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We investigate the performance of a production system with correlated demand through diffusion
approximation. The key performance metric under consideration is the extreme points that this
system can reach. This problem is mapped to a problem of characterizing the joint probability
density of a two-dimensional Brownian motion and its coordinate running maximum. To achieve
this goal, we obtain the stationary distribution of a reflected Brownian motion within the positive
quarter-plane, which is of independent interest, through investigating a solution of an extended
Helmhotz equation.

1. Introduction

There are extensive studies on some classic one-dimensional models in the field of operations
research, most notably, the work on the behavior and scheduling of single-server queuing
system, as well as the understanding of performance and management of single-item
inventory system. Probabilistic tools and techniques such as random walks and integral
transformations are traditionally used in analyzing them. More recently, concepts and
methodologies in dynamical systems and diffusion processes are brought in through
fluid and diffusion approximations, and they extend our understanding and capability of
analyzing and control of these systems substantially.

While highly desirable, extending these studies to their multidimensional counterparts
is a rather difficult problem. Extensions of classic probabilistic methods and techniques, such
as random walk and integral transform, introduce a new level of complication that requires
deeper understanding in algebraic and complex geometry for their general treatment. For the
approximations methods, their multidimensional counterparts, multidimensional dynamical
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systems, and multidimensional diffusion processes, also pose significant barriers for either
qualitative understanding and quantitative computation. While a general and sophisticated
methodology is lacking, some very interesting results have been obtained in establishing
convergence results that lay the foundation to both fluid and diffusion approximation
schemes. Meanwhile, the quantitative aspect of the problem seriously lagged behind, and
results in approximation and control of multidimensional systems are very limited. This
calls for more focus be put on computational efforts on such system, so that new tools and
techniques can be added to the arsenal of attacking these problem.

In this paper, we aim at extend some theoretical and computational understanding to a
simple but representative two-dimensional operations research model. Not only can it serve
as a building block for analyzing much more complicated systems, but also provides insights
to the understanding of basic structure of general systems with correlated demand. This
model is motivated by several typical applications in production systems and scheduling.
In such a system, it is very common that one resource is demanded by multiple demand
processes, similarly, one class of customer demand could contain a combination of different
products. The correlation induced by this commonality poses difficulty even for the simplest
version of the model. In this paper, after briefly introducing the mathematical model and
stochastic processes that characterize the basic underlying relationship, we provide an
diffusion approximation to the stochastic processes in the form of a reflected two-dimensional
Brownian motion, which is just an abstraction of previous known results in various forms.
Then our main effort will be concentrated on the analysis of some key quantities of this
diffusion process. More specifically, we are interested at the joint probability density of the
Brownianmotion and its coordinate runningmaximum. To produce the computational result,
we relate its computation to finding a proper solution to a classic elliptic partial differential
equation, the extended Helmhotz equation.

The rest of the paper will be organized as follows, in Section 2, we will introduce
the mathematical model and some preliminary results; in Section 3 we will present the a
key Brownian bridge argument; then, in Section 4, we solve an extended Helmhotz equation
related to the invariant measure; in Section 5, we present the final calculation results for the
probability density, and we conclude the paper with come comments on related future works
in Section 6.

2. Model

Suppose that there are two types of products, type 1 and type 2. Each of them is supplied
by an independent renewal process. Let us denote them as A1(t) and A2(t), respectively.
Statistically, we only require that the interarrival time follows a distributionwith finite second
moments. Meanwhile, there are two classes of demand, a class-(1) demand requires one unit
of type 1 product, a class-(2) demand requires one unit of type 1 product, and a class-(1, 2)
demand requires one unit of each product 1 and 2. Note that class-(1, 2) demand can only be
fulfilled when both two types of products are provided. If any of the product requirement can
not be satisfied, the demand will be backlogged. Although the model is quite simplistic on
the surface, it embodies the basic structure and trade-off formanywidely considered systems,
for example, assemble-to-order systems in inventory management and queuing systems with
flexibility servers. Results on this problem can have many indications to the understanding
of those more complicated systems.
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Diffusion approximation can be obtained for this system, see, for example [1, 2], the
limiting process is a two-dimensional Brownian motion with correlation. One of the most
important problems for characterizing the process is the probabilistic distribution of the
coordinate running maximum. For many applications, the coordinate running maximums
are closely related to the capacity provisioning since they represent how far the process will
reach at different directions. For probability theory, it is also a fundamental problem. And
this will be the focus of the paper.

From now on, we will focus on the calculation of the probability density function
calculation. More specifically, let (X1(t), X2(t)) be a two-dimensional Brownian motion with
constant correlation ρ > 0 and initial state (X1(0), X2(0)) = (0, 0). Therefore, we have
E[Xi(t)] = 0, E[X2

i (t)] = t, E[Xi(s)Xi(t)] = min{s, t} for i = 1, 2, and E[X1(s)X2(t)] =
ρmin{s, t}. For detailed properties of such process, see, for example, [3]. A quantity that
of general interest is, for z ≥ x and w ≥ y and any fixed time t0 > 0

P
[
X1(t0) ∈ dx, M1(t0) ∈ dz; X2(t0) ∈ dy, M2(t0) ∈ dw

]
, (2.1)

where Mi(t) are the running maximum for Xi(t) for i = 1, 2 respectively, that is Mi(t) =
sup0≤s≤t{Xi(s)}. It is easy to see that we can just focus on the case of t0 = 1, general case can
be easily obtained through scaling. To be more specific, we have, for any t0,

P
[
X1(t0) ∈ dx, M1(t0) ∈ dz; X2(t0) ∈ dy, M2(t0) ∈ dw

]

= P
[
X1(1) ∈ dx

√
t0, M1(1) ∈ dz

√
t0; X2(1) ∈ dy

√
t0, M2(1) ∈ dw

√
t0
]
,

(2.2)

because (X1(t), X2(t)) and (
√
t0X1(t/t0),

√
t0X2(t/t0)) have the same law due to the scaling

invariant property of Brownian motion.
In the case of one-dimensional Brownian motion, the density of the Brownian motion

and its running maximum is a classical result obtained through reflection principle. In two
dimension, the dependence between the two coordinates creates a barrier for generalizing
the result easily. In this paper, first, we convert the calculation of the quantity (2.1) to the
calculation of density function of the invariant measure for a reflected two-dimensional
Brownian motion in the positive orthant with negative drifts through a Brownian bridge
argument; then we obtain a Laplace transform of the invariant measure of a reflected two-
dimensional Brownian motion in the positive orthant with negative drifts through solving a
partial differential equation.

3. A Brownian Bridge Argument

There are many different approaches to the classic problem of the joint distribution of
a standard Brownian motion and its running maximum, see, for example, [4]. Here we
introduce an approach connecting probability laws of a conditional Brownian motion to a
Brownian bridge. To the best of our knowledge, no similar approaches appeared before in
the literature. A standard Brownian motion,X(t), which starts at 0, conditioning on the event
that it ends at x at time 1, has the same law as

W(t) + xt, (3.1)
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where W(t) is a standard Brownian bridge, that is, a Brownian motion satisfies W(0) =
W(1) = 0. Therefore, from the representation of Brownian bridge, we have, for t ∈ [0, 1],

W(t) + xt
d= tB

(
1
t
− 1
)
+ xt, (3.2)

where B(t) is a standard Brownianmotion, d=means equal in distribution. Thus, for any z ≥ x,
the event of

{
tB

(
1
t
− 1
)
+ xt ≤ z, ∀t ∈ [0, 1]

}
, (3.3)

will have the same probability as,

{
B

(
1
t
− 1
)

≤ z

t
− x, ∀t ∈ [0, 1]

}
. (3.4)

Apply a variable transform s = 1/t − 1, we get,

{B(s) ≤ zs + (z − x), ∀s ≥ 0}, (3.5)

or equivalently,

{B(s) − zs ≤ z − x, ∀s ≥ 0}. (3.6)

This probability of the above event is equivalent to the stationary distribution of B(s) − zs
reflected at zero, which, in turn, equals

1 − exp[−2z(z − x)]. (3.7)

Take derivative with respect to z, we have,

2(2z − x) exp[−2z(z − x)]. (3.8)

So,

P[X(1) ∈ dz, M(1) ∈ da] = P[M(1) ∈ da | X(1) ∈ dz]

=
2(2z − x)√

2π
exp

[

− (2z − x)2

2

]

.
(3.9)

This is consistent with the classic results obtained from other approaches such as the reflection
principle.
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For the two-dimensional Brownian motion, applying the same argument, calculating

P
[
X1(1) ∈ dx, M1(1) ≤ z, X2(1) ∈ dy, M2(1) ≤ w

]
, (3.10)

for z ≥ x and w ≥ y can be reduced to calculating

P
[
Y1(t) − zt ≤ z − x, Y2(t) −wt ≤ w − y

]
, ∀t ≥ 0. (3.11)

Apply the construction of reflected Brownian motion through maximum of Brownian motion
with negative drift, see, for example, [5], as well as the two-dimensional version of P. Lévy
theorem, see [3], we can conclude that (3.11) is the same as

P
[
Ŷ1(t) ≤ z − x, Ŷ2(t) ≤ w − y

]
, ∀t ≥ 0, (3.12)

where (Ŷ1(t), Ŷ2(t)) is a two-dimensional Brownian motion with negative drifts that reflected
at the two positive axes. To be more precise,

Ŷ1(t) = − zt +W1(t) + L1(t),

Ŷ2(t) = −wt +W2(t) + L2(t),
(3.13)

where (W1,W2) is a two-dimensional driftless Brownian motion with covariance matrix,

Γ =
(
1 ρ
ρ 1

)
, (3.14)

and Li(t), i = 1, 2 are the local time defined as

Li(t) � sup
0≤s≤t

− [θit +Wi(t)]
−, (3.15)

where θ1 = −z, θ2 = −w. Therefore, following the same logic, to obtain (3.10), we need to
compute the stationary distribution of (Ŷ1(t), Ŷ2(t)).

4. Stationary Distribution

To calculate the stationary distribution of the reflected Brownian motion Ŷ1(t), Ŷ2(t), we make
use the following result from Harrison and Williams [6].

Theorem 4.1. Functions π(x, y) ∈ C2(R2
+) and σi(x) ∈ C2(R1

+) are the density of the stationary
distribution of X(t) on the orthant and the boundary, if and only if the following basic adjoint
relationship (BAR) is satisfied:

∫

R
2
+

Lf(z)π
(
x, y

)
dx dy +

2∑

j=1

∫

Fj

Djf(z)σi(z)dvj(z) = 0, (4.1)
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where

L = DtΓD + (θ1, θ2)
tD (4.2)

is the infinitesimal generator and vj(z) is the surface measures defined on the boundary such that the
normal vector is pointed inward.

Remark 4.2. Notice that the boundary in the problem we study consists of the two axis. So the
surface measure is basically the Lebesgue measure on R

1 with the orientation that guarantees
that the normal vector points towards the inside of the orthant.

The main idea in this paper is to find a function u(x, y) such that Lu = e−zx−wy for
any pair (w, z), therefore, the first term of (4.1) becomes the Laplace transformation of the
stationary distribution, and then to investigate the basic properties of u(x, y) to compute the
second term. To find u(x, y), we need to solve the following equation:

∂2u

∂x2
+ 2ρ

∂2u

∂x∂y
+
∂2u

∂y2
+ θ1

∂u

∂x
+ θ2

∂u

∂y
= e−zx−wy. (4.3)

Let us first consider the homogeneous version of the equation,

∂2u

∂x2
+ 2ρ

∂2u

∂x∂y
+
∂2u

∂y2
+ θ1

∂u

∂x
+ θ2

∂u

∂y
= 0. (4.4)

Apply transform,

ξ = x,

η = − ρ
√
1 − ρ2

x +
1

√
1 − ρ2

y,
(4.5)

then, u(ξ, η) satisfies

Δξηu + θ̃1uξ + θ̃2uη = 0, (4.6)

where θ̃1 = θ1 and θ̃2 = (θ1 − ρθ2)/
√
1 − ρ2. Let v(ξ, η) = eθ̃1ξ+θ̃2ηu(ξ, η), then v(ξ, η) is the

solution of the following problem,

Δξηv − θ̃1θ̃2v = 0. (4.7)

This is so called extended Helmholtz equation. Separation of variables can be applied to
obtain the general forms of the solution. Hence, we know that the general solution is

v
(
ξ, η
)
=
[
c1e

−
√
kξ + c2e

√
kξ
][
c3e

−
√

θ̃1θ̃2−kη + c4e
√

θ̃1θ̃2−kη
]
, (4.8)
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for any constant c1, c2, c3, c4, and k ≤ θ̃2
1/4 + θ̃2

2/4. Therefore,

u
(
x, y

)
= c1c3 exp

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦x −

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

y

⎫
⎪⎪⎬

⎪⎪⎭

+ c1c4 exp

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
−
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦x +

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

y

⎫
⎪⎪⎬

⎪⎪⎭

+ c2c3 exp

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

(√
k − θ̃1

)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦x −

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

y

⎫
⎪⎪⎬

⎪⎪⎭

+ c2c4 exp

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

(√
k − θ̃1

)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦x +

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

y

⎫
⎪⎪⎬

⎪⎪⎭
.

(4.9)

For the inhomogeneous version, it is easy to see that u−(1/(z2+2ρzw+w2−θz−θw))e−zx−wy

will be the solution.
Now plug u(x, y) into the BAR (4.1), we have

π̂(z,w) + c1c3

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k + θ̃2/2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝−

(√
k + θ̃1

)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

+ c1c4

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝−

(√
k + θ̃1

)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
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+ c2c3

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

(√
k − θ̃1

)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝
(√

k − θ̃1
)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

+ c2c4

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

(√
k − θ̃1

)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝
(√

k − θ̃1
)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

− σ̂(z) − σ̂(w)
z2 + 2ρzw +w2 − θ1z − θ2w

= 0,

(4.10)

where π̂ and σ̂ denote the Laplace transform of π(x, y) and σ(x). Given that ci, i = 1, . . . , 4
and k can be arbitrary, it is necessary that

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝−

(√
k + θ̃1

)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠ = 0,

⎡

⎢⎢
⎣−
(√

k + θ̃1
)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝−

(√
k + θ̃1

)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠ = 0,
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⎡

⎢⎢
⎣

(√
k − θ̃1

)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k + θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝
(√

k − θ̃1
)
+
ρ

(√
θ̃1θ̃2 − k + θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠ = 0,

⎡

⎢⎢
⎣

(√
k − θ̃1

)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎤

⎥⎥
⎦σ̂

⎛

⎜
⎝

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

⎞

⎟
⎠

−

√
θ̃1θ̃2 − k − θ̃2
√
1 − ρ2

σ̂

⎛

⎜⎜
⎝
(√

k − θ̃1
)
−
ρ

(√
θ̃1θ̃2 − k − θ̃2

)

√
1 − ρ2

⎞

⎟⎟
⎠ = 0.

(4.11)

In fact, they are all in the form of

Aσ̂(B) − Bσ̂(A) = 0, (4.12)

and A and B satisfy the quadratic equation

(
A + ρB + θ̃1

)2
+
(√

1 − ρ2B + θ̃2

)2

=
θ̃2
1 + θ̃2

2

4
, (4.13)

which is equivalent to

A2 + 2ρAB + B2 + 2θ1A + 2θ2B +
3
(
θ2
1 + θ2

2 − 2ρθ1θ2
)

4
(
1 − ρ2

) = 0. (4.14)

For any x ∈ R, denote η(x) as the positive conjugate point of x with respect to the curve
defined by (4.14). Therefore,

η(x)

=

√
4
(
ρ2 − 1

)
x2 +

(
8ρθ2 − 8θ1

)
x + 4θ2

2 + 3
(
θ2
1 + θ2

2 − 2ρθ1θ2
)
/4
(
1 − ρ2

) − (2θ2 + 2ρx
)

2
.

(4.15)
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Assume that σ(x) = η(x)−1. It is easy to see that the equation has positive solution only
when θi < 0. Hence, we have

σ̂(z)

=
2

√
4
(
ρ2 − 1

)
z2 +

(
8ρθ2 − 8θ1

)
z + 4θ2

2 + 3
(
θ2
1 + θ2

2 − 2ρθ1θ2
)
/4
(
1 − ρ2

) − (2θ2 + 2ρz
) .

(4.16)

Therefore, from (4.10), we obtain the following.

Theorem 4.3. The Laplace transform of the stationary π(x, y) bears the following form:

π̂(z,w)

=
2

z2 + 2ρzw +w2 − θ1z − θ2w

×

⎧
⎪⎨

⎪⎩

w
√
4
(
ρ2 − 1

)
w2 +

(
8ρθ2 − 8θ1

)
w + 4θ2

2 + 3
(
θ2
1 + θ2

2 − 2ρθ1θ2
)
/4
(
1 − ρ2

) − (2θ2 + 2ρw
)

− z
√
4
(
ρ2 − 1

)
z2 +

(
8ρθ2 − 8θ1

)
z + 4θ2

2 + 3
(
θ2
1 + θ2

2 − 2ρθ1θ2
)
/4
(
1 − ρ2

) − (2θ2 + 2ρz
)

⎫
⎪⎬

⎪⎭
.

(4.17)

5. Final Calculations

Recall that our goal is to get an expression for

P
[
X1(t) ∈ dx, M1(t) ∈ dz; X2(t) ∈ dy, M2(t) ∈ dw

]
, (5.1)

which is, of course,

∂2

∂z ∂w
P
[
X1(t) ∈ dx, M1(t) ≤ dz; X2(t) ∈ dy, M2(t) ≤ dw

]
. (5.2)

The results in the previous section enable us to obtain the Laplace transform of

P
[
X1(t) ∈ dx, M1(t) ≤ dz; X2(t) ∈ dy, M2(t) ≤ dw

]
. (5.3)
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Apply the Laplace transform with respect to x, y, we get

∫∫∞

−∞
esx+tyP

[
X1(1) ∈ dx, M1(1) ≤ z; X2(1) ∈ dy, M2(1) ≤ w

]

=
∫∫∞

−∞
esx+tyP

[
M1(1) ≤ z, M2(1) ≤ w | X1(1) ∈ dx, X2(1) ∈ dy

]

× P
[
X1(1) ∈ dx, X2(1) ∈ dy

]

=
∫∫∞

−∞
esx+tyP

[
Y1 ≤ z − x, Y2(1) ≤ w − y

]

=
∫∫∞

−∞
esx+ty

(∫z−x

−∞

∫w−y

−∞
πz,w(u, v)dudv

)
P
[
X1(1) ∈ dx, X2(1) ∈ dy

]
dx dy

=
1
st
e−sz+twπ̂(−s,−t; z,w) ∗ φ̂(s, t),

(5.4)

where φ̂(s, t) is the Laplace transform of P[X1(1) ∈ dx, X2(1) ∈ dy]. Hence, we obtain the
following.

Theorem 5.1. The laplace transform of

P
[
X1(1) ∈ dx, M1(1) ≤ dz; X2(1) ∈ dy, M2(1) ≤ dw

]
(5.5)

with respect (x, y) has the form,

1
st
e−sz+twπ̂(−s,−t; z,w) ∗ φ(s, t). (5.6)

6. Conclusions

We studied a simple but representative operations research model for performance
analysis and capacity planning. Through diffusion approximation, we identify the problem
of characterizing the joint distribution of a two-dimensional Brownian motion and its
coordinate running maximum, which is of independent interests in the theory of probability,
as well as other applications. Using some probabilistic techniques, we are able to reduce
the problem to the solution of an extended Helmholtz equation, and a careful exam of the
solution to this well-known partial differential equation leads to the calculation of the Laplace
transform of the desired joint probability distribution.

Standard inversion methods exist for estimating the probabilities from the Laplace
transform, in the ongoing research, we are exploring the special structure of our solution, and
tailor the inversion method to our special needs, thus provide a very efficient and accurate
way of estimating these fundamentally important quantities for both probability theory and
operations research.
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