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Using a capacity approach and the theory of the measure’s perturbation of the Dirichlet forms, we
give the probabilistic representation of the general Robin boundary value problems on an arbitrary
domain Ω, involving smooth measures, which give rise to a new process obtained by killing the
general reflecting Brownian motion at a random time. We obtain some properties of the semigroup
directly from its probabilistic representation, some convergence theorems, and also a probabilistic
interpretation of the phenomena occurring on the boundary.

1. Introduction

The classical Robin boundary conditions on a smooth domain Ω of R
N (N ≥ 0) is giving by

∂u

∂ν
+ βu = 0 on ∂Ω, (1.1)

where ν is the outward normal vector field on the boundary ∂Ω and β a positive bounded
Borel measurable function defined on ∂Ω.

The probabilistic treatment of Robin boundary value problems has been considered by
many authors [1–4]. The first two authors considered bounded C3-domains since the third
considered bounded domains with Lipschitz boundary, and the study of [4] was concerned
with C3-domains but with smooth measures instead of β. If one wants to generalize the
probabilistic treatment to a general domain, a difficulty arise when we try to get a diffusion
process representing Neumann’s boundary conditions.

In fact, the Robin boundary conditions (1.1) are nothing but a perturbation of ∂/∂ν,
which represent Neumann’s boundary conditions, by the measure μ = β · σ, where σ is
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the surfacemeasure. Consequently, the associated diffusion process is the reflecting Brownian
motion killed by a certain additive functional, and the semigroup generated by the Laplacian
with classical Robin boundary conditions is then giving by

Pμ
t f(x) = Ex

[
f(Xt)e−

∫ t
0 β(Xs)dLs

]
, (1.2)

where (Xt)t≥0 is a reflecting Brownian motion (RBM) and Lt is the boundary local time, which
corresponds to σ by Revuz correspondence. It is clear that the smoothness of the domainΩ in
classical Robin boundary value problem follows the smoothness of the domains where RBM
is constructed (see [5–10] and references therein for more details about RBM).

In [6], the RBM is defined to be the Hunt process associated with the form (E,F)
defined on L2(Ω) by

E(u, v) =
∫

Ω
∇u∇vdx, ∀u, v ∈ F = H1(Ω), (1.3)

whereΩ is assumed to be bounded with Lipschitz boundary so that the Dirichlet form (E,F)
is regular. If Ω is an arbitrary domain, then the Dirichlet form needs not to be regular, and to
not to lose the generality we consider F = H̃1(Ω), the closure of H1(Ω) ∩ Cc(Ω) in H1(Ω).
The domain H̃1(Ω) is so defined to insure the Dirichlet form (E,F) to be regular.

Now, if we perturb the Neumann boundary conditions by Borel’s positive measure
[11–13], we get the Dirichlet form (Eμ,Fμ) defined on L2(Ω) by

Eμ(u, v) =
∫

Ω
∇u∇vdx +

∫

∂Ω
ũṽdμ, ∀u, v ∈ Fμ = H̃1(Ω) ∩ L2(∂Ω, dμ

)
. (1.4)

In the case of μ = β ·σ (Ω bounded with Lipschitz boundary), (1.4) is the form associated with
Laplacian with classical Robin boundary conditions and (1.2) gives the associated semigroup.
In the case of an arbitrary domainΩ, we make use of the theory of the measure’s perturbation
of the Dirichlet forms, see, for example, [14–23].

More specifically, we adapt the potential theory and associated stochastic analysis to
our context, which is the subject of Section 2. In Section 3, we focus on the diffusion process
(Xt)t≥0 associated with the regular Dirichlet form (E, H̃1(Ω)). We apply a decomposition
theorem of additive functionals to write Xt in the form Xt = x + Bt + Nt, we prove that
the additive functional Nt is supported by ∂Ω, and we investigate when it is of bounded
variations.

In Section 3, we get the probabilistic representation of the semigroup associated with
(1.4), and we prove that it is sandwiched between the semigroup generated by the Laplacian
with the Dirichlet boundary conditions and that of the Neumann ones. In addition, we prove
some convergence theorems, and we give a probabilistic interpretation of the phenomena
occurring on the boundary.

2. Preliminaries and Notations

The aim of this section is to adapt the potential theory and the stochastic analysis for
application to our problem. More precisely, it concerns the notion of relative capacity, smooth
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measures, and its corresponding additive functionals. This section relies heavily on the book
of Fukushima [17], particularly, chapter 2 and 5, and the paper in [11]. Throughout [17], the
form (E,F) is a regular Dirichlet form on L2(X,m), where X is a locally compact separable
metric space, and m a positive Radon measure on X with supp[m] = X.

For our purposes, we take X = Ω, where Ω is an Euclidean domain of R
N , and the

measure m on the σ-algebra B(X) is given by m(A) = λ(A ∩ Ω) for all A ∈ B(X) with λ the
Lebesgue measure; it follows that L2(Ω) = L2(X,B(X), m), and we define a regular Dirichlet
form (E,F) on L2(Ω) by

E(u, v) =
∫

Ω
∇u∇vdx, F = H̃1(Ω), (2.1)

where H̃1(Ω) = H1(Ω) ∩ Cc(Ω)
H1(Ω)

. The domain H̃1(Ω) is so defined to insure the Dirichlet
form (E,F) to be regular, instead of F = H1(Ω) which make the form not regular in general,
but if Ω is bounded open set with Lipschiz boundary, then H̃1(Ω) = H1(Ω).

We denote for any α > 0 : Eα(u, v) = E(u, v) + α(u, v)m, for all u, v ∈ F.

2.1. Relative Capacity

The relative capacity is introduced in a first time in [11] to study the Laplacian with general
Robin boundary conditions on arbitrary domains. It is a special case of the capacity associated
with a regular Dirichlet form as described in chapter 2 of [17]. It seems to be an efficient tool
to analyse the phenomena occurring on the boundary ∂Ω of Ω.

The relative capacity which we denote by CapΩ is defined on a subsets of Ω by the
following: for A ⊂ Ω relatively open (i.e., open with respect to the topology of Ω)we set

CapΩ(A) := inf
{
E1(u, u) : u ∈ H̃1(Ω) : u ≥ 1 a.e. on A

}
. (2.2)

And for arbitrary A ⊂ Ω, we set

CapΩ(A) := inf
{
CapΩ(B) : B relatively open A ⊂ B ⊂ Ω

}
. (2.3)

A set N ⊂ Ω is called a relatively polar if CapΩ(N) = 0.
The relative capacity (just as a cap) has the properties of a capacity as described in

[17]. In particular, CapΩ is also an outer measure (but not a Borel measure) and a Choquet
capacity.

A statement depending on x ∈ A ⊂ Ω is said to hold relatively quasieverywhere
(r.q.e.) on A, if there exist a relatively polar set N ⊂ A such that the statement is true for
every x ∈ A \N.

Now we may consider functions in H̃1(Ω) as defined on Ω, and we call a function
u : Ω → R relatively quasicontinuous (r.q.c.) if for every ε > 0 there exists a relatively open
set G ⊂ Ω such that CapΩ(G) < ε and u|Ω\G is continuous.
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It follows [13] that for each u ∈ H̃1(Ω) there exists a relatively quasicontinuous
function ũ : Ω → R such that ũ(x) = u(x)m—a.e. This function is unique relatively
quasieverywhere. We call ũ the relatively quasicontinuous representative of u.

For more details, we refer the reader to [11, 13], where the relative capacity is
investigated, as well as its relation to the classical one. A description of the space H1

0(Ω)
in term of relative capacity is also given, namely,

H1
0(Ω) =

{
u ∈ H̃1(Ω) : ũ(x) = 0 r.q.e. on ∂Ω

}
. (2.4)

2.2. Smooth Measures

All families of measures on ∂Ω defined in this subsection were originally defined on X [17],
and then in our settings on X = Ω, as a special case. We reproduce the same definitions,
and most of their properties on ∂Ω, as we deal with measures concentrated on the boundary
of Ω for our approach to the Robin boundary conditions involving measures. There is three
families of measures, as we will see in the sequel: the familes S0, S00, and S. We put ∂Ω
between brackets to recall our context, and we keep in mind that the same things are valid if
we put Ω or Ω instead of ∂Ω.

Let Ω ⊂ R
N be open. A positive Radon measure μ on ∂Ω is said to be of finite energy

integral if

∫

∂Ω
|v(x)|μ(dx) ≤ C

√
E1(v, v), v ∈ F ∩ Cc

(
Ω
)

(2.5)

for some positive constant C. A positive Radon measure on ∂Ω is of finite energy integral if
and only if there exists, for each α > 0, a unique function Uαμ ∈ F such that

Eα

(
Uαμ, v

)
=
∫

∂Ω
v(x)μ(dx). (2.6)

We call Uαμ an α-potential.
We denote by S0(∂Ω) the family of all positive Radon measures of finite energy inte-

gral.

Lemma 2.1. Each measure in S0(∂Ω) charges no set of zero relative capacity.

Let us consider a subset S00(∂Ω) of S0 defined by

S00(∂Ω) =
{
μ ∈ S0(∂Ω) : μ(∂Ω) < ∞,

∥∥U1μ
∥∥
∞ < ∞}. (2.7)

Lemma 2.2. For any μ ∈ S0(∂Ω), there exist an increasing sequence (Fn)n≥0 of compact sets of ∂Ω
such that

1Fn · μ ∈ S00(∂Ω), n = 1, 2, . . . ,

CapΩ(K \ Fn) −→ 0, n −→ +∞ for any compact set K ⊂ ∂Ω.
(2.8)
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We note that μ ∈ S0(∂Ω) vanishes on ∂Ω \ ∪nFn for the sets Fn of Lemma 2.2, because
of Lemma 2.1.

We now turn to a class of measures S(∂Ω) larger than S0(∂Ω). Let us call a (positive)
Borel measure μ on ∂Ω smooth if it satisfies the following conditions:

(i) μ charges no set of zero relative capacity;

(ii) there exist an increasing sequence (Fn)n≥0 of closed sets of ∂Ω such that

μ(Fn) < ∞, n = 1, 2, . . . , (2.9)

lim
n→+∞

CapΩ(K \ Fn) = 0 for any compact K ⊂ ∂Ω. (2.10)

Let us note that μ then satisfies

μ(∂Ω \ ∪nFn) = 0. (2.11)

An increasing sequence (Fn) of closed sets satisfying condition (2.10) will be called a
generalized nest; if further each Fn is compact, we call it a generalized compact nest.

We denote by S(∂Ω) the family of all smooth measures. The class S(∂Ω) is quiet large
and it contains all positive Radon measures on ∂Ω charging no set of zero relative capacity.
There exist also, by [15, Theorem 1.1], a smoothmeasure μ on ∂Ω (hence singular with respect
to m) “nowhere Radon” in the sense that μ(G) = ∞ for all nonempty relatively open subset
G of ∂Ω (see [15, Example 1.6]).

The following Theorem, says that, any measure in S(∂Ω) can be approximated by
measures in S0(∂Ω) and in S00(∂Ω) as well.

Theorem 2.3. The following conditions are equivalent for a positive Borel measure μ on ∂Ω.

(i) μ ∈ S(∂Ω).

(ii) There exists a generalized nest (Fn) satisfying (2.11) and 1Fn · μ ∈ S0(∂Ω) for each n.

(iii) There exists a generalized compact nest (Fn) satisfying (2.11) and 1Fn · μ ∈ S00(∂Ω) for
each n.

2.3. Additive Functionals

Now we turn our attention to the correspondence between smooth measures and additive
functionals, known as Revuz correspondence. As the support of an additive functional is
the quasisupport of its Revuz measure, we restrict our attention, as for smooth measures, to
additive functionals supported by ∂Ω. Recall that as the Dirichlet form (E,F) is regular, then
there exists a Hunt processM = (Ξ, Xt, ξ, Px) onΩwhich ism-symmetric and associated with
it.
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Definition 2.4. A function A : [0,+∞[×Ξ → [−∞,+∞] is said to be an additive functional
(AF) if

(1) At is Ft-measurable,

(2) there exist a defining set Λ ∈ F∞ and an exceptional set N ⊂ ∂Ω with capΩ(N) = 0
such that Px(Λ) = 1, for all x ∈ ∂Ω \ N, θtΛ ⊂ Λ, for all t > 0; for all ω ∈ Λ,
A0(ω) = 0; |At(ω)| < ∞ for t < ξ. A(ω) is right continuous and has left limit, and
At+s(ω) = At(ω) +As(θtω)s, t ≥ 0.

An additive functional is called positive continuous (PCAF) if, in addition, At(ω) is
nonnegative and continuous for each ω ∈ Λ. The set of all PCAF’s on ∂Ω is denotedA+

c (∂Ω).
Two additive functionals A1 and A2 are said to be equivalent if for each t > 0, Px(A1

t =
A2

t ) = 1 r.q.e x ∈ Ω.
We say that A ∈ A+

c (∂Ω) and μ ∈ S(∂Ω) are in the Revuz correspondence, if they
satisfy, for all γ-excessive function h, and f ∈ B+(Ω), the relation

lim
t↘0

1
t
Eh·m

[∫ t

0
f(Xs)dAs

]
=
∫

∂Ω
h(x)

(
f · μ)(dx). (2.12)

The family of all equivalence classes of A+
c (∂Ω) and the family S(∂Ω) are in one to one

correspondence under the Revuz correspondence. In this case, μ ∈ S(∂Ω) is called the Revuz
measure of A.

Example 2.5. We suppose Ω to be bounded with Lipschitz boundary. We have [2]

lim
t↘0

1
t
Eh·m

[∫ t

0
f(Xs)dLs

]
=

1
2

∫

∂Ω
h(x)f(x)σ(dx), (2.13)

where Lt is the boundary local time of the reflecting Brownian motion on Ω. It follows that
(1/2)σ is the Revuz measure of Lt.

In the following we give some facts useful in the proofs of our main results. We set

Uα
Af(x) = Ex

[∫∞

0
e−αtf(Xt)dAt

]
,

RA
α f(x) = Ex

[∫∞

0
e−αte−Atf(Xt)dt

]
,

Rαf(x) = Ex

[∫∞

0
e−αtf(Xt)dt

]
.

(2.14)

Proposition 2.6. Let μ ∈ S0(∂Ω) and A ∈ A+
c (∂Ω), the corresponding PCAF. For α > 0, f ∈ B+

b
,

Uα
A is a relatively quasicontinuous version ofUα(f · μ).
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Proposition 2.7. Let A ∈ A+
c (∂Ω), and f ∈ B+

b , then RA
α is relatively quasicontinuous and

RA
α f − Rαf +Uα

AR
A
α f = 0. (2.15)

In general, the support of an AF A is defined by

supp[A] = {x ∈ X \N : Px(R = 0) = 1}, (2.16)

where R(ω) = inf{t > 0 : At(ω)/= 0}.

Theorem 2.8. The support of A ∈ A+
c (∂Ω) is the relative quasisupport of its Revuz measure.

In the following, we give a well-known theorem of decomposition of additive func-
tionals of finite energy. We will apply it to get a decomposition of the diffusion process
associated with (E,F).
Theorem 2.9. For any u ∈ F, the AF A[u] = ũ(Xt) − ũ(X0) can be expressed uniquely as

ũ(Xt) − ũ(X0) = M[u] +N[u], (2.17)

whereM[u]
t is a martingale additive functional of finite energy andN[u]

t is a continuous additive func-
tional of zero energy.

A set σ(u) is called the (0)-spectrum of u ∈ F, if σ(u) is the complement of the largest
open set G such that E(u, v) vanishes for any v ∈ F ∩C0(X)with supp[v] ⊂ G. The following
Theorem means that supp[N[u]] ⊂ σ(u), for all u ∈ F.

Theorem 2.10. For any u ∈ F, the CAFN[u] vanishes on the complement of the spectrum F = σ(u)
of u in the following sense:

Px

(
N

[u]
t = 0 : ∀t < σF

)
= 1 r.q.e x ∈ X. (2.18)

3. General Reflecting Brownian Motion

Nowwe turn our attention to the process associated with the regular Dirichlet form (E,F) on
L2(Ω) defined by

E(u, v) =
∫

Ω
∇u∇vdx, F = H̃1(Ω). (3.1)

Due to the theorem of Fukushima (1975), there is a Hunt process (Xt)t≥0 associated
with it. In addition, (E,F) is local, thus the Hunt process is in fact a diffusion process (i.e., A
strongMarkov process with continuous sample paths). The diffusion processM = (Xt, Px) on
Ω is associated with the form E in the sense that the transition semigroup ptf(x) = Ex[f(Xt)],
x ∈ Ω is a version of the L2-semigroup Ptf generated by E for any nonnegative L2-function
f .

M is unique up to a set of zero relative capacity.
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Definition 3.1. We call the diffusion process on Ω associated with (E,F) the general reflecting
Brownian motion.

The process Xt is so named to recall the standard reflecting Brownian motion in the
case of bounded smooth Ω, as the process associated with (E,H1(Ω)). Indeed, when Ω is
bounded with Lipschitz boundary, we have that H̃1(Ω) = H1(Ω) and by [6] the reflecting
Brownian motion Xt admits the following Skorohod representation:

Xt = x +Wt +
1
2

∫ t

0
ν(Xs)dLs, (3.2)

whereW is a standardN-dimensional Brownian motion, L is the boundary local (continuous
additive functional) associated with surface measure σ on ∂Ω, and ν is the inward unit
normal vector field on the boundary.

For a general domain, the form (E,H1(Ω)) needs not to be regular. Fukushima [9]
constructed the reflecting Brownian motion on a special compactification of Ω, the so-called
Kuramuchi compactification. In [6], it is shown that ifΩ is a bounded Lipschitz domain, then
the Kuramochi compactification of Ω is the same as the Euclidean compactification. Thus for
such domains, the reflecting Brownian motion is a continuous process who does live on the
set Ω.

Now, we apply a general decomposition theorem of additive functionals to our process
M, in the same way as in [6]. According to Theorem 2.9, the continuous additive functional
ũ(Xt) − ũ(X0) can be decomposed as follows:

ũ(Xt) − ũ(X0) = M
[u]
t +N

[u]
t , (3.3)

whereM[u]
t is a martingale additive functional of finite energy andN

[u]
t is a continuous addi-

tive functional of zero energy.
Since (Xt)t≥0 has continuous sample paths, M[u]

t is a continuous martingale whose
quadratic variation process is

〈
M[u],M[u]

〉
t
=
∫ t

0
|∇u|2(Xs)ds. (3.4)

Instead of u, we take coordinate function φi(x) = xi. We have

Xt = X0 +Mt +Nt. (3.5)

We claim that Mt is a Brownian motion with respect to the filtration of Xt. To see that,
we use Lévys criterion. This follows immediately from (3.2), which became in the case of
coordinate function

〈
M[φi],M[φi]

〉
= δij t. (3.6)
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Now we turn our attention to the additive functional Nt. Two natural questions need
to be answered. The first is, where is the support of Nt located and the second concern the
boundedness of its total variation.

For the first question we claim the following.

Proposition 3.2. The additive functional Nt is supported by ∂Ω.

Proof. Following Theorem 2.10, we have that supp[Nt] ⊂ σ(φ), where σ(φ) is the (0)-
spectrum of φ, which means the complement of the largest open set G such that E(φi, v) = 0
for all v ∈ F ∩ Cc(Ω) with supp[v] ⊂ G.

Step 1. If Ω is smooth (Bounded with Lipschitz boundary, e.g.), then we have

E(φi, v
)
= −
∫

∂Ω
v · nidσ. (3.7)

Then, E(φi, v) = 0 for all v ∈ F ∩ Cc(Ω) with supp[v] ⊂ Ω. We can then see that the
largest G is Ω. Consequently σ(φ) = Ω \Ω and then σ(φ) = ∂Ω.

Step 2. IfΩ is arbitrary, then we take an increasing sequence of subset ofΩ such that
⋃∞

n=0 Ωn =
Ω. Define the family of Dirichlet forms (EΩn ,FΩn) to be the parts of the form (E,F) on eachΩn

as defined in Section 4.4 of [17]. By Theorem 4.4.5 in the same section, we have that FΩn ⊂ F
and EΩn = E on FΩn × FΩn . We have that Ωn is the largest open set such that EΩn(φi, v) = 0 for
all v ∈ FΩn ∩ Cc(Ωn). By limit, we get the result.

The interest of the question of boundedness of total variation ofNt appears when one
needs to study the semimartingale property and the Skorohod equation of the process Xt of
type 3.2. Let |N| be the total variation of Nt, that is,

|N|t = sup
n−1∑
i=1

|Nti −Nti−1 |, (3.8)

where the supremum is taken over all finite partition 0 = t0 < t1 < · · · < tn = t, and | · | denote
the Euclidian distance. If |N| is bounded, then we have the following expression:

Nt =
∫ t

0
νsd|N|s, (3.9)

where ν is a process such that |ν|s = 1 for |N|-almost all s.
According to § 5.4. in [17], we have the following result.

Theorem 3.3. Assume that Ω is bounded and that the following inequality is satisfied:

∣∣∣∣
∫

Ω

∂v

∂xi
dx

∣∣∣∣ ≤ C‖v‖∞, ∀v ∈ H̃1(Ω) ∩ Cb

(
Ω
)
, (3.10)

for some constant C. Then, Nt is of bounded variation.
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A bounded set verifying (2.10) is called strong Caccioppoli set. This notion is introduced
in [8], and is a purely measured theoretic notion. An example of this type of sets is bounded
sets with Lipschitz boundary.

Theorem 3.4. If Ω is a Caccioppoli set, then there exist a finite signed smooth measure ν such that

∫

Ω

∂v

∂xi
dx = −

∫

∂Ω
vdμ, ∀v ∈ H̃1(Ω) ∩ Cb

(
Ω
)
. (3.11)

And ν = ν1 − ν2 is associated with the CAF −Nt = −A1
t +A2

t with the Revuz correspondence. Conse-
quently ν charges no set of zero relative capacity.

To get a Skorohod type representation, we set

ν =
N∑
i=1

∣∣μi

∣∣,

φi =
dμi

dν
i = 1, . . . ,N.

(3.12)

We define the measure σ on ∂Ω by

σ(dx) = 2

(
N∑
i=1

∣∣φi(x)
∣∣2
)1/2

ν(dx) (3.13)

and the vector of length 1 at x ∈ ∂Ω by

ni(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φi(x)(∑N
i=1

∣∣φi(x)
∣∣2)1/2

if
N∑
i=1

∣∣φi(x)
∣∣2 > 0;

0 if
N∑
i=1

∣∣φi(x)
∣∣2 = 0.

(3.14)

Thus, μi(dx) = (1/2)ni(x)σ(dx), i = 1, . . . ,N.
Then

Nt =
∫ t

0
n(Xs)dLs, (3.15)

where L is the PCAF associated with (1/2)σ.

Theorem 3.5. If Ω is a Caccioppoli set, then for r.q.e x ∈ Ω, one has

Xt = x + Bt +
∫ t

0
n(Xs)dLs, (3.16)
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where B is an N-dimensional Brownian motion, and L is a PCAF associated by the Revuz correspon-
dence to the measure (1/2)σ.

Remark 3.6. The above theorem can be found in [9, 24]. In particular, Fukushima proves an
equivalence between the property of Caccioppoli sets and the Skorohod representation.

4. Probabilistic Solution to General Robin Boundary Value Problem

This section is concerned with the probabilistic representation to the semigroup generated
by the Laplacian with general Robin boundary conditions, which is, actually, obtained by
perturbing the Neumann boundary conditions by a measure. We start with the regular
Dirichlet form defined by (3.1), which we call always as the Dirichlet form associated with
the Laplacian with Neumann boundary conditions.

Let μ be a positive Radon measure on ∂Ω charging no set of zeo relative capacity.
Consider the perturbed Dirichlet form (Eμ,Fμ) on L2(Ω) defined by

Fμ = F ∩ L2(∂Ω, μ
)
,

Eμ(u, v) = E(u, v) +
∫

∂Ω
uvdμ u, v ∈ Fμ.

(4.1)

We will see in the following theorem that the transition function

Pμ
t f(x) = Ex

[
f(Xt)e−A

μ
t

]
(4.2)

is associated with (Eμ,Fμ), where Aμ
t is a positive additive functional whose Revuz measure

is μ; note that the support of the AF is the same as the relative quasisupport of its Revuz
measure.

Proposition 4.1. Pμ
t is a strongly continuous semigroup on L2(Ω).

Proof. The proof of the above proposition can be found in [14].

Theorem 4.2. Let μ be a positive Radon measure on ∂Ω charging no set of zero relative capacity and
(Aμ

t )t≥0 be its associated PCAF of (Xt)t≥0. Then Pμ
t is the strongly continuous semigroup associated

with the Dirichlet form (Eμ,Fμ) on L2(Ω).

Proof. To prove that Pμ
t is associated with the Dirichlet form (Eμ,Fμ) on L2(Ω), it suffices to

prove the assertion

RA
α f ∈ Fμ, Eμ

α

(
RA

α , u
)
=
(
f, u
)
, f ∈ L2(Ω, m), u ∈ Fμ. (4.3)
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Since ||RA
α f ||L2(Ω) ≤ ||Rαf ||L2(Ω) ≤ (1/α)||f ||L2(Ω), we need to prove (4.7) only for bounded

f ∈ L2(Ω). We first prove that (4.7) is valid when μ ∈ S00(∂Ω). According to Proposition 2.7
we have

RA
α f − Rαf +Uα

AR
A
α f = 0, α > 0, f ∈ B+

(
Ω
)
. (4.4)

If μ ∈ S00(∂Ω), and if f is bounded function in L2(Ω), then ||Rαf || < ∞, and Uα
AR

A
α f is a

relative quasicontinuous version of the α-potential Uα(RA
α f · μ) ∈ F by Proposition 2.6. Since

||Uα(RA
α f · μ)||∞ ≤ ||RA

α f ||∞||Uαμ||∞ < ∞ and μ(∂Ω) < ∞, we have that

RA
α f = Rαf −Uα

AR
A
α f ∈ Fμ (4.5)

and that

Eα

(
RA

α f, u
)
= Eα

(
Rαf, u

) − Eα

(
Uα

AR
A
α f, u

)

=
(
f, u
) −
(
RA

α f, u
)
μ
, u ∈ Fμ,

(4.6)

then (4.7) follows.
For general positive measure μ charging no set of zero relative capacity, we can take

by virtue of Theorem 2.3 and Lemma 2.2 an increasing sequence (Fn) of generalized nest of
∂Ω, and μn = 1Fn ·μ ∈ S00(∂Ω). Since μ charges no set of zero relative capacity, μn(B) increases
to μ(B) for any B ∈ B(∂Ω).

Let An = 1Fn ·A. Then An is a PCAF of Xt with Revuz measure μn. Since μn ∈ S00(∂Ω)
we have for f ∈ L2(Ω):

RAn
α f ∈ Fμn , Eμn

α

(
RAn

α , u
)
=
(
f, u
)
, f ∈ L2(Ω, m), u ∈ Fμn . (4.7)

Clearly |RAn
α f | ≤ Rα|f | < ∞ r.q.e, and hence limn→+∞R

An
α f(x) = RA

α f(x) for r.q.e x ∈ Ω. For
n < m, we get from (4.8)

Eμn

α

(
RAn

α f − RAm
α f, RAn

α f − RAm
α f
)
≤
(
f, RAn

α f − RAm
α f
)
, (4.8)

which converges to zero as n,m → +∞. Therefore, (RAn
α f)n is E1-convergent in F and the

limit function RA
α f is in F̃. On the other hand, we also get from (4.8)

∥∥∥RAn
α f
∥∥∥
L2(∂Ω,μ)

≤
(
f, RAn

α f
)
L2(Ω)

≤
(
1
α

)∥∥f∥∥L2(Ω). (4.9)

And by Fatou’s lemma: ||RA
α f ||L2(Ω) ≤ (1/

√
α)||f ||L2(Ω), getting RA

α f ∈ Fμ. Finally, observe the
estimate

∣∣∣∣
(
RAn

α f, u
)
μn

−
(
RA

α f, u
)
μ

∣∣∣∣ ≤
∥∥∥RAn

α f − RA
α f
∥∥∥
L2(∂Ω,μn)

‖u‖L2(∂Ω,μ) +
∣∣∣(Rαf, u

)
μ−μn

∣∣∣ (4.10)
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holding for u ∈ L2(∂Ω, μ). The second term of the right-hand side tends to zero as n → +∞.
The first term also tends to zero becausewe have from (4.8) ||RAn

α f−RAm
α f ||L2(∂Ω,μn) ≤ (f, RAn

α f−
RAm

α f), and it suffices to let firstm → +∞ and then n → +∞. By letting n → +∞ in (4.7), we
arrive to desired equation (4.3).

The proof of Theorem 4.2 is similar to [17, Theorem 6.1.1] which was formulated in
the first time by Albeverio andMa [14] for general smooth measures in the context of general
(X,m). In the case of X = Ω, and working just with measures on S0(∂Ω), the proof still the
same andworks also for any smoothmeasure concentrated on ∂Ω. Consequently, the theorem
is still verified for smooth measures “nowhere Radon,” that is, measures locally infinite on
∂Ω.

Example 4.3. We give some particular examples of Pμ
t .

(1) If μ = 0, then

P0
t f(x) = Ex

[
f(Xt)

]
, (4.11)

the semigroup generated by Laplacian with, Neumann boundary conditions.

(2) If μ is locally infinite (nowhere Radon) on ∂Ω, then

P∞
t f(x) = Ex

[
f(Bt)1{t<τ}

]
, (4.12)

the semigroup generated by the Laplacian with Dirichlet boundary conditions (see
[13, Proposition 3.2.1]).

(3) Let Ω be a bounded and enough smooth to insure the existence of the surface
measure σ, and μ = β · σ, with β is a measurable bounded function on ∂Ω, then
A

μ
t =
∫ t
0 β(Xs)dLs, where Lt is a boundary local time. Consequently

Pμ
t f(x) = Ex

[
f(Xt) exp

(
−
∫ t

0
β(Xs)dLs

)]
(4.13)

is the semigroup generated by the Laplacian with (classical) Robin boundary
conditions given by (1.1).

The setting of the problem from the stochastic point of view and the stochastic rep-
resentation of the solution of the problem studied are important on themselves and are
new. In fact before there was always additional hypothesis on the domain or on the class
of measures. Even if our approach is inspired by the works [14, 15] and Chapter 6 of [17],
the link is not obvious and give as rise to a new approach to the Robin boundary conditions.
As a consequence, the proof of many propositions and properties become obvious and direct.
The advantage of the stochastic approach is, then, to give explicitly the representation of the
semigroup and an easy access of it.
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Proposition 4.4. Pμ
t is sub-Markovian, that is, Pμ

t ≥ 0 for all t ≥ 0, and

∥∥∥Pμ
t f
∥∥∥
∞
≤ ∥∥f∥∥∞ (t ≥ 0). (4.14)

Proof. It is clear that if f ∈ L2(Ω)+, then Pμ
t f ≥ 0 for all t ≥ 0. In addition we have |Pμ

t f(x)| ≤
Ex[|f |(Xt)], and then ||Pμ

t f ||∞ ≤ ||f ||∞ (t ≥ 0).

Remark 4.5. The analytic proof needs the first and the second BeurlingDeny criterion [11,
Proposition 3.10] while our proof is obvious and direct.

Let Δμ be the self-adjoint operator on L2(Ω) generator of the semigroup Pμ
t , we write

Pμ
t f(x) = e−tΔμf(x). (4.15)

Following [13], we know that Δμ is a realization of the Laplacian. Then we call Δμ the Lapla-
cian with General Robin boundary conditions.

Theorem 4.6. Let μ ∈ S(∂Ω), then the semigroup Pμ
t is sandwiched between the semigroup of

Neumann Laplacian, and the semigroup of Dirichlet Laplacian. That is

0 ≤ e−tΔD ≤ Pμ
t ≤ e−tΔN (4.16)

for all t ≥ 0, in the sense of positive operators.

Proof. Let f ∈ L2(Ω)+. Since A
μ
t ≥ 0 we get easily the following: Pμ

t f(x) ≤ Ex[f(Xt)] for any
x ∈ Ω. On the other hand, we have Pμ

t f(x) ≥ Ex[f(Xt)e−A
μ
t 1{t<σ∂Ω}], where σ∂Ω is the first

hitting time of ∂Ω. Since the relative quasisupport of Aμ
t and Nt are in ∂Ω, then in {t < σ∂Ω},

Nt and A
μ
t vanishes. Consequently, Xt = Bt in {t < σ∂Ω} and Pμ

t f(x) ≥ Ex[f(Bt)1{t<σ∂Ω}]. The
theorem follows.

Remark 4.7. The fact that the semigroup Pμ
t is sandwiched between the Neumann semigroup

and the Dirichlet one as proved in [13, Theorem 3.4.1] is not obvious and needs a result
characterizing the domination of positive semigroups due to Ouhabaz, while our proof is
simple and direct.

Proposition 4.8. Let μ, ν ∈ S(∂Ω) such that ν ≤ μ (i.e., ν(A) ≤ μ(A), for all A ∈ B(∂Ω)), then

0 ≤ e−tΔD ≤ Pμ
t ≤ Pν

t ≤ e−tΔN (4.17)

for all t ≥ 0, in the sense of positive operators.

Proof. It follows from the remark that if ν ≤ μ, then Aν
t ≤ A

μ
t , which means that (Aμ

t )μ is
increasing, and then (Pμ

t )μ is decreasing.

There exist a canonical Hunt process XA
t possessing the transition function Pμ

t which
is directly constructed from Xt by killing the paths with rate −dLt, where Lt = e−At .
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To construct the process associated with Pμ
t , we follow A.2 of [17], so we need a

nonnegative random variableZ(ω) on (Ξ,M, Px)which is of an exponential distribution with
mean 1, independent of (Xt)t≥0 under Px for every x ∈ Ω satisfying Z(θs(ω)) = (Z(ω)− s)∨0.
Introducing now a Random time ξA defined by

ξA = inf{t ≥ 0 : At ≥ Z}. (4.18)

We define the process (XA
t )t≥0 by

XA
t =

{
Xt if t < ξA;
Δ if t ≥ ξA,

(4.19)

where Δ is a one-point compactification.
And, the admissible filtration of the process (XA

t )t≥0 is defined by

FA
t = {Λ ∈ F∞ : Λ ∩ {At < Z} = Λt ∩ {At < Z}, ∃Λt ∈ Ft}. (4.20)

Since {At < Z} ∩ {At = ∞} = ∅, we may and will assume that Λt ⊃ {At = ∞}.
Now, we can write

Ex

[
f
(
XA

t

)]
= Ex

[
f(Xt) : t < ξA

]

= Ex

[
f(Xt) : At < Z

]

= Ex

[
f(Xt)e−At

]

= Pμ
t f(x).

(4.21)

The Hunt process (XA
t )f≥0 is called the canonical subprocess of (Xt)t≥0 relative to the

multiplicative functional Lt. In fact, (XA
t )t≥0 is a Diffusion process as (Eμ,Fμ) is local.

In the literature, the Diffusion process XA
t is called a partially reflected Brownian

motion [25], in the sense that, the paths of Xt are reflected on the boundary since they will be
killed (absorbed) at the random time ξA with rate −dLt.

Theorem 4.9. Let μ, μn ∈ S(∂Ω) such that μn is monotone and converges setwise to μ, that is, μn(B)
converges to μ(B) for any B ∈ B(∂Ω), then Δμn converges to Δμ in strongly resolvent sense.

Proof. We prove the theorem for μn increasing, the proof of the decreasing case is similar.
Let An (resp. A) be the additive functional associated to μn (resp. μ) by the Revuz corres-
pondence. Similarly to the second part of the proof of Theorem 4.2, we have limRAn

α f(x) =
RA

α f(x) for r.q.e x ∈ Ω. Consequently limn→+∞||RAn
α f − RA

α f ||L2(Ω) = 0. For n < m, we have
Fμm ⊂ Fμn , and then

Eμn

α

(
RAn

α f − RAm
α f, RAn

α f − RAm
α f
)
≤
(
f, RAn

α f − RAm
α f
)
, (4.22)
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which converges to zero as n,m → +∞. Therefore, (RAn
α f)n is E1-convergent in F and the

limit function RA
α f is in F̃. The result follows.

Corollary 4.10. Let μ ∈ S(∂Ω) finite and let k ∈ N
∗. We defined for u, v ∈ Fμ:

Eμk(u, v) =
∫

Ω
∇u∇vdx +

1
k

∫

∂Ω
ũṽdμ, (4.23)

then Δμk → ΔN in the strong resolvent sense.

Intuitively speaking, when the measure μ is infinity (locally infinite on the boundary),
the semigroup Pμ

t is the Dirichlet semigroup as said in the example 2 in section 4, which
means that the boundary became “completely absorbing,” and any other additive functional
in the boundary cannot influence this phenomena, which explain why Nt does not appear
yet in the decomposition of Xt, which means that the reflecting phenomena disappear, and
so any path of Xt is immediately killed when it arrives to the boundary.

When μ is null on the boundary, then the semigroup Pμ
t is the Neumann one, and

then the boundary became completely reflecting, but for a general measure μ the paths are
reflected many times before they are absorbed at a random time.
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