) = e —c Xk (H1+"'+.‘"k>2N(tk_tk—1). (101)

We refer to [10, 18] for a proper definition of pseudo-
Brownian motion, and to references therein for interesting
properties of this pseudoprocess.
Theorem 14. Suppose that ¢ < 1/2*N7'. The following
convergence holds:

t)t>0 - (Xt)tZO' (102)

1

Proof. (i) We begin by computing the Laplace-Fourier trans-
form of X}. By definition of X;, we have that E(e i”Xf) =
E( e *Swe¥1) and then

i At iuX;
- t
L e "'E (e ) dt

- (n+ 1) —At ipeS,
= Z;) Jn£2N (S dt [E (e n)
n=

“2e?N oo

1-e AN\ i
= (M) E() (103)
n=0
1 _ —/\£2N B )
= eA (e MZN)n(eW)kIP {S, =k}
neN,keZ
I- e—/\sZN e ipe
= TG (e ,€e )
By (71), we have that
G (e—lsm eiys) - 1
’ 1—e 2™ 4 caNe 2™ sin?N (ye/2)
(104)

Actually, equality (104) is valid for A such that e < [Mo;
thatis, A > (In M, )/*". Since c is assumed not to be greater
than 1/22V71, by (42), we have that M, = 1 and (104) is valid
for any A > 0.

Now, by using the elementary asymptotics sin(ue/2) =

-

pe/2 + o(e) and e 2 1= Ae®N + o(e), we obtain that

e—0

AN ipe 1 1
Gle ,e”) ~ — —
( e—0t A+l &N (105)

As aresult, for any A > 0,

+oo : £ 1 +00 2N
lim J e—)ut[E (elMXt)dt - - _ J e—(l+q,¢ )3 dt
e—0" Jo A+ CMZN 0
(106)
from which and (101) we deduce that
I E(E) = # e (@), o)

e— 0"

Notice that the Laplace-Fourier of X, takes the simple form

+00 B . 1
J e ME (") dt =
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(ii) In the same way, we compute the Laplace-Fourier
transform of X7 .. which will be used further. We have

E(eXen) = (SN 1), Then

+00
J eME (ei” th+ez”) dt

0
00 (n+1)e?N .
Z (j N eM dt) E (e”‘ss“”)
n=0

ne

2N
-Ae”" 00

_1-e AN\ (S,
= 1 %(e ) E (e” )
= —1 _ 3A82N e)”s2N Z (e_ASZN)n(ei"S)kP {Sn = k}

neN*,kezZ

/LSZN

L[ o) 1],
(109)

As for (107), we immediately extract the following limit:

lim E (ei“ XN ) =E (ei“ Xf) .

e— 0"

(110)

(iii) We now compute the joint Fourier transform of
(X;»X;,) for two times t,, t, such that #; < t,. Using the
elementary fact that [x] — | y] € {|x — y|,[x — y] + 1}, we
observe that

d
e e a
X = X; = €S|y sen (1, o) € {68 (0,176 > ES 1yt e o1 |

= {sz—tl ’ sz—t1+£2N} :
a11)

Then, we get, for y,, 4, € R, that
E (ei(ﬂlel ‘*’!‘vzxfz)) c {[E (ei(l’ll*'ﬂz)xfl ) E (eiﬂzxfz—:l ) ,

E (ei(M"‘ﬂz)Xf] ) E (eiﬂzxfrqﬂz” )} .
(112)

By (107) and (110), we obtain the following limit:

lim E (e%xfrfl) = lim E (e%xfrfwm) =E (e%X’Z"l)

e—0" e—0"
(113)
which yields that
lim E (ei(!"lel +#2sz))
e—0F
= lim E (ei(”‘+”2)xil) x lim E (e%xfrfl)
= e (114)

-E (ei(ﬂl‘*#z)xn ) N (eil‘lertl )

- F (ei(.“lxtl +H2Xt2)) .
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(iv) Finally, we can easily extend the foregoing limiting
result by recurrence as follows: for n € N*, yy,..., 4, € R
and for any times ¢, ...,t, such thatt, <. <t,,

lim E (ei(,ule1 +-~-+yann)> -F (ei(Mth +~~-+ynX,n)) ) (115)

e—0F
The proof of Theorem 14 is complete. O

We find it interesting to compute in a similar way the A-
potential of the pseudoprocess (X,),.,. By definition of X},
we have, for any «, € R such that « < 3, P{X] € [«, f)} =
P{S,; e~ € [a/e, B/e)}. Thus,

rm NP (XE € [a, B)}dt

0
00 (n+1)e?N
(2 el lsefs2)
n=0 \ Jne? € £

1- e_ASZN X AN\ -
= Y)Y Pls.=4
n=0 kez: (116)
afe<k<p/e ]
1-— e—ASZN 00 anan
- Z [Z[P’{Sn:k}(e Ae )
keZ: n=0
afe<k<fle
22N
_ —1_3 i > Ge(e).
kezZ:
afe<k<fle

Interchanging the two sums in the above computations is
n
justified by the fact that the series Y2 P{S, = k}(e_MZN) is

absolutely convergent because of the condition ¢ < 1/2*V7",
Indeed, by (53), for any A > 0, |[P{S,, = k}| < M, = 1.

Put;(1,€) = u;(e™ ). This yields that

+00
JO

e MP{XF € [, B)} dt

117)

1 &1-u;(Ae) Ik

=—y 7 - u.:(A, &)™

NAJ.; L+u; (A s)[x/ggkzéﬁ/£ /
Suppose, for example, that 0 < & < 8. Then,
[B/e]-1
Y ouheM= Y wie)t

afe<k<f/e k=[a/e] (118)

uj(/\’ 8)[“/81 _ uj()t, s)fﬁ/ﬂ
1-u; A e)

>

where [-] stands for the usual ceiling function. By using (85),
we deduce that

2N A
u; (A, €) = 1-9; \/ZS +o/(g) (119)
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which implies that

lim MJ(A, 8)[“/81 —e ¥ ZN/\/ca' (120)
e— 0"
Therefore,
+00 1
lim J e P X} € [o, B)}dt
e—0" Jo
1 VAfca _ —¢;*NAJcB
— _a?
T2NA 2 1( 0 ) (121)

1 & ZNX F —¢; A/ Jex
= _ZN/\j:Zl <(Pj \jz L e dx |.

The case &« < 3 < 0 is similar to treat. We have obtained the
following result.

Proposition 15. The A-potential of the pseudoprocess (X,),so
is given by

Jmoe—/\t P{X, € dx} dt
0 dx

! S -0 Ve
@ Jcx .
Wzl%e ! if x>0, (122)
=

N
1 2N .
J P cxX
INWE TGN Z;(pje j if x <0.
i=

3. Part II—First Overshooting Time of
a Single Threshold

3.1. On the Pseudodistribution of (0,,S;). Let b € N*. In
this section, we explicitly compute the generating function of
(05,S})- Set, for € € {b,b+1,...,b+ N -1},

H;:,e (z) =E (Za;ﬂ{SZ:€,0;<+oo}) = ZP {o, =k. S, = ¢} 2

keN
(123)

We are able to provide an explicit expression of H, b*) ,(2). Before
tackling this problem, we need an a priori estimate for P{o, =
k,S, = ¢€}. By (62), we immediately derive that |P{o, = k,
S =0} = P{S, <b,..., S, <b,S = €}| < M¥. Hence, the
power series defining H;: ,(z) absolutely converges for |z| <
1/M,.

3.1.1. Joint Pseudodistribution of (o}, Sy )

Theorem 16. The pseudodistribution of (o}, S,) is character-
ized by the identity, valid for any z € (0,1) and any € €
{b,b+1,...,b+ N -1},

. -b k€ h( ) b -
[E(Zab]]{S;:E,a;<+oo}) (-1) Z +( ) w 1’

(124)
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where s;((z) = 1 and fork € {1,...,N}, € € {1,...,N - 1},

spe(2) = Z

1<i; <<ip<N

u; (2) -y, (2),

(125)
@ =[] [4@-u@)].

1<jsN

i*k
Proof. Pick an integer k > b. If S, = k, then an overshoot of
the threshold b occurs before time 7: 0, < n. This remark and
the independence of the increments of the pseudorandom
walk entail that

P{S, =k} =P{S, =ko, <n}
n b+N-1
=Y Y P{S,=ko, =}, =t}
j=0 ¢=b
b+N-1

Il
.MS

-
]
(=}
o
1l
S

Ploy = .S, =€} P{S, ;=k-¢}.

(126)

Since the series defining G, (z) and H, ,(z) absolutely con-
verge, respectively, for z € (0,1) and |z| < 1/M,, and
since M; > 1, we can apply the generating function to the
convolution equality (126). We get, for z € (0, 1/M,), that

b+N-1
Gi(2)= ) Giy(2)Hyy(2). (127)
e=b
Using expression (94) of G, namely, Gi(z) =

Z;\;l ocj(z)uj(z)k for k > 0, where a;(z) = 1/[N(1 - 2)] x
[1—u;(2)]/[1 + u;(z)], we obtain that

N b+N-1 1+
2.a(2) uj(Z)k< Y uh’(ez(;) - 1> =0, kxb+N-1.
=1 e=b Uj

(128)

Recalling that vi(z) = 1/uj(z) and setting &;(z) =
a2 (e Hyy(2)vi(2)" - 1), system  (128)
Z;\il oc](z)u](z)k = 0,k > b+ N — 1. When limiting
the range of k to the set {b + N,b+ N + 1,...,b + 2N — 1},
this becomes a homogeneous Vandermonde system whose
solution is trivial: &;(z) = 0,1 < j < N. Thus, we get the
following Vandermonde system:

reads

b+N-1

Y Hy,(@)vi(2)' =1, 1<j<N. (129)
¢=b

System (129) can be explicitly solved. In order to simplify the
settings, we will omit the variable z in the sequel of the proof.
It is convenient to rewrite (129) as

b+N-1

Y Hpi'=uj, 1<j<N. (130)
£=b
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Cramer’s formulae yield

AR
be =
V(vy.oovy)
where
1 v v{\H
1 v AR
V(v.covn)=| 2 ’
1 vy v%_l
and, forany € € {b,...,b+ N - 1},
1 v vf_b_l
1 v, SLbl
V[(Vl,...,VN): 2
1 vy vi}b_l

b<l<b+N-1,

(131)

1<i<j<N

b C—-b+1 N-1
ul Vl .o Vl

b 0-b+1 N-1
uz V2 e 1}2

b -b+1 N-1
uN ‘VN e ‘VN

(133)

This last determinant can be expanded as Zi\; uZng(vl, ceo

.Vl

© Vi1

© Vel

. VN

Vie1> Vs> - - -» V) with, for k € {1,..., N},
Vie (Voo Vi Vi1 -+ V)

€ b-1 £-b+1

1 Vl e 1 0 Vl ..
£-b—1 £-b+1

L vy vy 0vy -
£-b—1 € b+1

— 1 Vk e vk 1 k .
£—b-1 £-b+1

L vy o Vi 0 vy
L’ b 1 £-b+1

1 VN N 0 VN ..

In fact, the quantity Vi, (v;, ..

ficient of x“~ in the polynomial

1 v

Vi1 Vit - -

N-1

N—l

© Vi1

N-1

© Vi

N—l

.VN

N-1

N-1
N (134)
Yk

N-1

N—l

., V) is the coef-

(135)
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which is nothingbut Vi(v,, ..., vi_;, X, Vi, 1> . . . Vn)» the value

of which is

[T (=) TT =) [T -9
1<i<j<N 1<i<k-1 k+l<i<N

ik

H1<1<]<N ( )

[hsien (v =)

[1 Ge-v

1<i<N
itk

X — Vi
o) 15— (136)

I<i<N
itk

ux—1
S VN) H Uy
1<i<N Ug—u

itk

=V (...

=DV (v,

N-1
_ N-1 Y
=(-1) -

L VN) H (wx—1).

1<isN
itk

Using the elementary expansion nggkN(uix -1 =
i+
> e::)l (—1)N717es,:€ x%, we obtain by identification that

Vie (Vs oo > Vit Vists -+ - V)
b Y zlj ! (137)
_( 1) + Skf bV(Vlw-uVN).
Py

Plugging this expression into (131), we then derive for Hj, ,(z)
representation (124) which is valid at least for z € (0,1/M,).
Finally, we observe that (124) defines an analytical function
in (0, 1) and that H;) ,(z) is a power series. Thus, by analytical
continuation, (124) holds true for any z € (0, 1). O

Example 17. For N = 1, the settings of Theorem 16 write
s10(2) = py(2) = 1. Then, formula (124) reads

- b
E (2% Vi pop cront ) = (@) (138)

where u,(2) is given in Example 10. Of course, in this case,
the condition S; = b is redundant since we are dealing with
an ordinary random walk with jumps of one unity at most.
When ¢ = 1/2, this is the classical symmetric random walk
and (124) recovers the most well-known formula in random
walk theory:

() - (102 )

z

(139)

For N = 2, the settings of Theorem 16 write

Sle(@ =50 =1 57, =u,(2), s;,()=u(2),

P (2) = uy (2) —uy (2),
(140)

Pl () =u(2) -1y (2),
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where 1, (z) and u,(z) are given in Example 10 and (124) reads

u ()" - uy ()"
E (Z 1 {S;=bo} <+oo}) u; (2) —u, (2)
£ )—udauxm“*—uﬂﬂudﬂml
{S;=b+Lof <+oo} ) = uy (2) —u, (2)

(141)

Remark 18. We have the similar expression related to o,
below. The analogous system to (129) writes as

a

Y H,,(2)u2)" =1,

¢=a—-N+1

1<j<N, (142

where H, ,(z) =

E(z% 1 {S-=£,0-<+c0})- The solution is given by

E(z%1 _ - Ske-a (2) a+N-1
(z {s;:e,a;<+oo}) =(-1) Zp‘— u(2) ,

ia (@)
(143)
where s ((z) = 1and, fork € {1,...,N}L, € {l,...,N -1},
Sie(2) = v, (2)--v (2),
ke lsil<Z-<iesN 1 ‘ (144)
iyie £k
- (2) = v (2) = v (2)].
pi (2) LLh(),(ﬂ 5
j#k

The double generating function of (¢}, S;) defined by

b+N-1

Z E (ZU; 1 {s;:e}) ¢

£=b

[E (z% Csb “ {O';<+OO}) = (146)

admits an interesting representation by means of Lagrange
interpolating polynomials that we display in the theorem
below.

Theorem 19. The double generating function of (o,,S;) is
given, for any z € (0,1/M,) and { € C, by

N
[E(zahcsbu {g;<+oo}) Z @0 (e ()0, (147)
where
L(Zf)=l_[M kefl,...,N}
S lsjsNVk (z) - V; (2) ’ T o (148)

j*tk

are the Lagrange interpolating polynomials with respect to the
variable { such that L, (z, vj(z)) = 8]k
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Proof. By (131) and by omitting the variable z as previously
mentioned, we have that

+ gt
E (Zabc bﬂ{a;<+oo})
b+N-1 b+N-1
K H ot = R Ve(Vi-ovn) e
2 1 L V)
v v Vi VN
biN-1 / N
- +Z < ukae (Vl""’Vk—l’vk+1>""VN))CZ
= k
o \& V(v vy)
N /btN-1
- Z + Vie (V1 - "’Vk—l’vk+1>""VN)C€b) (u C)b
= k
Pt V(vy.ooovy)
N v/
- (vl,...,vk,l,C,ka,...,vN) b
= Z (<)
k=1 V(vps..svy)
(149)
It is clear that the quantity V(vy,...,vi 1, Vieps - V)/
V(v,,...,vy), which explicitly writes as
1 v - V{\FI
Loy o "kN iy
Lg e
1 vy = Ve (150)
1 v;\, - v?’;’l
1 v -vf”l ’
i v;\, v%‘_l

defines a polynomial of the variable { of degree N — 1 which
vanishes at v, ..., vi_;,Vi,1> - - -» vy and equals 1 at v.. Hence,
by putting back the variable z, it coincides with the Lagrange
polynomial L (z,{) and formula (147) immediately ensues.

O

Example 20. For N = 2, (147) reads

E (ZU;(SZH{UZ<+w}>
) b (v, (2) p (v (2) >
=¢ <u1(z) " -G a(2) v, (2) - v, (2)
_ Cb b+1 b+1
S @ -2 (12" - u(2)")

oy (2)u (2]

(151)

+ (1) (2) uy(2)°

This is in good agreement with the formulae of Example 17.
We retrieve a result of [21].

3.1.2. Pseudodistribution of Sj,. In order to derive the pseu-
dodistribution of S, which is characterized by the numbers
H;,(1),¢ € {b,b +1,...,b + N — 1}, we solve the system
obtained by taking the limitin (129) asz — 1.
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Lemma 21. The following system holds:

b+N-1

> ()

l=k+b (152)
=(-1) <b+k1 ) 0<k<N-1.

Proof. By (85), we have the expansion vj(z) = l/uj(z) =1-
O(N1-z)foranyj € {1,...,N}
Putting this into (129), we get that

s]-(z), where ej(z) =
z—1"

b+N-1

S (1-6@) H, @ =(1-¢@) "5 (153)
o=b
that is,
N-1 b+N-1
(—1)k< Y (‘?;b)Hg,g(z)>ej<z>"
k=0 e=b+k
e ( _kb>e @) (154)
k=0
S (b+k-1
- Z( b-1 > 12"
k=0
Set
b+N-1
M@=y ()@ (PP,
0=b+k N (155)
R; () = g_ZN(be] He@r.
Then, equality (154) reads
N-1
Y My (2)e;(2) =R;(2), 1<j<N.  (156)
k=0

This is a Vandermonde system, the solution of which is given

by M,(z) = Vi(2)/V(2),0 < k < N — 1, where
1 & (z) - @'
N-1
V() = 1 g .(z) . sz(z.) ,
1 ey(z) - exy(@N!
Vi (2)
1 g (z) - el(z)kil R, (z) 81(Z)k+1 81(2)N71
1 6@ - 8@ R 6@ - 6@
1 en(@ - @ Ry (@) en(@™ - en(@™!

(157)

Since, by (85), €;(z) ~ constant x X1 -zforany j €
z—1"

{1,..., N}, we have that
V@ = [] len(@)-2@)]

1<t<m<N (158)
~ constant X (1 — z)(I\H)/4

z—1
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and second,
R;(2) s <b ZN ) (z)N ~ constant x V1 — z
(159)
which implies, for k € {0,..., N — 1}, that
Vi (2) = 0 [(1 _ Z)l/z+(21sm£N—1,m$km)/(ZN)]
o (160)

=0 [(1 - z)(N_l)/4] .

Therefore, lim, _,;-M;(z) = 0. On the other hand, for z €
(0, 1), referring to the definition of M, (z), we can see that the
quantity Hj ,(z) can be expressed as a linear combination of
the M (z)’s plus a constant. Hence, the limit lim, _, ,- H; ,(2)
exists and, by appealing to a Tauberian theorem, it coincides
with Hy ,(1). This finishes the proof of (152). O

Theorem 22. The pseudodistribution of S} is characterized by
the following pseudo-probabilities: for any € € {b,b+1,...,b+
N-1},

P{S, = ¢ 0, < +oo} = (- l)be(E b><b+IZ—l>.

(161)

Moreover, P{o, < +oo} = L.

Proof. We explicitly solve system (152) rewritten as

N-1
Y <£)H;£+b(1) - (-1)"<be; 1), 0<k<N-L
0=k

(162)

The matrix of the system is ((£)) which admits

0<k,l<N-1
((—1)k+e (£ )) as an inverse with the convention of
0<k,e<N-1

settings () = 0if k > £. The solution of the system is given,
for € € {0,1,...,N — 1}, by

Hl:ew(l):Ig(_l)kH( > % (1) <b+k1 >
- ("8 );:(Zilz:i)
- (-1) (“el )<b+bl+ve_l>

(-1 m(N;l><b+ZZ—l>.

This proves (161). Now, by summing the P{S; = ¢,0, < +0co},
b <€ <b+ N -1, given by (161), we obtain that

. b+ N-1\"E1-D)f (N-1
Plap <sooh = (TF) 3 SR (720)

_b<b+N—1>N‘1(—1)f (N—l)
- b Ze+b\ € )

(163)

(164)
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Writing 1/(€ + b) = JOI x4 dx, we see that

N-1 (_1)5 (N_ 1)
Ze+b\ ¢

N-1
-, < > (N xf> #lax 069)
0\ ¢=0
N1 b1 g, - N DHB - D!
J(l %) = = N

Hence [I:"{cr;r < +00} = 1. The proof of Theorem 22 is finished.
O

In the sequel, when considering S;, we will omit the
condition 0, < +0o0.

Example 23. Let us have a look on the particular values
1,2,3,4 of N.

(i) Case N = 1. Evidently, in this case S; = b and then
P{S, =b} =1 (166)

This is the case of the ordinary random walk!

(ii)) Case N = 2. In this case the pseudorandom variables
&, n € N have two-valued upward jumps. Then the
overshooting place must be either bor b + 1: S € {b,b + 1}.
We have that

P{S, =b}=b+1, P{S, =b+1}=-b. (167)
Of course, we immediately see that P{S; = b} + P{S; =
b+1}=1.
(iii) Case N = 3. In this case S}, € {b,b + 1,b + 2} and
PiS; =b) = %(b+ Db+2),
P{S, =b+1}=-b(b+2), (168)

[P’{S;j:b+2}:%b(b+1).

We can easily check that P{S} = b} + P{S; = b+ 1} + P{S} =
b+2}=1.

(iv) Case N = 4. In this case S}, € {b,b+1,b+2,b+ 3} and
PiS =b) = é(b+1)(b+2)(b+3),
P{s; =b+1}=—%b(b+2)(b+3),
) (169)
P{S, =b+2}= Eb(b+1)(b+3),
p{s: =b+3}:—éb(b+1)(b+2).

We can easily check that P{S} = b} + P{S, = b+ 1} + P{S} =
b+2}+P{S, =b+3} =1
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3.1.3. Pseudomoments of S;,. In the sequel, we use the notation
(i), =i(i—-1)(i-2)---(i-n+1)foranyi € Zand anyn € N*
and (i), = 1. Of course, (i), = i!/(i — n)! and (i), /n! = () if
i > n. We also use the conventions 1/i! = 0 for any negative
integeriand ), . = 0ifi > j.

In this section, we compute several functionals related
to the pseudomoments of S;. More precisely, we pro-
vide formulae for E (Sb B),] (Theorem 25), [E[(Sb b),]
(Corollary 26), E[(S; ),)- and E[(S;)"] (Theorem 27).

Putting the elementary identity 1/(€ + b) = '[01 £ dx
into the equality

eren- (") Y et (V) @
e ()
(170)

we get the following integral representation of E[ f(S;)].

Theorem 24. For any function f defined on {b,...,b+ N -1},

elrspl-e(" YY)

N-1
x Ll (;0(—1)6<N€‘ 1>f (£ +D) x‘f> x"dx.

(171

Theorem 25. For any integers n > 0 and f, the factorial
pseudo-moment of (S, — B) of order n is given by

E[(S; - B).]

[ (b—[})! nA(N-1)
b-1)!

k (k+b—1)! n
1) (k+b-B—-n)! <k)

ifp<b,

k:OV(nJr[;—b)

(="
b-1!(B-b-1)!
nA(N-1)
X Z (k+b-1D!(f-b+n-k-1) <k>

ifB=b+1.
(172)

Ifn < N -1, we simply have that

(B+n-1).
(173)

E[(S; = B)ul = (=B), = C1'B(B+1) -
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Proof. By (171), we have that

E[(S; ~B).]

=0
(174)
Next, by observing that (£ + b — B), x“™*7" = x""F1 x
(d"/ dx™)(x***P), we obtain that
N-1
Y (-1f (N; 1) (e+b-p) <"
£=0
N-1 n
_ Z <(_1)e <N— 1) dar (x€+b—ﬂ)>xn+ﬁ—l
=0 ¢ dx"
- (175)

n N-1
- dd " ( Z (-1)° (N; 1> x“b_ﬁ) Pl
X\ 20

B dd:n ((1 : x)N—lxb—ﬁ) B

Applying Leibniz rule to (175), we see that
N-1
Y (1) (N
=0

>

n
>

0
nA(N-
2

g_ 1) (f +bh— ﬁ)nxhb—l

dk - dn—k - s
() e @) S ) )2
1)

(1) V- 6= B,

w (1 = x) N1k kb1

(176)
Therefore,

({5

£=0

nA(N-1)
5 ntev- o~ B, ()

k=0

e_l>(£+b—,8)n x"”’1> dx

1
« J' (1 — N1k b1 g
0

nA(N-1)
Z D (N = 1) (b= ), <Z>
k=0

“ (N-1-k)!'(k+b-1)!
b+N-1)
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[ (b-B) (N -1)!

b+N-1)!
nA(N-1)

(k+b-1)! <n
X I A
k—Ov%ﬁb)( )(k"'b_ﬁ_”)! k>
_ if < b,
D@y -1!
(B-b-1)!(b+N-1)!
nA(N-1)
k+b-1D)!(B-b+n—-k-1)! <k>

* L
ifB=b+1.

(177)

Finally, plugging (177) into (175) and (174) yields (172).
Assume now thatn < N-land B < b.Ifn>1- f3, we
can write in (172) that

(k+b-1)l &
(ktb-B-n)  dxPml (=)

(178)

x=1
Then,
& 1y krb-DL ()
k=0v(n+f-b) (k+b-p-m!\k
a (k+b-1)!
Z( b n),< )
dﬁ+n 1

Wl[(i w<> )

dﬁ+‘rl—l
dxpn-1 <(

= Y (D b = Do (’3 o 1)

k=0

x=1

179)

x ((1 _ x)n—kxk+b—ﬂ—n)

x=1
= (-1, (b~ Dy (ﬁ . 1)

L= (B+n-1)
(b—ﬁ)!(ﬁ—l)!

p(gr1)--

=(-1

_(1

(b ﬁ)' (B+n-1).

Putting (179) into (172) yields (173). If n < — 3 (which requires
that 5 < 0), in (172), we write instead that

(k+b-1)! 1
(k+b-B-n)

(180)
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Then,
nA(N-1)
(k+b-1)! n
L
k:OV(n+ﬁ—b)( ) (k +b- ﬁ - T’l)' <k>
_ k+b-1) (n
Z( 1) (k+b ﬁ n)l< )
1

RS B k<n> k\ b1, \-n-B
XL(I;( 1) )X ) (1-x)""dx

1 Vo _
__(-D(-p)
(b—ﬁ)!(—n—ﬁ)!

= Dleigin)...

-V G

(B+n-1).
(181)
Putting (181) into (172) yields (173) in this case too.
Assume finally thatn < N — 1 and 8 > b + 1. We write in
(172) that

(k+b-1)!(B-b+n-k-1)

1 (182)
=(B+n-1)! j K1 = )P g
0
Then
nA(N-1)
Y (k+b-1D1(B-b+n—k- 1)!(2)
k=0
=(B+n-1)
! - (n X k b-1 B-b+n—1
XJO|:,§<k><m>:|x (1-x) dx
1
=(B+n-1) J K1 - )PP dx
0
(B+n-1)!
-DI(B-b-1) .
(183)
Putting (183) into (172) yields (173). O

By choosing 8 = b in Theorem 25, we derive that

1 & (k+b-1)
b-1) 2 (D (k —n)! <k>

k=n
(184)

E[(S; -b),] =

19

We immediately obtain the following particular result which
will be used in Theorem 28.

Corollary 26. The factorial pseudomoments of (S, — b) are
given by
(-b), if0<n<N-1,
E[(S, -b),] = g 185
(5, =), ][0 if n> N. (185)

The above identity can be rewritten, if 0 <n < N — 1, as

f[(5)] e ()

Moreover, since S; € {b,b+1,...,b+ N — 1}, it is clear that
Sy =b)(S, —b—1)---(S; ~b—N+1) = 0 which immediately
entails that (S — b),, = Oforanyn > N;then E[(S; —b),] = 0
for n > N as stated in Corollary 26.

By choosing 8 = 0 in Theorem 25, we plainly extract that
[E[(SZ)n] =0forn € {1,...,N — 1}. Moreover, as previously
mentioned, (S;), = 0 for any n > b + Nj; then E[(S}),] =
0 forn > b + N. Actually, we can compute the factorial
pseudomoments of S, E[(S;), ], forn € {N,N+1,...,b+N}.
The formula of Theorem 25 seems to be untractable, so we
provide another way for evaluating them.

(186)

Theorem 27. The factorial pseudomoments of S;, are given by

(1)N1<N )(b+N 1),

if N<n<b+N-1,
0 ifl<n<N-lorn>b+N.

E[(Sy),] = (187)

Moreover, forn € {1,...,N — 1}, the pseudo-moment of S of

order n vanishes:

E[(s)] =0,

b+ N-1) (188)

e[s)"] = oV B -

Proof. We focus on the case where N <n < b+ N - 1. We
have that

N-1
E[(S;),]= D P{S; =¢+b}(£+D),
£=0
N-1
:b<b+llj_l) S (i +b-1),, (Ne‘1>.

=0
(189)
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The intermediate sum lying in the last displayed equality can
be evaluated as follows: by observing that (¢ + b — 1),_; =

(d™! /dx"fl)(xm’*l)lx:1 and appealing to Leibniz rule, we
obtain that

N-1

Y e b-1),, (N )

e (S ()

|
&

: :
/_\
IDMT
,\
'::

x=1
a! -
— dxn : ((1 )N lxb 1) B
B n-1 n—1 d] N1 dn—l—j bt
B j ;*1 < '] > @ ((1 B x) ) x=1 dxn—l—j (x ) x=1

=DV N - (ﬁ‘_ﬂ) (=D,

= (- b-1!n-1)
n-N!(b+N-n-1)

(190)

Consequently,
b-Dln-1)

+ 1, (b+ N -1
[E[(Sb)n]=(‘1)Nlb< b )(n—N)!(b+N—n—1)!

(n-1)!(b+N-1)
n-NY(N-D)G+N-n-1)
(191)

="

This is the result announced in Theorem 27 when N < n <
b+N -1

Next, concerning the pseudomoments of S, we appeal
to an elementary argument of linear algebra: the family
(1, X, X,,...,X,,) (recall that X;, = X(X - 1)---(X -
k + 1)) is a basis of the space of polynomials of degree not
greater than n. So, X" can be written as a linear combination
of X;,X,,...,X,. Then UE[(SZ)"] can be written as a linear
combination of the factorial pseudomoments of S} of order
between 1 and #. The latters cancel forn € {1,...,N — 1}. As
aresult, E[(S})"] = 0.

The same argument ensures the equalities [E[(SZ)N] =

[E[(SZ)N], which is equal to (-1)N"'(b + N - 1)y, and
E[(S, -b)y] = [E[(S;)N] + (=b)Y which vanishes. Each of

them yields the value of [E[(SZ)N].
The proof of Theorem 27 is completed. O

3.2. Link with the High-Order Finite-Difference Operator. Set
A" f(i) = f(i+1)— f(i) foranyi € Zand (A*)) = AT o... 0 A"

j times
forany j € N*. Setalso (A")’ f = f. The quantity (A" is the
iterated forward finite-difference operator given by

J*"( ) fi+k). (192)

(A )f(z)—Z

k=0

International Journal of Stochastic Analysis

Conversely, f(i + k) can be expressed by means of (A*)jf(i),
0 < j <k, according to

fl+k) = i (’j) A £ G).

j=0

(193)
We have the following expression for any functional of the
pseudorandom variable Sj.

Theorem 28. One has, for any function f defined on {b,b +
.,b+ N -1}, that

+ 2 i(j+b-1 +\J

elropl= 2o (70 ) @yre. oo

Proof. By (193), we see that
" S
[E[f(sb)]=[E<z(bJ )(A)f(b)>

j=0

(195)

-YE[(5 ) ey
=0 J
which immediately yields (194) thanks to (186). O]

Corollary 29. The generating function of S} is given by

E(¢%) = cZ(“b Na-o'

Proof. Let us apply Theorem 28 to the function f(i) = e
for which we plainly have (A")’ f(i) = (-1)’C'(1 - {)’. This
immediately yields (196). O

(196)

Remark 30. A direct computation with (161) yields the alter-
native representation:

E((53)=b<b+1;7‘1

Of special interest is the case when the starting point of
the pseudorandom walk is any point x € Z. By translating b
into b—x and the function f into the shifted function f(:+x)
in formula (194), we get that

)(b Jl xh_l(l — )N dx. (197)
0

E [ (S5)] € E[f (x+55,)]
_ = ji(j+b-x-1
= JZOH) ( j

Thus, we obtain the following result.

(198)

)(A*)ff ®).

Theorem 31. One has, for any function f defined on {b,b +
.,b+ N — 1}, that

E, [f(S;)] ZPb]<x)(A)f(b> (199)
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with Py (x) = 1 and, for j € {1,...,N - 1},

(200)

15
~[]&x-b-k).
M=o

The P,:j, 0 < j < N -1, are Newton interpolating polynomials.
They are of degree not greater than (N — 1) and characterized,
foranyk €1{0,...,N -1}, by

P;tj(x)z

(AP (b) = (201)

Proof. Coming back to the proof of Theorem 28 and appeal-
ing to Theorem 22, we write that

R [(%)

:[E[<S,jx+x b)]
N-1 (202)
<m> {S_,=b-x+m}
m=j J
1 & o N-1
ECEn2 (7)o
where, for any m € {0,...,N - 1},
(IS b -x+k)
Km(x): (b—x+m) =0<k1;[]71(b—x+k) (203)
k#m

The expression K,,(x) defines a polynomial of the variable x
of degree (N - 1), 50 P, jis a polynomial of degree not greater
than (N-1).Itis obvious that K,,,(b+¢€) = 0for € € {0,..., N—
1}\ {m}. On the other hand, K,(b+¢€) = (-1)*(N-1)!/( N,
By putting this into (202), we get that

¢
thj b+¢e) = <].)1]U£e}. (204)
Next, we obtain, for any k € {0,..., N — 1}, that
k k k+€ k
(A") bej (b) = ;0(—1) * (e)P;J (b+o)
k
k\ (¢
=Y (- <€> < ) (205)
- J
=]
s () 5o (55) -
The proof of Theorem 31 is finished. O

We complete this paragraph by stating a strong pseudo-
Markov property related to time oy, .
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Theorem 32. One has, for any function f defined on Z and
anyn € N, that

S (AYVE[F(S)]. (206)

Ec [ (Sopn)] = Z

In (206), the operator (AYY acts on the variable b.

Proof. We denote by P, the pseudoprobability associated
with the pseudoexpectation E,. Actually, it represents the
pseudoprobability related to the pseudorandom walk started
at point x at time 0. We have, by independence of the & s, that

Ey [f (Soyon)]

= Y E[lgsaf (S +&m+-

k,leN:
b<f<b+N-1

= Y Poy=kS =CE[f(e+E+
k,leN:
b<f<b+N-1

+ Ek+n)]

+E)]

b+N-1

Z {Sy = eHE[f (S,)]

= E [Es; [£ (S]]

(207)

Hence, by setting g(x) = E, [ f(S,)], we have obtained that

IEx [f (Scr;+n)] = [Ex [g (S;)] (208)

which proves (206) thanks to (199). O]

Example 33. Below, we display the form of (206) for the
particular values 1,2, 3 of N.

(i) For N = 1, (206) reads

Es [f (Sorn)] = Eo [£ (S0)] (209)

which is of course trivial! This is the strong Markov
property for the ordinary random walk.

(ii) For N = 2, (206) reads

IEx [f (Songn)] = IEb [f (Sn)] +(x-b) A+|Eb [f (Sn)]
=(b-x+1E, [f(S,)]
+ (-x - b) [Eh+1 [f (Sn)] '

(210)
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(iii) For N = 3, (206) reads
[Ex [f (Sa;+n)] = [Eb [f (Sn)] +(x-b) A+[Eb [f (Sn)]
F2 =B =b- 1 () B [£(5,)

= S -b- 1) (x-b-2)E, [£(5,)]
_(x_b) (X—b—Z) [Eb+1 [f(Sn)]

+§(x—b)<x—b— D) Eyes [£(S,)].
(211)

3.3. Joint Pseudodistribution of (1, , X, ). Below, we give an ad
hoc definition for the convergence of a family of exit times.

Definition 34. Let ((X});0)e>0 be a family of pseudoprocesses
which converges towards a pseudoprocess (X,),., whene —
0" in the sense of Definition 13. Let I be a subset of R and set

=inf{t >0:X] ¢ I}, X] = Xi; and1; = inf{t >0: X, ¢

ILX; = X,..
We say that
(X)) =2, (0 X5) 12)
if and only if
VA>0, VueR,
—Aty+ipX; —Atp+iuX,
E (e o ]]{r§<+00}) £_7;+ E (e e I]]{TI<+oo}) :
(213)
We say that
¢ e Xr (214)
if and only if
iuX: iuX
ViR, E(" M) — E(" M T c0).
(215)

Asin Section 2.3, we choose for the family ((X}),50)ss the
pseudoprocesses defined, for any & > 0, by

Xf = SS[t/SZNJ’ t> 0, (216)
and for the pseudoprocess (X,),s, the pseudo-Brownian
motion. For I, we choose the interval (-0, b) so that 7} = 7, ",
X7 =X; and1; =1}, X; = X.Setb, = [b/e] where[-]isthe
usual ceiling function. We have 7{" = Vo, and X;" = €S, .

Recall the setting ¢; = —ie/(GImDRNIT 1y o s N.

Theorem 35. Assume that ¢ < 1/2*N7". The following conver-
gence holds:

(%5 X)) = (mX5), (217)
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where, for any A > 0 and any p € R,

At +iuX;
E (e T +ipX,, H{Tb<+00}>

l(’T‘M _ 2N
_elﬂbz H ( _ZNJ )e‘Pk\/r/Ch.
k= 11<]<N(P] 90k 1<j<N VA e
j#k jtk

(218)

Proof. We already pointed out that the assumption ¢ <
1/22N7! entails that M., = 1. Therefore, (147) holds for

z = e < 1/M,, = 1, thatis, for A > 0. So, by (147),
we have, for A > 0, that

-1 Xet
[E( Th Xy H{T”<+oo}>

_ “AeNof tipeS;
= [E(e be bs‘“{o‘;;<+c:}
N
. 22N .28\ b
= e/tebe E Ly (e Ae ,e'”e) uk(e Ae ) )
k=1

Recall that we previously set uj(/\, & =u j(e_ASZN). Thanks to
asymptotics (119), we get that

(219)

| A
ue (A e) —u; (A e) o (#; - ) \/Zs’

iue X .
1-u;(Ae)e o (go] \/——m)s.

;N e —ip
1<j<N ((Pj - G"k) WA /e

j*k

(220)

Thus,

lim L, (e ( e ZN,ei”s) =

£—> 0"

- H ? ( _ 1‘le4)
1<j<NPj ~ Pr1<jen NA/e
j*k jtk
(221)

Finally, we can easily conclude with the help of the elementary
limits that

Jim &= lim (L) = eV 2
O

Theorem 36. The following convergence holds:
X o X (223)

where, for any y € R,
iuX, mb l!’lb J
G S Z (224)
j=0
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This is the Fourier transform of the pseudorandom variable X/ .
Moreover,
P {7, < +oo}=1. (225)

Proof. By (194), we have that
X ipeS;
E (e . “{r;+<+oo}) =E (e . {cf;’£<+oo}>

N-1 . .
_ oiteh, j+b -1 e J
=e Z(bgil (l—e )

k=0

(226)

We can easily conclude by using the elementary asymptotics

that
lim el = ¢t <j+bs_1) ~ b—]
3 Va1 ) 5o 39 )
1 — et I i
( ¢ ) e— 0" ( l[/le)
O
Corollary 37. The pseudodistribution of X}, is given by
P{X; € dz} b/ G)

This formula should be understood as follows: for any
(N — 1)-times differentiable function f, by omitting the
condition 7, < +00,

N-1 b
E[f(X;)] = Z(—l)’7f<” (b). (229)
j=0 :

We retrieve a result of [11] and, in the case N' = 2, a pioneering
result of [18].
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4, Part III—First Exit Time from
a Bounded Interval

4.1. On the Pseudodistribution of (04, S,,). Let a, b be two
integers such thata < 0 < bandlet & = {g,a—-1,...,a -
N+1ju{b,b+1,...,b+ N - 1}. In this section, we explicitly
compute the generating function of (0,4, S,,). Set, for £ € &,

Hye(z) =E (Z%b]]{sab=€,(fab<+oo})

(230)
= Y Plog =kS, =€} 2~
keN

We are able to provide an explicit expression of H,, ,(z). As
in Section 3.1, due to (62), we have the following a priori
estimate: |P{oy, = k.S, = €} < |P{S; € (a,b),...,S_; €
(a,b),S, = ¢} < Mf As a byproduct, the power series
defining H , ,(z) absolutely converges for |z| < 1/M,.

4.1.1. Joint Pseudodistribution of (0,4, S,p)

Theorem 38. The pseudodistribution of (0, S,p,) is character-
ized by the identity, valid for any z € (0, 1),

U, (11 (2) ... Uy (2))

E (27?1 _, = , (231
( {Sap »Uab<+00}) U(ul (2),.. Uy (Z))
where
U (ty,...,tyyN)
1 u, e ui\l—l utlz—a+N71 . ullafquZNfZ (232)
R T,

and, ifa - N +1<€<a,Uy(u,,...,uyy) is the determinant

1 u X u€+N—a—2 uN—a—l u€+N—a . uN 1 ub—a+N—1 ub—a+2N—2
1 1 1 1 1 1 1
: S (233)
1 . £+N—-a-2 N-a-1 ¢+N-a N-1 b-a+N-1 b-a+2N-2
UN U)N 2N 2N U)n YN 2N
and ifb <€ <b+ N -1, Up(uy, ..., u,y) is the determinant
1 u, - ull\l—l ulla—aJrN—l . uerN—a—Z u{\]—a—l ui’+N—u . u?—tHZN—Z
: (234)
N-1 b—a+N-1 ¢+N-a-2 N-a-1 ¢+N-a b—a+2N-2
L uyy =0y Upy N, 2N 2N )N,
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Proof. Pick an integer k such thatk < aork > b. If S, = k,
then an exit of the interval (a, b) occurs before time n: 0, < n.
This remark and the independence of the increments of the
pseudorandom walk entail that

P{s, =k} =

=Y Y P{S, =k 0y =Sy = €}

P{S, = k,0,, <n}

j=0¢c&
=Y Y P{oy = jsSu = RS, =k-¢}.
j=0¢c&
(235)

Thanks to the absolute convergence of the series defining
Gi(z) and H, ,(z) for z € (0, 1) and |z| < 1/M, respectively,
we can apply the generating function to equality (235). We
get, for z € (0,1/M,), that

Z Gy (2)

433

G (2) = Heape (2). (236)

Using expression (94) of G, namely, Gi(z) =

Z] o(2) u; (z)'kl, we get, for k > b+ N - 1 (recall
that v. (z) = l/u (2)), that

Z(x (Z e (2) V(@)

e

1> =0, (237)

and, fork <a - N + 1, that

N
Yo, (2)vi(2) ( Y Hypp (2) ui(2)° - 1) =0. (238)
j=1

te&

When limiting the range of k to the set {b+N,b+N+1,...,b+
2N —1}in (237) and to theset {a—2N +1,a—2N +2,...,a—
N} in (238), we see that (237) and (238) are homogeneous
Vandermonde systems whose solutions are trivial; that is, the
terms within parentheses in (237) and (238) vanish. Thus, we
get the two systems below:

Y Hyp(@)ui2)° =1, 1<j<N,
€&
(239)
Y Hyp(2)v(2) =1, 1<j<N.
e&

It will be convenient to relabel the uj(z)’s and vj(z)’s, 1<j<
N,asu;(z) = vJ+N(z) and v, i(2) = uj,n(2); note that vi(z) =
1/u;(z) for any j € {1,. 2N} and {u;(2),...,uyn(2)}
{vl( > Van(2)}. By usmg the relabeling uj(z), v]-(z), 1<
js 2N we obtain the two equivalent following systems of 2N
equations and 2N unknowns, u;(z),...,u,N(2z) for the first

one, v,(2), ..., v,N(2) for the second one:
ZHab,f (Z) uj(z)e = 1, 1< ] < 2N, (240)
te®
Y Hue@vi(2) =1, 1<j<2N. (g
ed
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Systems (240) and (241) are “lacunary” Vandermonde sys-
tems (some powers of uj(z) are missing). For instance, let us
rewrite system (240) as

Y Hyp (@) ui(2) N =u(2V ™, 1< j<2N.
te&
(242)

Cramer’s formulae immediately yield (231) at least for z €
(0, 1/M;). By analyticity of the u;’s on (0, 1), it is easily seen
that (231) holds true for z € (0,1). Systems (240) and (241)

will be used in Lemma 42. O

A method for computing the determinants exhibited
in Theorem 38 and solving system (242) is proposed in
Appendix A1 In particular, we can deduce from Proposition
A3 an alternative representation of E(z°*1 (S.4=6,0,<+00})
which can be seen as the analogous of (124). Set sy(z) = 1
and, fork, € € {1,...,2N},

se(2) = Z

1<) <<i,<2N

[ @ -],

1<i<2N
itk

u; (2)---uy, (2),

(243)
P (2) =

s1.0(2) = 1, 5¢,,(2) = 0 for any integer m such that m < —1 or

m > 2N and, form € {1,...,2N — 1},
Siem (2) = u; (2)u; (2).
" 12 N " (244)
i1 yeeerlpy # k
Set also
sy (2) sn-1 (2) * SN-bra+2 (%)
— SN+1 (Z) SN (Z) *t SN-btatl (Z)
U (Z) = . . . >
SN+b-a-2 (2) SN4p-a—3 (2) - sy (2)
SN (2) Sk,N-1 (2) * Sk N-bras+1 (%)
Sk (2) sk (2) Sk,N—b+a (%)
Uge (2) = : :
SkN+b-a-2 (2) SkN4b-a-3 (2) 0 Spn-r (2)
SkN+b-e-1 (2) SN2 (2) 0 Si Ntae (2)
(245)

Then, applying Proposition A.3 with the choices p = r = N
andg=0b-a—1leads, forany ¢ € &, to
(_1)€+N—u—1 2N ﬁke (z)

N-a-1
T Ape @

(246)

E (27 15, =0 <ro0l) =

The double generating function defined by

E (20 gycro0) = L E(2Vsmtoyeron) ¢ (247)
433

admits an interesting representation by means of interpolat-
ing polynomials that we display in the following theorem.



International Journal of Stochastic Analysis

Theorem 39. The double generating function of (0, S,,) is
given, forz € (0,1/M,) and { € C, by

2N
E(270 1y o) = D L (2:0) (e ()", (248)
k=1

where, fork € {1,...,2N}

U () (2) 5.ty (2),Cthyyy (2)5- .ty (2))
U (g (2),...,uyy (2))

z:k (Z> C) =
(249)

The functions { — L,(z,{) are interpolating polynomials
satisfying L (z, u;(2)) = 8, and can be expressed as

_ B §-u;(2)
L (z0) =P (20 lsl;[mm’ (250)
jtk

where { — Py(z, () are some polynomials of degree (b—a —1).

Therefore, we obtain that

a

Z U, (uy,. ..

¢=a—-N+1

a 2N N ) .
= Z ( uk_a_ Uke(ul,... ...,uZN))C
k=1

> U1 U1
¢=a—-N+1

> uzN) {e
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Proof. By (231), we have that
S
E (z%bc “1 {Sﬂbsu,uab<+oo})

a L Uy (g (2)s. ..y (2))
_ H e _ e Uy 2N 3
e:a—ZNH ahe ()6 Z:u—zl\]+1 U(u (2),.. .,y (2)
(251)

In order to simplify the text, we omit the variable z. We
expand the determinant U,(uy,...,u,5), a-N+1<€<a
with respect to its (£ + N — a)th column:

1 u, uf+N—a—2 0 uf+N—a .
¢+N—-a-2 ¢+N-a
Loy oo 0w, o
1 u, e u}€(+N—a—2 1 u£+N—a
€+N-a-2 ¢+N-a
Loty o U 0 Ui
€+N-a-2 ¢+N-a
L wyy o Upy 0 un
1 u, uf+N—a—2 uf+N—a—1 uf+N—a .
¢+N-a-2 ¢+N-a-1 ¢+N-a
L A Uy Uy o
o o0 -- 0 1 0
¢+N—-a-2 ¢+N—-a—1 ¢+N-a
Loty oo ey Uil Uil o
C+N—-a-2 ¢+N—-a-1 ¢+N-a
L wyy o tyy U)N U)N o

U, (uy5. ..

2N

> uZN)

N-a-1

= uk
k=1

where U, (uy,...
determinant

CafNJrl

ka (ul,.. .

> U5 Upey1s -

> U1 Ujey 15 - -

(252)

"uZN) >

sUpyn), 1 < k < 2N, is the

X ui\l—l ullJ—a+N—1 utlz—a+2N—2
N-1 _ b-a+N-1 b-a+2N-2
CUpr U Up_1
N-1 b-a+N-1 b-a+2N-2
e Uy © U (253)
N-1 _ b-a+N-1 b-a+2N-2
Ugrr Ugy © Uy
N-1 _ b-a+N-1 b-a+2N-2
N Un U)N
which plainly coincides with
. u{\]—l ul17—a+N—1 ulla—a+2N—2
N-1 _ b-a+N-1 b-a+2N-2
C Uy Up © U
0 0 0 (254)
N-1 _ b-a+N-1 b-a+2N-2
C Uy Upn k+1
N-1 b—-a+N-1 b-a+2N-2
TN UN U)N

2N a
C+N-a-1
XZ Z Uke (ul"'"uk—l’uk+1’~-->u2N)c
k=1 \¢=a—N+1

_N+1
Xvp

(255)
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Next, we can see that the foregoing sum within parentheses is
the expansion of the determinant D, (z, {) below with respect
to its kth row (by putting back the variable z):

1 u (z) -~ (Z) b a+N- l(z) u?—a+2N—2 (2)
Ly (@) - (z) W ) e )
Uty (2) - ugyy (2) “Z+‘1HN L(z) - Z+?+2N 2 (2)
1 un(z) - uZN (Z) ub a+N- 1( ) bu+2N2( )
(256)
As a result, by setting
D(z)
= U(ul (Z))-~->u2N(Z))
1 u; (Z) (Z) Izlb a+N— I(Z) ulf—a+2N—2 (Z)
1 uyy(z) - “2N (Z) ub a+N- L(z) - ugNu+2N 2(2)
(257)

we obtain that

ZD (0 (v (200"
(258)

al Sll
E (ZG (o {SabS“>0ab<+00}) D ( )

Similarly, we could check that

ZDk @O ()¢,
(259)

IE( U'ubc ﬂbﬂ{snb>b b<+00}) D( )

where D} (z,{) is the determinant

1w (2) z) U 1( ) - ubeN2 ()
1 uk_l(z) ukl(z) uba+N1() ba+2N2()
0 0 0 Cb a+N-1 Cb _a42N-2
Lt (2) o gy @) u 7™ @) w1 (@)
1 uyy(2) - ”2N Y(2) ub“+N1() ba+2N2()
(260)

By adding (258) and (259) and setting
Dk (Z)C) = D]: (Z)C) + D]; (Z)C)

=U(uy (2),...o 1 (2), Gty (2)5. .51y (2))

(261)
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we obtain that

1 2N

YTl

k=1

0 (v (2) ).
(262)

E (zo’abcsab 1 {%b<+oo}) —

We observe that the polynomials L, (z,{) = Dy(z,{)/D(z)
with respect to the variable { are of degree b — a + 2N — 2
and satisfy the equalities L,(z, uj(z)) = djy forall j € &
and k € {1,...,2N}. Hence they can be expressed by means
of the Lagrange fundamental polynomials as displayed in
Theorem 39. O

Example 40. For N = 1, (248) reads

E (zgub(sabﬂ{(fab<+00}) = zl (z,0) (Vl (2) C)a

~ (263)
+ L, (2.0 (1)),
where
- U (¢,u, (2)) uy () =
L S — =
1@0 Uy (2),145(2))  uy(2)" =y (2)"
b-a b-a (264)
A U (4, (2),0) {7 —uy(2)

Ul (2),14,2)  up@) — 1y (2)0

Since v, (z) = 1/uy(z) and v,(z) = 1/u,(z), and also u,(z) =
1/u,(2),

w(2)" —u,(2)° .,

E Zaabcsabﬂ op<too}) = —a —a
w(2)" —u(2)"
uz(z)a*b _ ll] (Z)a*lfl

from which we extract the well-known formulae related to the
case of an ordinary random walk:

uy(2)" —u(2)°
uz(z)b—a _ ul (Z)b—a >

b =004 <+00} ) -

[E (Zgab ]] {S
(266)
uy(2)* = uy (2)"
Uy (2)*70 — uy(2)*°

E (27 Vs, by <rool) =

In particular, if ¢ = 1/2 (case of the classical random walk),
by Example 10, we have in the above formulae that

1-V1-2z2 1+ V1-2z2?
—,

(@)= =, (267)

0, (2) =
For N = 2, (248) reads
E (2™ 15,y <ro0))

=LYMW @07 + L, @0 (n@ )

+ 1,0 (20 + L, (20 (v (2) )"
(268)
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where
. UGy (2),us(2), 1y (2)
Ll (Z,() - U(ul (z) > Uy (Z) »Us (Z) y Uy (Z))’
— B U (Lil (Z) s c, Us (Z) > Uy (Z))
L, (z0) = U (u, (2),u, (2),u5 (2) uy (2))
(269)

i (z C) _ U (“1 (Z) s Uy (Z) > (’ Uy (Z))

T U (uy (2) 1y (2) 15 (2) 1y (2)
Lo = — @@ @).0)

U (”1 (2),u,(2),u5(2),uy (Z)) ’

All the polynomials fk(z, 0,1 < k < 4, have the form
Ak,a—l(Z) + Ak,a(z)( + AI<)17(2)<‘17"‘Jr1 + Ak)bﬂ(z)cb—aﬂ‘

Remark 41. By expanding the determinant Dy (z,{) with
respect to its kth raw, we obtain an expansion for the
polynomial L(z,{) as a linear combination of 1,{,...,¢N7!,
(oratN=L pbatN | pb-at2N=2 that s, an expansion of the
form

b—a+2N-2

Z Ak,€+a—N+1 (Z) Ce

N-1
L0 = Y Apprann )+
£=0 ¢=b—a+N-1

— {N—u—l ZAke (Z) Ce'
te&
(270)

Hence,

[

N
E@%@MmNmO:Z<ZAM@f>W@WMI

k=1 \€e&

2N
_ Z (ZAke (2) vk(z)aNJrl)CZ

e& \k=1
(271)
from which we extract, for any ¢ € &, that
N N
—a-1
E (27 U5, -ty cro0)) = 2 Are @ w271 (272)
k=1

Actually, the foregoing sum comes from the quotient
Up(uy(2), ..., uyn(2)) /U1 (2), . . ., uyn(2)) given by (231)
by expanding the determinant U,(u,(2),...,u,5(z)) with
respect to the (¢ + N — a)th column or (£ + N — b + 1)th
column according as the number € satisfiesa-N+1 <€ <a
orb<€<b+N-1

4.1.2. Pseudodistribution of S,,. In order to derive the pseu-
dodistribution of S, which is characterized by the numbers
H,, (1), £ € &, we solve the systems obtained by taking the
limitin (262) asz — 1°.
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Lemma 42. The following identities hold: for N < k < 2N -1,

b+N-1
) (“N,;“'I)Hub,e(1)=(N',f'1>, (273)
e=b

Z <b+Nk_1_€>Hub,e(1)=<b+11\<]_1>- (274)

¢=a—-N+1

Proof. By (85), we have the expansion u j(z) = 1+£j(z), where

ei(z) = O(N1 - z) for any j € {1,..., N}. Actually such
z—1"

asymptotics holds true for any j € {1,...,2N} because of the

equality u; = 1/u;_y for j € {N +1,...,2N}. We put this

into systems (240) and (241). For doing this, it is convenient

to rewrite the latter as

Y Hyp () u;(2) N =00V, 1< j<2N,
te&

ZHab,e (Z) uj(z)bJrN—l—e _ uj(z)bJrN—l, 1< ] <2N.
te&

(275)
‘We obtain that
¢+N-a-1
Z (1 +é; (z)) ' Hy,, (2)
e (276)
—(1+5) 7, 1<j<2N,
b+N-1-¢
Y (1+¢(2) Hy,, (2)
te® 277)
b+N-1 X
=(1+sj(z)) , 1< j<2N.

System (276) writes

b—a+2N-2
>l (Ve @ e

k=0 eg:
€>k+a—-N+1
N-a-1
N-a-1
=y < ]f >sj(z)k.
k=0
(278)
Set
+N-a-1 N-a-1
m@- ¥ (N Hae- (Y,
e
¢>k+a—-N+1
b-a+2N-2 .
Ri(z)=- Y M (2)¢)"
k=2N
(279)
Then, equality (278) reads
2N-1
Y M, (2)e(2) =R;(2), 1< j<2N. (280)

k=0
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This is a Vandermonde system which can be solved as in the
proof of Lemma 21 upon changing N into 2N. We can check

that lim, _, ;- M, (z) = 0, which entails that
¢+N-a-1
z < k > Hab,é’ (1)
e&:
=k+a-N+1

=<N_1?_1)’ 0<k<2N-1.

(281)
Similarly, using (277), we can prove that
b+N-¢-1
Z ( k ) Hab,e (1)
43
£<b+N-1-k
=<N+If‘1), 0<j<2N-1

(282)

Actually, we will only use (281) and (282) restricted to j €
{N,...,2N - 1} which immediately yields system (273) and
(274). O

Now, we state one of the most important result of this
work. We solve the famous problem of the “gambler’s ruin”
in the context of the pseudorandom walk.

Theorem 43. The pseudodistribution of S, is given, for £ €
{0,1,....,N -1}, by

-1)¢ — N-1
T
N

-1)¢ N-1
P {Sap = b+ £, 0 < +00} = = (Izib/-i;—?)))( 2,
N

(283)
where
K= (N—§—1><N+I\€;—l>
= (_NL)'Na(a—l)---(a—N+l)b(b+1)---(b+N—l).
. (284)
Moreover, P{o,, < +oo} =1 and
P{o, <o,}
- KN’ ”gﬂ*l(l — N - )N dudy,

P o, <oy}

= KNZH A - N 1 - N dudy,
o
(285)
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where

9+={(u,v)€R2:0§v§usl},
(286)
9_:{(M,V)€R2:0Sugvsl},

Proof. We have to solve system (273) and (274). For (273), for
instance, the principal matrix and the right-hand side matrix
are

[<€+b—a+N—l)] [(N—a—l)]
k+N 0sk,<N-1 k+ N Jlocken

(287)

and the matrix form of the solution is given by

[<€+b—a+N—1>]_l [(N—a—l)]
k + N 0<k,f<N-1 k + N ngSN—l.

(288)

The computation of this product being quite fastidious,
we postponed it to Appendix A.3. The result is given by
Theorem A.8:

[(—1)" (KN/ (€ +b)) (N;1)

( €+b—oll\;—N—1 )

] (289)
0<e<N-1

The entries of this matrix provide the pseudo-probabilities
P{Sy, = b+ ¢,0, < 400}, 0 < € < N -1, which are
exhibited in Theorem 43. The analogous formula for P{S,, =
a— ¢,0,, < +oo} holds true in the same way.

Next, by observing that o, = min(0),, 0} ) and that {o,,;, <
+00} = {0, < +00} U {0}, < +00}, we have that

P{oy <o,}

=P{o, <0,,04 < +o0} =P{S, > b,0,, < +co}

(290)
N-1
= ZP{Sab =b+¢,0, < +oo}
= (291)
D v e ) ()
= (G

Noticing that 1/(€ + b) = fol Yy dyand 1/ ( brbarN-1) =

N 01 x871( — )N dx, we get that

D v e+ ) ()
Z (€+b—a+N—1 )
N

£=0
2 bt N_l_ e<N—1> ¢
N (ZZO< D (N, ) ()
% xb—a—l(l _ X)N_lyb_ldx dy

1l
_ N2 L L e NI

—xy)¥ dx dy.
(292)
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The computations can be pursued by performing the change
of variables (1, v) = (x, xy) in the above integral:

D W/ (e +b) (V)
Z ( ¢+b—a+N-1 )
N

£=0

= 2” w1 -V - N dud.
g‘f
(293)

Putting (293) into (291) yields the expression of P{o, < o}
displayed in Theorem 43. The similar expression for P{o,, <
o, } holds true. Finally,

P {o,, < +oo}
=P{o, <o,,0,4 < +o0} +P{o, <0,,0, < +oo}

=P{o, <o, } +P{o, <0}

= KNZJI

1
J w1 - N W - N N dudy.
0 Jo

(294)

The foregoing integral is quite elementary:

[N

1 1
= J w1 - u)NflduJ WA -v)N T dy
0 0 (295)

- u)Nilvbfl(l - V)Nfldu dv

= B(N,-a) B(N,b)

1 1
N2 (Nfl\t}fl ) (b+%71 ) KN?2 >

which entails that P{o,, < +oo} = 1. O

In the sequel, when considering S_;,, we will omit the
condition o, < +0o0.

Example 44. Let us have alook on the particular values 1,2, 3
of N.

(i) Case N = 1. In this case S, € {a, b} and

P{Sy =a} =Plo, <oy} =

b-a (296)

P{S . =bl=P{o <o }=- .
{ ab } {Gb Ga} b-a
We retrieve one of the most well-known and important

results for the ordinary random walk: this is the famous
problem of the gambler’s ruin!

(ii)) Case N = 2. In this case, the pseudorandom variables
&, n € N*, have two-valued upward jumps and two-valued
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downward jumps. Hence, the exit place must be either a — 1,
a,borb+1:S, € {a—1,a,b,b+ 1}. We have that

o ab(b+1)
Piw=a-1= G a2
. @-Dbp+1
P 1w = a} = b-a)b-a+1)
o, ala-1)(b+1)
P{Sab_b}_(b—a)(b—a+l)’
( Db (297)
ala—
P{Sab:b+1}:_(b—a+1)(b—a+2)’
Plo- <ot} = b(b+1)(b-3a+2)

b-a)b-a+1)b-a+2)

+ - a(a-1)(3b-a+2)
Plow <o = e b ar Db _ar D)

We can easily check that P{S, = a} +P{S,, = a-1}+P{S,, =
b}+P{S,, = b+1} = laswellasP{o, < 0, }+P{o, <0,} =1

(iii) Case N = 3. In this case S, € {a—2,a—1,a,b,b+1,b+2}
and

a(@-1D)bb+1)(b+2)

P{Sp=a-2}= TSI TSI
e
Pis == G e e
i D
Plu=brll=g —aa(j I)l()b(f . i)zb) ((l;ti)+ 3)’
Pl = b2 = e e d

Plo, <o’}

b(b+1) (b+2)(10a° - 5ab + b* — 25a + 7b + 12)
S (b-a)b-a+1)(b-a+2)(b-a+3)(b-a+4)

P{o, <o,}

a(a- 1)(a—2)(a2—5ab+ 106> — 7a + 25b + 12)

T o b-a)b-a+)(b-a+2)(b-a+3)(b-a+4)
(298)

4.1.3. Pseudomoments of S,,. Let us recall the notation we

previously introduced in Section 3.1.3: (i), = i(i — 1)(i —

2)---(i—-n+1)foranyi € Zand anyn € N* and (i), = 1, as

well as the conventions 1/i! = 0 for any negative integer i and
L =0ifi>j.
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In this section, we compute several functionals related
to the pseudomoments of S,;,. Namely, we provide formulae
for E[S,; (S, —b),._; ] (Theorem 46), E[(S,;,)"] (Corollary 47),
and E[(S,, — b),] (Theorem 48). This schedule may seem
surprising; actually, we have been able to carry out the
calculations by following this chronology.

Putting the identities 1 /1( GrbmatN-1) = N Iol Kl -
x)N 1 dxand 1/(€ + b) = Jo y“b_1 dy into the equality

{Sap=b} ]

N EDE(fe+b) /@ +b) (N, 1)

(€+b ‘II\;N 1)

E [f (Sab) 1

(299)
=KN

£=0

we immediately get the following integral representations
for E[f(S;)1s,,>p})> and the analogous ones hold true for

ELf(Sap) Us,,<ap]-

Theorem 45. For any function f defined on &,

E [ (Sw) Visyom]
= KN? J [Z( 1) < >f;€++bb) e:|

x x4 (1 - )N dx

(300)
1 1[N N -1
g o]
(1 NPk dy,
(301)
E [f (Sab) 1]{5“,,211}]
o ! fla-29) A
_KNL[Z(I)< > - ]
x x4 N1 - x)Ndx
(302)
1 1[N N -1
L[S (5 Yoo
x 71— )Ny T dx dy.
(303)

In view of (300) and (302) and in order to compute
the pseudomoments of S, it is convenient to introduce the
function f, defined by f, (i) = i(i—b),_, for any integers i and
n such that n > 1. In particular, f,(i) = i. We immediately
see that, by choosing f = f; in Theorem 45, quantities (300)
and (302) are opposite. As a byproduct, E[S,,] = 0. More
generally, we have the results below.
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Theorem 46. For any positive integer n,

E [Sap(Sab = )y Visyot ]

(-1)""" (KN/ (2N = n)) (N!/ (N - n)!)

(304)
(2NHb=a-2)
= 2N-n
ifl<n<N,
0 ifn>N+1,
E [Sub(Sab - b)n—lﬂ{sahﬁu}]
(-1)" (KN/ (2N —n)) (N!/ (N - n)})
(2N+b—a72
2N-n
ifl<n<N,
=40 ifN+1<n<2N-1,
Ntn-1 n+b-a-2
(-1) KNN!(n—N—l)!< e >
if n>2N.
(305)
In particular, for anyn € {1,...,2N -1},
E [Sat(Sa = b),1] = 0. (306)

Proof. By (300), we get that
E [fn (Sab) 1 {Subzb}]

:KNZJI[Z( 1) < )(f)n1 trba- 1] (307)

0 [ e=0
x(1-x)N"dx.

By noticing that (¢),., = 0 for ¢ € {0,...

(") (@ = (X ,m)(N— 1),
that

,n — 2} and
| for € > n— 1, we obtain

N-1
> v (N
£=0

')

N-1 ./ Non ,
=(N_1)n—1]]{lsnsN} Z (-1) <€_n+1>x

l=n-1
(308)

N-n ¢ N n V4
-1 +n—1 -
= (N =1, TcnenyX Z (=1) < ¢ )x

£=0
_{(—1)"1(N L' 1 -x)N" ifl<n<N,

(N -n)!
0 ifn>N+1.



International Journal of Stochastic Analysis

Hence, if 1 <n < N,

E [f (Sa) Vs, 201
n— (N ) n+b—a— —n—
= (-1)"'KN* —= N ) J K2 - )N g
B (—1)"71 KNN! (n+b-a-2)!2N -n-1)!
- (N —n)! 2N +b-a-2)!

(309)

and we arrive at (304). Moreover, if n > N + 1 and S, > b,
we have S, € {b,b+ 1,...,b+ N — 1}. Then, it is clear that
£,(Sz) = 0.and (304) still holds in this case.

On the other hand, by Theorem 43, we get that

E [fn (Sub) ]]{Sahsa}]
N-1

Z ab_a efna f)

D Ta-b-0),, (Y

=KN (Eb-arNT)

€=0

N-1
—(—1)" _e(N-1) (+b-a+n-2)!
= (-1) KNN!;)( 1) ( p >(€+b—a+N—1)!'

(310)
For n < N, we can write that
+b-a+n-2)!
(+b-a+N-1)!
1 1
TN-m)l (+b-a+N-1)(ebenz) G
1 ! l+n+b—a-2 N-n
= N ) Jo X (1-x)""dx.
Then,
E [fn (Sab) “{Sabsa}]
. KNN!
=(-1)
(N —n)!
1 N-1
J'O Z( le( , >x€+n+b7a72(1 _ N d
£=0
o KNNU (1 Y
(1) m+b-a-2)!{2N-n-1)!
(N n)' 2N +b-a-2)!
(312)

which proves (305). For n > N + 1, we write instead that
d}’l*N*l

dxanfl

f+b-a+n-2)!
+b-a+N-1)

( €+n+b—a—2) (313)

x=1
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Therefore,
E [fn (Sab) ﬂ{Sabsa}]
= (-1)"KNN!
dn N < C+n+b—a-2
e (e (V)
x=1
N b-a-2 N-1
= (—I)HKNN' W (xm - (1 - X) B )
x=1
(314)

If N+1 < n < 2N - 1, the above derivative vanishes
since 1 is a root of multiplicity N — 1 of the polynomial
xrmbma2(_ )N=L Finally, for n > 2N, we appeal to Leibniz

rule for evaluating the derivative of interest:

dn—N—l

n+b—a—2 N-1
o (1-x)
L |
n-N-1
n—N -
- 3 “(E Y
n+b-a-2)!
X (k+N+b-a- l)I(N_ Didkn-s
. b-a-2) (n-N-1
= (! N—l!(n+—< )
D7 )(2N+b—a—2)! N-1
B N-1 n+b-a-2
=(-1) (n—N—l)!( "IN )
(315)
This proves (305) in this case. O

Corollary 47. Forn e {1,...
Sap Of order n vanishes:

,2N — 1}, the pseudo-moment of

E[(Sw)"] = 0. (316)
Moreover,
E [(Sab)ZN]
=—a(@-1)---(@a-N+1)bb+1)---(b+N-1).
(317)

Proof. As in the proof of Theorem 27, we appeal to the
following argument: the polynomial X" is a linear combi-
nation of f1(X),..., f,,(X). Then E[(S,,)"] can be written
as a linear combination of E[ f,(S,)] ..., E[f,(S,)] which
vanish when 1 < n < 2N — 1. Thus, E[(S,;)"] = 0. The same
argument entails that

E[(S)™] = E [fon (Sa)] = CDN'KN??

which proves (317). O

(318)
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In the following theorem, we provide an integral repre-
sentation for certain factorial pseudomoments of (S, —a) and
(S, — b) which will be used in the next section.

Theorem 48. For any integer n € {0,...,N — 1},
E [(Sap = b), 15,201
= (-1)"KN*(N - 1),

« ” 0N = )N = N g dy,
9+
(319)

E [(“ - Sah)nﬂ {SuhSa}]

= (-1)'KN*(N - 1),

X J-J. O - N 1 - )N N dudy.
o
(320)

The above identities can be rewritten as

S,—b
[E|:( abn )ﬂ{sabe}]
" N-1
=(-1) KN2< ; )

X “ w1 =)V 1 - )N Ay d,
9+

(321)
-,
= [(a n b) H{Sabﬁﬂ}]

= (-1)"KN’ (N; 1)

X ” 1 - N 1 - )N dudy.
o
(322)

Proof. By (301), we have that
E [(S“b - b)nﬂ{subzb}]
B 2 1 1N_1_e(N—1) ,
- RN .[0 ,[0 [;O( D7, ) @u(xy) | (323)

x X1 - 0Ny dx dy.
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The sum lying in the above integral can be easily calculated:
N-1
Y (1) (N
=0
N-1

-ov-n, Y o (N

l=n

¢ 1) ©,(29)’

(324)

= (-1)"(N = 1),(xy)"(1 - xy)N_n_l.

Hence,
E [(Sab = b), Viso |
= (-1)"(N - 1),KN°

—xy)N " dx dy.
(325)

1 1
XJ J xn+b—a—l(l X)N 1 n+b— 1(

0 Jo

Performing the change of variables (u,v) = (x,xy) in the
foregoing integral immediately yields (319). Formula (320)
can be deduced from (303) exactly in the same way. O

4.2. Link with High-Order Finite-Difference Equations. Set
A"f(@) = fi+1) - fGi) and A" f(i) = f(i) - f(i = 1) for

anyi€ Zand (A") =A"o---oA*and (A7) = A 0 -0 A~

j times Jj times
forany j € N*. Setalso (A")° f = (A")’f = f. The quantities
(A") and (A7) are the iterated forward and backward finite-
difference operators given by

. j o
@) f6)= é(—l)f*" (,{) fli+h),
(326)

ST Y=, (,{)f(i -
k=0

Conversely, f(i + k) and f(i — k) can be expressed by means
of (A") f(i), (A7) f(i), 0 < j < k, according to

k
. _ k T o
f(z+k>—j§o(j>(A ) f @),

(327)

- (s

We have the following expression for any functional of the
pseudorandom variable S .

Theorem 49. One has, for any function f defined on &, that

ELF ()] = 3 1, () f(a>+zabj 0,
" (328)
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with

I, = KNZ(N._ 1)

\J j

x ” W - N 1 - N dy,
o
N-1
Taj = CD'KN? ( j )
X ” w1 = )N (1 - )Ny do.,
9+

(329)

Proof. By (327), we see that

ELf(Sy)] = E< Nfz“b( 1y ( Sab) ) f <a>>

+E (ﬂ{suhzb}sgb (S“b i ’ ) (s <b>>
- Ijz:(—l)f[E [ﬂ{sﬂm} (“ 'js“b)] (A7) 'f (@

N-1
+ [E[ {sb>b}<

j=0

-b .
)] (A" f®)
(330)
which immediately yields (328) thanks to (321) and (322). [

Corollary 50. The generating function of S, is given by

E(¢%) = (Zab1< ->.+Czubj -1, (331)

Proof. Let us apply Theorem 49 to the function f (i) = { for
which we plainly have (A" f(i) = T(C - 1) and (A7) f(i) =
{'(1 = 1/¢)’. This immediately yields (331). O

Of special interest is the case when the starting point of
the pseudorandom walk is some point x € Z. By translating
a, b into a — x, b — x and the function f into the shifted
function f(- + x), we have that

[Ex [f (Sah)] =

E [f ('x + Sa—x,b—x)]

Z a—x,b—x,j (A_)]f(a)

(332)
Z a—x,b—x,j (A+)]f(b)

More precisely, we have the following result.
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Theorem 51. One has, for any function f defined on &, that

x[ ab)] Zpab](‘x)(A ) f(a)
(333)
Z 0 () (A7) £ (b)),
where P, ; and Pab] 0 < j < N -1, are polynomials of degree

not greater than 2N — 1 characterized, for any k € {0,...,
- 1}) by

(A7) Py ; (@) = (A%)P, S (b) = 8
( ) ab]( )_(A) ab](b)_

(334)

Proof. By setting ab](x) I e ) and Pab](x) I xb e
(330) immediately yields (333). By observing that P, ](x)
(- 1)] . J(a + b - x), it is enough to work with, for example,

P, ;- Coming back to the proof of Theorem 49 and appealing
to Theorem 43, we write that

S, —b
[t ()

P, j (%) =

) (335)
T (N-DINI
N_
x Z( 1) [ m+b)Ez+N 1)):|K (x)
where, for any m € {0,...,N — 1},
% () (IS ((x—a+k) (b-x+k)])
b-x+m)
N (336)

(x-a+k) [[ b-x+k).

0 0<k<N-1
k#m

=
i}

The expression K,, (x) defines a polynomial of the variable x
of degree 2N -1, so P, ab,j 18 @ polynomial of degree not greater
than 2N - 1.

It is obvious that K, (a — €) = 0 for &,m € {0 -1}

Then, Pab](a ¢) = 0 which implies that (A~ ) ab](a) =0
foranyk € {0,..., N - 1}. Now, let us evaluate Py, (b + ) for

¢ € {0,..., N — 1}. We plainly have that Em(b +£) = 0 for
£ +m and that
_ —1)° (N = 1)IN1 (£+0-gN-1
Ke(b+€):( ) ( (R (337)

(7"



34

By putting this into (335), we get that

ab;(b+€) <5> Tjcey- (338)
Next, we obtain, for any k € {0, N - 1}, that
1K o+ . ke (K
(A)°Py, ;(b) = Y (-1) < ) By, (b+e)
£=0
_ & k+¢ k 4
=2 D) (339)
e=j J
k-j )
— k(K k=7 _
(37
£=0
The proof of Theorem 51 is finished. O
Example 52. In the case where N = 2, (333) writes as
[Ex [f (Sab)] ab()(x)f(a) +P bl (x)A f(a)
(340)
bo(x)f(b)+ bl(x)A fb)
with
P (x) = (x-b)(x-b-1)2x-3a+b+2)
a0 X = Ty (b—a+ 1) (b-a+2)
_ _(x-a)(x-b)(x-b-1)
Fad ) = = D b-ax2)
(341)
Pt (x) = - (x-a)(x—-a+1)2x+a-3b-2)
ab.0 (b-a)b-a+1)(b-a+2)
P;b,l (x) = (x-a)(x—a+1)(x-D)

b-a+1)(b-a+2)

Below, we state a strong pseudo-Markov property related
to time o ,.

Theorem 53. One has, for any function f defined on Z and
anyn € N, that

[Ex [f (S%b*'")] = Zpa_b,j (x) (A_)j[Ea [f (Sn)]

(342)

Z 7 (%) (A

In (342), the operators (A7) and (A*) act on the variables a
and b.

Ey [f(Sa)]-

Proof. Formula (342) can be proved exactly in the same
way as (206): by setting g(x) = E,[f(S,)], we have that
[Ex[f(SaabM)] E,[g9(S.)]. This proves (342) thanks to
(333). ]

Example 54. Below, we display the form of (342) for the
particular values 1,2 of N.
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(i) For N = 1, (206) reads as

a

[Ex [f (SaabJrn)] = Z:z [Ea [f (Sn)] + 'Z% [Eb

[f (Sa)]

(343)

which is of course well known! This is the strong
Markov property for the ordinary random walk.

(ii) For N = 2, (206) reads as

Ey [f (Sopen)]

_(x-b)(x-b-1)2x-3a+b+2)

G-abarnGary /O

Tab g U
Gy )

(x(l: ‘—l)a(i I)a(;r —1 )a(i 2)b) AR

- bmar DG b (s,

- (x(; il)a(i I)b()b()_c ; f ;>1) 1 [ (5]
e U )

(x(; & - . ;)b) Frall Gl

(344)

Now, we consider the discrete Laplacian A = A" o A™ =
A” o A*. Tt is explicitly defined by Af (i) = f(i + 1) — 2f(1) +
fi- 1) Let us introduce the iterated Laplac1an AN = (AT)No

(AN = (AN (AHN. We compute A f(l) for any function
fandanyi e Z:

AN £ (i)

% <i<_1)f+N (%)sc +j)> ()
S () (g () rei0)

=Y Y (7) (ZZ)f(i +j=k)

0<j,ksN

- (—1)N6§N(—1>f <;N(§;I:(?f ) (k N g)) Fl+e).

_ (345)
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(N-)AN

By using the elementary identity Ziﬁ(ee—q)vo ({) ( t’?k)
(N-0)AN

(7;7), we get that
_ N
B k N
k=(-€)v0

()
(%)

As a result, we obtain the expression of AN f(i) announced in
the introduction, namely,

N
k

N

e k+¢
=6V (346)

2N
£+ N

S 2N
AVfG)y =) (~)FN <€+N)f(i +0). (347)
=N
Example 55. Fix a nonnegative integer j and put f;(i) = (i);
for any i € Z. It is plain that, if k j» (A+)kfj(i)
(Dfik@ A F60) = (e fG = 1) and if k > j,
(AN £,) = (A7) f;(i) = 0. Therefore, if 2k < j, A*f;(i) =
(DG = K fjakli = 1) and if 2k > j, Akfj(i) = 0. By
using a linear algebra argument, we deduce that ANP = 0

for any polynomial P of degree not greater than 2N — 1. As a
byproduct,

<
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Proof. By (333) we write that

O (x) =

Z b (%) (A

Ve @+ Z s (0 (A7) g ().

(350)

With this representation at hand, identities (334) and (348)
immediately yield equations (349). O

4.3. Joint Pseudodistribution of (7, X,). As in Section 3.3,
we choose for the family ((X}),50)eso the pseudoprocesses
defined, for any € > 0, by

X; = €SU/€2NJ, t> 0, (351)

and for the pseudoprocess (X,);s, the pseudo-Brownian
motion. In Definition 34, we choose for I the interval (a, b);
thent] = 75, X7 = X5, and 1; = 7,5, X; = X ;5. Seta, = |a/e]
and b, = |b/e], where |-] and [-], respectively stand for the
usual floor and ceiling functions. We have 75, = & 0, p, and
X5, = €Sq -

Theorem 57. The following convergence holds:

AY Pab] =AY Py = (348)
& £
(Tab’ Xab) _)+ (Tab’ Xab) > (352)
Now, the main link between time 0, and finite-difference e=0
equations is the following one.
where, for any A > 0 and any p € R,
Theorem 56. Let ¢ be a function defined on &. The function
@ defined on Z by O(x) = E,[¢(S,)] is the solution to the [E( At | )
discrete Lauricella’s problem ¢ {zap<too}
(353)
AD(x)=0 forxeZ, _ e’““ZDk (A ) meDkUL “)
D (1) D(A
_\k _\k . @ P W)
(A) @@ =(A)¢(a) forjefo,...,N—-1}, (349)
In the foregoing formula, D(A), D, (A, u), and D (A, y) are the
ik K . going i K\l
(A) @ @) =(A")p®) for je{0,....,N-1}. respective determinants
1 ¢ - <PfH o9 NAecl-a) oo ”Wc(b—m% e ZWT/c(b—u)(P{V—l
1 gpy - %1\;1 o0 NAJeo-a) o~ *NAfc(b-a) Pon o ZW(Z’_Q)‘PS\;I
1 ¢ . (Pfi—l o NAeb-a) - 213/776(11—&1)(/)1 e P ZW(b—a)(Pfi—l
1 (Pkfl . (Pllc\i_ll e_‘Pkfl ZW(b_“) e_‘/’kfl ZW(b_“)(P B e—(Pk,l ZI\\I/T/C(b—a)(PIZC\i—II
1 & .- 0! 0 0 0 i
1 Prs1 . (PII(\-’;ll efq’kﬂ ZW(b*ﬂ) e7¢k+1 ZW(bia)(Plﬁ—l . e*q)k“ 2W(b*ﬂ)q)g—fll
1 Pan . (pé\fl\;l e N N fc(b-a) e PN ZW(b—a)q) e r(b —a) (p2N
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o0 WWcb-a) gy NAelb-a) ~¢1 NAe(b-a) N1

N-1
L ooy ¢y 2 1
N-1 -, NAcb-a) -¢iy NAc(b- ~¢1 NA/c(b-a)  N-1
1 Ger P, € Pt “NA/c(b-a) e Pkt VA e( a)(Pk—l cer @ Pk \/f(la)(Pk_l
o o0 - 0 1 8 8 . (354)
N-1 _~¢p N2 c(b- @1 N c(b- @1 NAJc(b-a)  N-1
1 Prs1 " P € Ors1 N c(b-a) e Prnt NATe( u)(PkH v e Prn NATe( a)(pkﬂ
2N, 2N, 2N,
1 gy e g7l et V-0 oy VAb-a)y o NN N1
In the two last determinants, we have put 8 = —ip/\/A/c. = sli—{rol*ﬂE (e‘ASZN%exhﬁ"ﬂss%vb& 1 {Uus,b£<+°°})
In Theorem 57, we obtain the joint pseudodistribution IN
of (7, X,;) characterized by its Laplace-Fourier transform. - lim Z I, (ef,\gw) eiye) (eiygvk 0, 8))a€—N
This is a new result for pseudo-Brownian motion that we will e—0" = (355)
develop in a forthcoming paper [14]. .
i N B
Proof. By Definition 34 and Theorem 39, we have that =ty hn(}}k (e ‘ ,elﬂe) (A, &)™,
k=157

A CRERE P

Recall that L (z,{) = D;(z,{)/D(z) and that the quantities

= lim E (e_h'ib”"‘ Xaq, . )
{zg < +oo} D and D, are expressed by means of the determinant

e— 0"

2 N-1 _ b-a+N-1 _b-a+N _ b-a+N+l —a+2N-2
1 u u R uba+ uba+ uba+ +1 ubm
1 1 1 1 1 1 1
U(uy,...otipy) = |00 : : : : : : . (356)
2 N-1 b—a+N-1 b—a+N | b—a+N+1 b—a+2N-2
Luyy tyy - Uy Uy )N U)N T UgN

By replacing the columns labeled as Cj, 1 < j < 2N, by the  foregoing determinant remains invariant and can be rewrit-

. . s AR Y itk (] . . t
linear combinations C; = Y7 _((~1)"" (lfc)Ck ifl1<j<N, en as
j itk . .
and C} = Y DT (,J()Ck if N+1 < j < 2N, the
1w -1 (ul _ 1)2 . (”1 _ I)N—l u?—aﬁN—l u?—:ﬁN—l (u—1) ully—aJrN—l(u _ 1)2 ulla—u+2N—2(u1 _ 1)N*1
o O b s .
Ly =1 (py = 1) - (upy— 1) ”zzx;HN ' zA;HN fu-1) ”21\;HN fw=1)7" - ”21\?+2N 2(uy - 1)

(357)

Then, by replacing the u;s by u;(A,€), b —aby b —a.and by u;(A, gl atN-L o g "VA/elb-a) coming from (119), we
e—0*
using the asymptotics (u;(A, ) - 1k~ (—¢; A/ c)kek and  get that
e—0"

—
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() 0 (1t (1)

7 1 N-1
1 (- 21{/_ R »\f/j N-1 o=, NA/c(b-a)
( P C)S ( (o c € e
. : — N-1 :
1 (‘%M{E)e (—%Nz”&) N1 om9an "VA/e(b-a)
¢ c

e— 0"

_ —\ N-1 (358)
—p zz</ A o0 VAeo-a), —o, X A o1 “VA/c(b-a) [N-1
"\ "Ve
iy n
_ N[ e_(PZNZW(b_a)s . N[ e PN 2I\\I/)ti/c(b—ﬂ)gl\’—1
( Pon \/C ) PoN c
A (N-1)/2
= <—> SN VD).
c
Similarly, by using the elementary asymptotics €# — 1 o e, (L o).y (A, e))
E—
iue and e#e:a+N-1) =9 e obtain that A\ND2 _
¢ o " T <;> "D (A, ),
E—
ei“ka (e—/\‘SZN, eiys) (359)
= ety (U1 &),y (A 8), where Dy (A, u) denotes the determinant
1 ¢ - (Pi\’—l o0 NAcb-a) -, "NA]c(b-a) o o1 “NA/c(b-a) (Pf]_l
1 gy o g et W) g Wb, Lo NAeb-a) N
eiya eiyaa . eiyu(sN—l eiptb eiyb(s . eiybaN—l (360)
1 @y - il e NATeo-a) o= NWelb-a)y .. o NAeba) P!
+ +
1 gy o oot et V) o b0y L g WAeb-a) N1
By putting (358) and (359) into (355), we derive that where, for any y € R,
' ~N-l . ,
LD (A ) E (" 1 cro0) = € Y T (i) + €% Y 15, (i)
E (e MatitXa g ) — K\ H (361) j=0 j=0
(e fra<rool) = D :
= D) (363)
with
It is plain that D (A, ) = ei““D,;()&, W+ ei”bD,;(/l, y) which N i
finishes the proof of Theorem 57. O - b (oY & (k+N-1 —a \F
@i~ \b-a 7! kz k b-al’
Theorem 58. The following convergence holds: __0
¢ ( —a N(—b)f’“i*1 k+N-1\( b \*
@i \5=a) 5 2\ &k Nia
€ =
Xy 72, Xav (362) (364)
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Moreover,
P {Tab < +oo} =1. (365)

Proof. By Definition 34 and by (331),

E (eiﬂxub]] {Tab<+00}) = lim E (eiMXZb L {T§b<+°°})

e— 0"

lim E (ei” eSacte | (

e—0"

lim ( e, Nzlz (1 -y
ag,b,,j

O be <+oo})

e— 0"

ipeb, ms j
te Z a, bg]( ) >

(1)

= e lim Z

e— 0"

iyb iye _ J

+e )E‘gzam( 1).
(366)

Concerning, for example, the quantity I j» we have that

.
Lob.i

(V) T 1) ()

N-n2\ j )t

X ” w1 — )N — )N gy d,
9+
(367)

By performing the change of variables (1, v) = (x,xy) in the
above integral and by expanding (1 — xy)N i1 as

(1-xy)

N-j-1

=[0-x)+x(1-y)V7"

N-j-1 . '
=3 (N am s N

k=0
(368)

we get that

” w1 — )N - )Ny dy
9+

11
:J J AL (] N1l
0 Jo

x (1-xy) 7" dx dy
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L

k=0

bE—aE+N—k—2(1 _ x)k+N—1 dx

X
< —
%

1 X
% j y]+bg—1(1 _ y)N—]—k—ldy

y (by—a,+ N-k-2)l(k+N-1)!
(b, —a, +2N = 2)!

(j+b, -1 (N-j—k-1)
b+ N-k-1)!

C(N-DI(N=j-1)!(j+b —1)!
- (b, —a, +2N - 2)!

xNZj:1<k+N_l> (b,—a,+ N-k-2)!
k (b+N-k-1)! °

k=0
(369)
By putting the asymptotics
(j+b 1)
(b,+ N-k-1)

1 N-j-k

T (B N-k—1)y o0 (E) ’
(370)

(b,—a,+ N-k-2)!
(b, —a, +2N - 2)!

1 € N+k
C(bo-a,+2N-2),,, es0t (b—a)

into (369), we obtain that
” w1 — )N - )N dy
9+

(N-D!(N-j-1)
b N,j(b _ a)N (371)

y 2N—;szl<k+N—l>( b )k
b-a)’

Next, using the asymptotics

£— 0"

z

Tlk-a)(sb)] ~ Ve

0

kol
Il
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expression (367) admits the following asymptotics:

I+ (_1)j+ij( a >N

abol ¢ Sor T jled b-a
N-j-1 k
% Z <k+N—1>( b >
b-a

Then, we see that the second limit lying in (366) equals

=) O[5 6]

j=0 k=0
(374)

(373)

In the same way, it may be seen that the first term of the sum
lying in (366) tends to

(blja>NI\§1(—i;l!a)j [szl <k+z]\(r- 1> (b—_aa>k] _

j=0 k=0
(375)

As a result, we derive (363).
Finally, let us have a look on the pseudoprobability
P{z,, < +00o}. We have that

to-(522) 2 (V)G

k=0

N N-1
b (k + ZZ - l) (_a)k(b B a)N—l—k

- (b _ a)ZN*l par

N k+N-1\/N-1-k
s P G (G

<k<N-1
0<¢<N-1-k

X (_a)k+€bN—1—k—€

T - a)ZN 1NZI[ ,i(k”’j_l)(Nf;i;k)]

x (_a)meN—l—m.

(376)

By using the elementary identity Y, _ 0(k+P ) (”;ﬁ;k) =
("tpra*!) which comes from the equality (1+x) P(1+x) 1 =
(1 + x) 771 together with the expansion, for example, for p,

(1+x)FP =32 (-1) (k“’ 1)x we get that

) ()

(377)
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As a byproduct,
L0 = W (2N )(—a)meN_l_m. (378)
Similarly,
Lo = ﬁmf(mm )(—a)"’bm‘“"‘ (379)

and we deduce that

P {z, < +00} = Lpo + I;b,o

1 2N -1 my 2N-1-m
S (o
=1.
(380)
The proof of Theorem 58 is finished. O

Corollary 59. The pseudodensity of X, is given by

P Xu € dz} N j '
PiXy € dz) Z( 'L, 00 @)+ Y (-1Y1, 8 (2).
=0
(381)
In particular,
Pir, <7} =L P, <7} =I5 (382)

This result has been announced in [13] without any proof.
We will develop it in a forthcoming paper.

Appendix
A.

A.L. Lacunary Vandermonde Systems. Let us introduce the
“lacunary” Vandermonde determinant (of type (p +7) x (p +

r)):

Upgr (ul,...,up+,)

p-1 ptq ptrqt+r-1
1 ul e ul ul e ul (Al)
. ’ ;;—1 p+q p+é+r—1
1 Uppr 77 Upyy Upyy o0 Upyy
We put s := s(u4y, ..., up,,) = land, for £ € {1,..., p + 1},
Sei= g (Unooottper) = Dty (A2)

1<i) <<ip<ptr

We say “lacunary” because it comes from a genuine Vander-
monde determinant where the powers from p to (p+g—1) are
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missing. More precisely, the determinant U, (uy, .. .u,,,)
is extracted from the classical Vandermonde determinant

Vp+q+,(u1,...,up+q+,) oftype (p+q+71)x(p+qg+r)by
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removing the g last rows and the (p + 1)st, (p +2)nd,....(p +
q)th columns. We decompose V... (uy,...,up,4,,) into
blocks as follows:

p-1 p ptq-1 p+q prqtr=1
I owu oy u; 7 u; u;
p-1 p ptq-1 p+q prq+r-1
1 Uper = ”inr Upr C Upyr : Upir ptr : (A.3)
1 u Y S Y A ua Al P
ptr+l ptr+l ptr+l ptr+l ptr+l ptr+l
p-1 p ptq-1  ptq ptq+r=1
1 Upigr Upigr | Uprqrr * Upigir | Upiger pHq+r
By moving the r last columns before the g previous ones, this
determinant can be rewritten as
-1 -1 -1
1w - u‘f uf 4 . uf T uf uf 4
p-1 ptrq prqtr-1 P ptq-1
qr 1 Upir Uprr  Upyr ptr Upir Upir
(_1) 1 p-1 ptq p+q+r=1 p p+q-1 (A~4)
Upirel " Upirrr Upir prr+l | Uparer 7 Upyr
p-1 ptq prq+r=1| p ptq-1
1 Uprger * Upigrr Upiger pHqr Upiger Uprger
By appealing to an expansion by blocks of a deter- = Z (—1)2Pr)Fi=ky
minant, it may be seen that U, (u,...,u,,,) is the 0<kysekeg<ptr
cofactor of the “south-east” block of the above deter- K, k,
minant. Since the product of, for example, the diago- X Spir—k, " Sprrk,Upire1 T Upigir
. . P p+l ptq-1
nal terms of this last block is w,,, .ty ., Uygi, the H =V, (”p+r+1""’”p+q+r)
eterminan U .o U is also the coeflicient o 3
det t Upgr(uy pir) Iso th fhcient of
p p+1 p+g-1 . _ 6(1)-1 s(g)-1
Upiri1tUprren " Uprgrr 10 Vp+q+r(u1’ cens up+q+r)' Now, let us = z () Uprre1 " Upigrr
expand Vo (uys .oty 000 €S,
_ & b
Vs e tpr) = 1 (=) =TT =Y et i
1<i<j<p+q+r 1 2 3 0<8y,..,84<q-1
(A 5) £1,...,¢, all different
with (A7)
H _ (u- _ u-) The symbol &, in the above sum denotes the set of the
U 1zicjeper ro permutations of the numbers 1,2,..., g, €(c) is the signature
of the permutation ¢ and e(¢, ...,t’q) € {-1,+1} is the
1:[ - 1<ll<_£+, (uj - ui) , (A6) signature of the permutation mapping 1,...,q into ¢, ..., £,.
pHr+1<jEpraer The product HZHS is given by
_ _1ya(p+1) 1Yk etk
1—[— H (u]_ul). ( 1) Z ( 1) q6(€]-~-)€q)
3 pHr+1<i<j<p+qtr 0<ky,eokg<ptr
0<0) by <q—1
We have that &1y all different
P ky+6, kg+ty
[T= TT [(w-wm)-(u;-up)] X Spurck, " Sprrok Mg Ughgle
2 j=p+r+l (A.8)
ptqt+r p+r .
.. . P p+l p+g-1
- H Z(_I)P+r_ksp+r—ku];' For obtaining the coefficient of u,,,, 14,5 Upigir» We
j=pirel k=0 only keep in the foregoing sum the indices kl,...,kq,
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C,....¢ suchthatk; + &, = pky+ &, =p+1,...k + ¢, =
p+tq-land0<k,....k, < p+r,0<8,...,6,<q-1,
the indices £;,.. ., £, being all distinct. This gives that

M- 3 elan)
2 3 forie{l,..‘,q}:

(i-r-1)v0<&;<(p+i-1)A(q-1)
ZI,A..,Zq all different

X S€1+rS€2+r—1 Tt 5€q+r—q+1‘
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Finally, we can observe that the foregoing sum is nothing but
the expansion of the determinant

Sr Sl T Srgul
Sre1 Sr Sr—q+2
= A0
S (A10)
Sriq-1 Sreg-2 7 Sr

As a result, we obtain the result below.

Proposition A.l. The determinant U, (u,,...,u,,,) admits

(A.9) the following expression:
s, (ul,...,up+,) S (“1’~--’Up+r) Sr_qe1 (ul,...,up+,)
Spi1 (ul,...,up+,) S (Ups s pyy Sr—ge2 (U s Upyy
U (u N/ ): H (w—u-)x (A1)
pgr \Bi> - > Upir iU . _
1<i<j<p+r :
Srig-1 (ul,...,upH) Sriq-2 (ul,...,up+,) s, (ul,...,upw)
Upsel . .
Let now U, , ( sty ) be the determinant deduced from  and,ifp+g<€<p+qg+r-1,by
U, (uy,...,u by replacing one column by a general 1 ot _ atr—1
par\”1 pr Y P g Y g 1 u up upq u€1 0 u€+1 upq?’
columna, ..., a,,,, thatis, the determinant given, if 0 < £ < 1 1 1 1 1 1
p-1by N - :
- - -1 + -1 2+1 +q+r—1
Uowy el e Wl Wb ! ubt ub ! 1w, - ”5—1 uf_? ey 0wl o uf_f
: > 1w - A A w1t ybrarrt
: : : : . . L
-1 £+1 p-1 ptq ptgtr-1
1 u R « u R u
e e T e prrop pr T a7 s B oo S 0 S L L
(A 12) k+1 k+ k+1 k+1 k+1 k+1
and,if p+g<€<p+q+r-1,by - : : oo :
p—l ptq -1 £+1 p+q+r—1
1wy e uf_l u{”q u(iLl o u‘i’“ uf*‘i“‘l 1 Uppr o7 Upyy Upyy o0 Upyy 0 Uppr 77 Upyr
L Lo : Al
1 p-1  p+q -1 £+1 prq+r-1 ( 6)
Uper =00 Upyy Upyr 00 Upyy Gpyyp Upyy o0 Upyy . .
(A13) Infact,Uyg ke(Uys -« o> Uge_ps Upeyrs - - - Up,,) is the coefficient of
. u; in Upgr(thy .. up,,). Let us introduce s = sio(uy5. ..,
We have that Ui Uit - > Upir) = 1 S 3= S (U Uy U
U Up oo Upyy Up,,,) = 0 for any integer m such thatm < -lorm > p+r
par.t Apsens Oy and, form e {1,...,p+r—1},
phr (A.14)

= Z‘kapqr,kf (uI’ o U U up+r) >
k=1

where Uy, oo (g5 s g1 Uy -
given,if0 < € < p—1, by

-»Up,,) is the determinant

-1 2+1 p-1 _ p+q prqtr-1
I ow -ouy 0wy -up U u;

-1 2+1 p-1 _ p+q prqtr-1
1 uk—l uk—l 0 uk—l uk*l uk*l uk*l

o-1 o+1 p-1  ptq prqtr—1
1 uk uk 1 uk uk uk uk i

-1 2+1 p-1 _ p+q prqtr-1
Doty o gy O Uy o Uy Uiy o gy

ooyttt e+l p-lo o pta o prair-l

1 Upyr up+r 0 up+r Upr Upyr Upir

(A.15)

Sk,m = Sk,m (l/ll,. ..,uk_l,l/lk+1,. .. ,MP_H,)

= Z Mil v uim. (A17)
1<i) <<, <ptr

i1y £ K

We need to isolate uy in [ ] ;cp, (4; — 1) and S, First,
we write that

H (“j - u,-)

I<i<j<p+r
—k
=P TT () [T ()
I<i<j<p+r I<i<p+r
i,j#k j*k
ptr—1
k-1 m m
:(_1) 1—[ (uj_ui) Z (_1) 5k,p+r—m—luk'
1<i<j<p+r m=0
i,j#k

(A.18)
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Second, by isolating u, in s, according to s, = s, + pratr=1 [ (p+r—Dne

Uik 1> We get that the determinant & . can be rewritten as = Z Z (=1)"S prrom-1
£=0 m:OV(é’—q)

N s
Sker T WieSker—1 Skr1 Y WSir a0t Skrgqen TSk X det (Vr’ Vi V€+r—q—m+1’
Sker1 T UkcSker Sk + UkeSkr-1 T Skr—qi2 + Upe Sk r—g+1
: . . R N ¢
Sk,r+q71 + uksk,r+q72 Sk,rJrer + uksk,rJrqu e Sk,r + uksk,rfl V€+r—q—m—1 5o Vr_q) uk-
(A.19)
(A.22)

. . 5 . Recalling the convention that s, ,, = 0ifm < -lorm > p+r,
By introducing vectors V,, with coordinates (sy > Sg ni1- - - > & em p

Skm+q—1) (written as a column), this determinant can be
rewritten as

the coeflicient of ui in (A.22) can be written as

4
Z (_ 1 )msk,err—m—l

m=€—q

- o

x det (Vr> Vr—l’ AR V€+r—q—m+1’ V€+r—q—m—1’ cee Vr—q)

N

S pgr = det (V, + 1V, Vo + 1V, s Vg 1V,

(A.20) P!
=(-1) Z (_1)m+q5k,p+q+r7€—mfl
m=0
By appealing to multilinearity, it is easy to see that R - - -
Y appealing ¥ Y x det (Vo Voo s Ve Vg0 Vi) -
q Lo R . . ; (A.23)
Spar = 2. et (Ve Voo Vit Ve g1 5 Vg ) U
n=0

(A.21) In this form, we see that the coeflicient of ui in (A.22) is
nothing but the product of (=1)° by the expansion of the

determinant
Now, let us multiply the sum lying in (A.18) by (A.21): Skr Skl T Skeg
Sk,r+1 Ske,r e Sk,r—q+1
CS)pqr,ké’ = : :
ptr=1 s s L s
m m k,r+q-1 kir+q-2 k,r—1
=1 Sk,p+r-m-1 Ug ce
=0 5k,p+q+r—€—1 5k,p+q+r—€—2 Sk,p+r—t’—1
(A.24)
q
L . - - n . .
x Z det (Vr’ Vit Vi gamsts Ve gon1o - -+ ’Vr—q) ul Proposition A.2. .The determmant qur,ke(“p e U
n=0 Uper1s - - > Upy,) admits the following expression:
qur,ke (ul’ e U UK up+r)
=TT (w-w)
I<i<j<p+r
ijtk

Skir (ul""’ukfl’uk+1>""up+r) T Skrg (u1>""uk71’uk+1""’up+r> (A.25)

Skr+1 (ul’ s U Uy e up+r) T Skr—git \Mo s o U o Uy 15 -5 Upyy

y . .
Skyr+q-1 (ul""’uk—l’uk+1>""”p+r) T Sk (ul"'"uk—l’”k+1""’up+r)
Skoprqrr—e—1 Moo U5 Upp 15 oo Upyr ) 0 Spipp1 \Us oo s U Uy 5005 up+r)




International Journal of Stochastic Analysis

As a consequence of Propositions A.l and A.2, we get the
result below. Set

1_[ (uk_ 1)

1<i<p+r
itk

Pr = Pk (”p e ’up+r) = (A.26)

Proposition A.3. Let p,q,r be positive integers, let u,,...,
be distinct complex numbers, and let ;. . . be com-

Upir Kpir
plex numbers. Set I = {0,...,p—1}U{p+q,...,p+q+r—1}.

The solution of the system Y, utx, = ap, 1 < k < p+71, or,
more explicitly,

p-1

Xo + Uy + oo+ ulb pra

Xpo Uy X

ptq
ptqtr— 1

Tt Xpigir-1 = %

(A.27)

ptd,.

Xo + up+rx1 +- ptr p+q

p-1
UL Xy T U

1
ptqtr— x

Tt U, prqtr-1

= Kpyr
is given by
(_ 1 )€+p+r—1

S par (ul,...,upH)

xf=

prr

o Z(xk Spqr’kg (ul,.. .

k=1 Px (ul"">up+r)

>uk—1’uk+1""’up+r) tel

(A.28)
Proof. Cramer’s formulae yield that

Upseesllpyy
Upare (w7 )
Y > up+r)

xe =
-l

Pt

By using the factorisations provided by Propositions A.l and
A.2, namely,

(A.29)
U1 Upey15 -+ > up+r)

e

pqu@ (ul,...,

Upgr (ul, e

Upgr (ul,...,up+,)

=V (”p---’“pw) S pgr (ul, ...,upH)
= (D" p (. uy,)

XV (ul,...
Upgrie (ul, e

k+€-1
=(-1) Vopr-1 (ul,...,uk_l,ukﬂ,...,uPH)

”p+r) S par (-5 ”p+r) ’

sUp_ 15 Upiys - -5 up+r)

> U1 Uer 15+ - >

XS pgrike (ul,...,uk,l,ukﬂ,...,upﬂ) ,

(A.30)

we immediately get (A.28). O
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A.2. A Combinatoric Identity

Lemma A.4. The following identity holds for any positive
integers o, 3, n:

Z( 1) ( >(Z+;;: (ﬁi'n) (B-a+n-1),. (A3l)

It can be rewritten as

St () (225)- (i) e

D) (B-a)/(B-a+n) (A.32)
= < .
R R A
Proof. Suppose first that « > f. Noticing that
kra)  d&F
(k+B)! ~ dxoF (+"%) L (A.33)

we immediately get that

S () - i (500 (2)+)

- ﬁ
por; (x*(1-x)")

x=1

x=1

(A34)
We expand the last displayed derivative by using Leibniz rule:
der
v (x*(1-x)")
x=1
(X—ﬁ o — ﬂ d(x ﬁ k « dk "
22( >d0‘ﬁk( ) ﬂ((l_x))
k=0 X S x=1
(A.35)

Since (d*/dxF)((1 - X))oy (-1)"8,,n!, we have that
(d*P/dx“Py(x*(1 %)My = 0ifax — B < m, and, if
a-pB=mn,

& ) \ lap\ A
e ) = (*F) S )
_ (_l)n «! (OC _/3)'
(@ =B=m)!(B+n)
(A.36)

which coincides with the announced result. Second, suppose
that o < f3. Noticing that

1
B~ G o ¥ e )
we get that
o (1) et a)!
,;0( : <k> (k+ B)!
1

T (B-a-1)
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! L k(n k o B-a-1
XJ Z(—l) <k>x x7(1 - x) dx
0 \ k=0
(ﬁ - - 1)! 0
_a(-a+n-1)!
C(B-a-1)(B+n)
(A.38)
which coincides with the announced result. O

A.3. Some Matrices. Let o, 5 € N such that« > 8 > N and

set
[(J >] i — <' > i —
1+ N <‘j<N 1+ N | <i<N

(A.39)

with the convention of settings (;) = 0ifi > j. These
matrices have been used for solving systems (273) and (274)
with the choicesa =b-a+N-1and = N—-a-1. Theaim
of this section is to compute the product of the inverse of A
by B, namely, A™'B. For this, we use Gauss elimination. The
result is displayed in Theorem A.8. The calculations are quite
technical, so we perform them progressively, the intermediate
steps being stated in several lemmas (Lemmas A.4, A.5, A.6,
and A.7).

Lemma A.5. The matrix A can be decomposed into A = LU,
where the matrices U and L are given by
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Proof. We begin by detailing the algorithm providing the

matrix U. Call C((,O), c,..., Cg\(})_l the columns of A, that is,
for je{0,...,N -1},

s
! i+N 0<i<N-1

Apply to them, except for Cgo), the transformation defined,
forje{l,...,N -1}, by

(A.41)

c?. (A.42)

The Cf)o),Cgl),...,Cgil are the columns of a new matrix
L,. Actually, this transformation corresponds to a matrix
multiplication acting on A: L, = AU, with

] i1 ]
PR 0 0
a+1-N
. a2
_ a+2-N
U, = 0 1 0
_oc+N—1
oa—1
0 0 0 1 ]
(A.43)

Simple computations show that

) (8)]
jta-N/)\i+N 0<i, j<N-1

Ll = [(6]0 + ﬂ{]Zl} B

- [(Z:I(\XJ (j+:)iA11\7)

(A.44)
jnl ]ogi,]’sN—l

Next, apply the second transformation to the columns of L,
except for Céo) and Cgl), defined, for j € {2,..., N - 1}, by

i N (i @_cw__Jte
U= (_1)1+J1]{i<A} <J>M , Cj _Cj j+a-N j1
N i+ a)y 0<i,j<N-1 jta
. A.40 _ 0 (0)
vt (18) 5757 | o ST AR (A9
TlERi+ N (G - : : .
(j+a N)f 0<i, j<N-1 N (j+o)(j+a-1) c
(j+a-N)(j+a-N-1) 7%
The regular matrices U and L, are respectively, upper and lower The C(()O), C(ll), ng), e CE\Z]ZI are the columns of a new matrix
triangular. L, = AU,, where
'1 a+l (x+2)(a+1) 0 7
a+1-N|(a+2-N)(ax+1-N)
a+2
0 1 -2 — :
a+2-N
U=, 0 ) (c+N-1)(a+N-2) (A.46)
(a=1)(a=2)
) o+ Nl— 1
o —
0 0 0 1
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Straightforward algebra yields that

1 i(i—-1) )
U (i+a-N)(j+a-N-1)

y jtoa
i+ N B
0<i,j<N-1

(i)

- [<j+(x> ]
P+N (j+(x_N)j/\2 0§i,jsN—1.

This method can be recursively extended: apply the kth trans-
formation (1 < k < N — 1) defined, for j € {k,...,N — 1}, by

®) _ (k-1 e (k-1)
¢ =6 jra-N Tt
_ kD, JHE e
J jta-N 1

(j+a)(j+a-1) (k-2)
(j+a-N)(j+a-N-1) 772

jta
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+<k> (j+a)(j+a-1) ©
2)(j+a-N)(j+a-N-1) 772

+---+(—1)k(]]z>

y (G+ta)(jta-1)-(j+a—-k+1)
(j+a-N)(j+a-N-1)---(j+a-k-N+1)

(0)

X C]._k
_ Zk:(_l)g <k> (j+a), c
£=0 t) (j+a-N), 7

k .
_ _1\¢ k (] +“)N 0)
Y (¢) Grace)y

<'k > (j+“)j—€ C(o)
j=¢ (j+a=-N), ¢

- Y

e=j—k

_ L e k (+a)y o
> (-1 . c.
Pt J=t) +a)y
(A.48)
In particular,
k
o (k\ (k+a)

cl = Y (-1t e( ) =N cO, A.49
; ;< ) T (A.49)

0) (D) ~2) (k) (k)
The c”,cV,c®?,...,c¥,c

12 ,Cgf,ll are the columns

-c_ (k) c of the kth matrix L, = AU, with U, = [U; : U}'], where U}
J 1) j+a-N 71 is the matrix
[ a+l (x+2)(x+1) (_l)k,1<k—1> (x+k-1)---(x+1) ]
a+1-N (@+2-N)(a+1-N) k=1)(@«+k-N-1)---(a+1-N)
0 . 5 a+2 (_l)k_2<k—1> (x+k-=1)---(x+2)
a+2-N k=2)(@+k-N-1)---(a+2-N)
a(k-1 (a+k-1)---(ax+3)
0 0 1 —1k3< >
U \k-3) @rkoN- D) @e3-N)
<k—1> (a+k-1)(x+k-2) (A50)
2 J(ax+k-N-1)(a+k-N-2)
_<k—1>Lk‘1
I Ja+k-N-1
k-1
0 0 ( ; )
0 o - = 0
e ; |

and U,'c' is the matrix
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The matrices U; and U} can be simply written as

, (j+a)y
[( 1y ﬂ{t<J}< ) (i + a)y |osisN-17
N L o<jck-1
- k O\ (G+a)
U":[(—l)’ T < >_N .
k e\ =i) e s

(A.52)
Clever algebra yields that
L - [(jﬂx) (@) jak ] (A53)
‘ AN/ (j+a- N)j/\k 0<i,j<N-1 .

We will not prove (A.53); we will only check it below in the
casek = N - 1.

We progressively arrive at the last transformation which
correspondstok = N — 1:

(TR
(%)

(N-1) _ ~(0)
CN—I =C -

(0)
N-1 Cn2

(N+(X—1)(N+(X—2) (0)

(¢=1)(ax-2) N3
1 (N-1
+(_1)N1<N—1>
o (N+a—-1)(N+a—2)---(a+1)

(@a-D(@-2)--(a-N+1) °

-2 ()

(N+(X 1)5 C(O)
(OC— 1) N-1-¢

(_) ( )(oc+§<“+zfr; EZ:?—N) 0 0 -
() e
’ (a+kk_N)gc“++kk_N_1) k (:x+k.+1)(oc+k) . K\ (@+N-1)---(a+N-k)
_(1)(x+k—N (2)(oc+k—N+1)(oc+k—N) (_1)k(k) (@=1)--(a—k)
k B k a+k+1 :
(0) <1>oc+kk—N+1 I (@t N D@+ N2
0 (0) (2> (a—-1)(ax—-2)
: _(k)oc+N—1
1 a-1

(6) _

(A.51)
N-1
N N (N - 1)
2 ¢
X(N+(X I)NL’ICO)
(= 1)neq
(A.54)

The C(()O),C(ll),ng),..., are the columns of the last
matrix given by Ly_; = AUy_,, where

wr=[lr ()

Formula (A.53) gives the following expression for Ly,_; that
will be checked below:

(N-1)
Cyi

(+a)y

i+ )y (A.55)

]osi, j<N-1

' ();
N A I e
Lyo = [(HN) (j+a-N)

] (A.56)
J o< jeN-1

Hence, by putting L = Ly;_; and U = Uy;_;, we see that Lis a
lower triangular matrix and U is an upper triangular matrix
and we have obtained that L = AU.

Finally, we directly check the decomposition L = AU.
The generic term of AU is
J N (7
ik (k+a\ (] (j+a)y
(-1)7** < ) ( ) . (A.57)
k; i+NJ\k) (k+a)y
Observing that
(o) LR 0EE s
i+ N/ (k+a)y (%)
this term can be rewritten as
(- 1)](]+a) J k+a—-N
) I;( 1) < )< . ) (A.59)
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The sum Zizo(—l)k ( {() (k+e=N') can be explicitly evaluated

thanks to Lemma A.4. Its value is (1)’ ( "i:i\] ) Therefore,

we can easily get the generic term of L, and the proof of
Lemma A.5 is finished. O

Lemma A.6. The inverse of the matrix L is given by

(j+N)IG+a-N)y,

]' (l - ])‘(l + (X)j+N+1 :|0<1‘,]‘<N1.
(A.60)

-1 _ |:(_l)l+]-]] i)}

Proof. We simplify the entries of the product

I j+0¢ (i)j
i+ N) ra-N),

jdos<i,jeN-1
[( 1)l+] (]+ N)!(i+ “_N)i+l ]
{i>j} . . .
! .] ( _J)!(1+a)j+N+1 OSi,jSN—l
(A.61)
The generic term of this matrix is
= k+a (D
2V \ie N) Ty a0
s (k+a—-N),
X(_l)ﬁkﬂ{kﬁ}(']+N)!‘(k+oc—N)k+1
- ]!(k_])!(k+“)j+N+1
B il (j+N)!(ax— N)!
23} 51+ N)! (@ — N = 1)!
Xi(_ )]+k (k+(X ] N - 1) )
= (i-k)! (k- j)(k+a-i—N)!
(A.62)

The last sum can be computed as follows: clearly, it vanishes
when i < jand it equals 1 wheni = j. Ifi > j, by using
Lemma A .4,

(k+a—j—N-1)!
]+k J
Z( b (1—k)'(k )N (k+a—i-N)!

e J)'Z‘ v ()

])'Z( 1) ( j)(k+oc—N—l)i_j_1=0.

(A.63)

(kt+a-j-N-1)
(k+a—-i—N)!

As a consequence, the entries of the product (A.61) are §;;
which proves that the second factor of (A.61) coincides with
L O

Lemma A.7. The matrix L™'B is given by

O (M) (EA)

(1+0c
0<i<N-1

L'B= (A.64)
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Proof. The generic term of L™'B is

. (G+N)i+a- N),+1< B )
i1
]Z(:)( D s G- )!(1+oc)j+N+1 J*N

_ Bli+a-N)
_(i+oc)!(oc—N—1)!

1t+] J+(X N_l)
XZ( T T

B [)’!(1+0¢—N)!(1+cx—[3—1)!
il +a)! (- N-1)

S (i i—j+oc—N—1)
* 2D () |

i+ta-p-1
(A.65)

By performing the change of index j — i — j and by using
Lemma A.4, the sum in (A.65) is equal to

S () (a3 o (525)
(a = N-1)!

(a-p-1)(B-N)
(A.66)

= (-1)

By putting this into (A.65), we see that the generic term of
L™'B writes

i (+a-Nl(i+a-p-1) D (5)(EL)
i!(i+oc)!(oc—[3—1)!(ﬁ_N)1_ ()

(A.67)

which ends up the proof of Lemma A.7. ]

Theorem A.8. The matrix A™'B is given by

N (D) ‘“N‘)(Nl)] .

ita-p (%)

(-1y

<i<N-1
(A.68)
Proof. Referring to Lemmas A.5 and A.7, we have that
A'B=U(L"'B)
- [(‘1)i+j“{i<j}(f)(jz+v“)]
(%) osijen-1 (A69)
i i+ta—f-1
Joresy)
(1+0¢ O<i<N-

The generic term of A™'B is

T L)

N j=i

(A.70)
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TABLE 2: List of notations.

a,b,c,K,N,KN,pk

Given parameters

Oj, 2 Roots of +1
& S X X Pseudorandom variables, pseudoprocesses
.9y Infinitesimal generators

-+ - ot
aa’ab’aab’sa’sh’sab

Overshooting times and locations related to pseudorandom walk

-+ D '
Ta’Tb’Tab’Xa’Xb’Xub

E— £+ £ &— &+ €
Ta 2Ty > Tap> Xa > Xp > Xap

a

Overshooting times and locations related to pseudo-Brownian motion

+ - . . . .
AAT A Discrete Laplacian, finite difference operators
a,....a
A(al,...,aN),Ak< P N)
Opyeees Oy
Uty thyy) > Up (Ugs -5 thyyy)
Uge (415> Ug s Upey -+ > Uay)
Upens U
U (u N )U ! prr . .
par \"1> > Hpr ) > Z par.e Qs Ay Vandermonde-like determinants
qur,ké’ (ul’ ceo U U up+r
Vveoovn), Ve (v, vy)
Vie (Vi oo s Ve Vi -+ Vi

ﬁ(z)) Uke(z)) V(Z), Vk(z)) D(Z), Dk(z) ()
D(4), Dy (A, ), D, (A, 1)

‘S’pqr > CSqur,ke

Other determinants

Gk(z)) G(Z, C)) H;)[(z)) Hg,g(z)> Hub,l(z)

Generating functions

Lk(z> ()) Zk(z) C)) P(Z) Czlpk(z> C)

Polynomials
Py (%), Py (%), K., (%), K, (x) y
I, i Lav > L, i Labj Integrals and sums
29,8 Sets
M, Mo, Bounds
a;(z),b;(2), u;(2), v;(2), w(z)

Miscellaneous

ocj(z),&j(z),ej, &(2), uj(z),vj(z)
Aj(z),Bj(z),Mk(z), Rj(z), a, b,

5¢(2), Pi(2), 51.0(2), Py (2), 5(2), P (2)

Sums and products

Stam (ul, e U Upy s s up+,)
A, B, ka), LU, U, U Matrices
V.. Vectors

The foregoing sum can be easily evaluated as follows:

piYQasiy

j=i

Il
-
+
1S3
|
oS
|
—

[Giosrny
%(a—ﬁ;N—l)(Ni—l).

(A.71)

Putting this into (A.70) yields the matrix A™'B displayed in
Theorem A.8. O
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