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We obtain a large deviation principle for the stochastic differential equations on the sphere S¢
associated with the critical Sobolev Brownian vector fields.

1. Introduction

The purpose of our paper is to prove a large deviation principle on the asymptotic behavior
of the stochastic differential equations on the sphere S associated with a critical Sobolev
Brownian vector field which was constructed by Fang and Zhang [1].

Recall that Schilder theorem states that if B is the real Brownian motion and Cy[0, 1]
is the space of real continuous functions defined on [0, 1], null at 0, which endowed with the
uniform norm, then for any open set G € Cy[0, 1] and closed set F ¢ Cy[0, 1],

liminf&* log P(eB > —inf I
iminf ¢* log (eBeG) > }Ielc o(f),

(1.1)
limsup e?log P(eB € F) < —inf Ip(f),
e—0 feF
with
lj‘l | f |2ds f absolutely continuous
I(f) =14 2J0 ’ Y ’ (1.2)

0, otherwise.
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This result was then generalized by Freidlin and Wentzell in their famous paper [2] by
considering the It6 equation

dxt = eo(x5)dW (t) + b(x)dt, x5 =x. (1.3)

They proved a large deviation principle for the above equation under usual Lipschitz con-
ditions.

Recently, Ren and Zhang in [3] proved a large deviation principle for flows associated
with differential equations with non-Lipschitz coefficients by using the weak convergence ap-
proach which is systematically developed in [4], and as an application, they established a
Schilder Theorem for Brownian motion on the group of diffeomorphisms of the circle.

In this paper, we consider the large deviation principle of the critical Sobolev isotropic
Brownian flows on the sphere S which is defined by the following SDE:

dxt Z

{ dag & dbg &
=1

ZA (xt) 0 dBy (1) + ZA () ongk(t)} xo=x, (14)

where A}, are eigenvector fields of Laplace operator A on the sphere 5% with respect to the

metric H@*2/2 D, = dim Gy, Dg» = dim Dy, Go, and D, are the eigenspaces of eigenvalues
—coq and —cg 5, respectively.
The authors in [1] consider the stochastic differential equations on S%

dbg £

dx]' = Z{ dag ¥ ZA () o dB}Z,k(t) + ZA c(x) o ngk(t)} xp=x. (1.5)

=1

Let 0, (t) = d(x",x"*'), and there exists a real-valued Brownian motion W,(t) such that
Ao, (t) = —on(t)dWn(t) - B,(t)dt, (1.6)

therefore, the coefficients of SDEs which defined the Brownian motion on S¢ with respect to
the metric H%*?/2 are non-Lipschitz (see Lemma 4.2 or page 582-585 [1] and Theorem 2.3 in
(1]).

Because of the complex structure of this equation, it seems hard to prove the large
deviation principle for the small perturbation of the equation by using its recursive approxi-
mating system as Ren and Zhang did in [3]. We will adopt a different approach which is
similar to those of Fang and Zhang [1] and Liang [5]. We first work with the solution x™* of
(5.1) (below) driven by finitely many Brownian motions, and this equation has smooth coef-
ficients, so the large deviation principle for this equation is well known. Next, we show that
x™* — x°is exponentially fast, which together with the special relation of rate functions gua-
ranties that the large deviation estimate of x™* can be transferred to x°, where x¢ is the
solution of the small perturbed system (3.1).

The rest of the paper is organized as follows. In Section 2, we recall the critical Sobolev
isotropic Brownian flows on the sphere S%. In Section 3, we introduce the main result.
Section 4 is devoted to the study of the rate function. The large deviation principle is proved
in Section 5.
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2. Framework

Let A be the Laplace operator on S%, acting on vector fields. The spectrum of A is given by
spectrum (A) = {—cpq; € > 1}U{-cps; € > 1}, wherecgq = €(€+d-1), cos = (€+1)(€+d-2).
Let G¢ be the eigenspace associated to cyq and 9, the eigenspace associated to cgs. Their
dimensions will be denoted by Dy = dim G¢, D¢y = dim 9. It is known (see [6]) that

Dg; = o(ed-l), Dg, = o(ed-l) as ¢ — +oo. 2.1)

Denote by {AZ,k? k=1,...,Dp;, £>1} fori=1,2 the orthonormal basis of G, and ®,
in L?; that is,

f <A2,k(x)/A£,p(x)>dx = 6ij00a0kp, (2.2)
Sd

where §;; is the Kronecker symbol and dx is the normalized Riemannian measure on s,
which is the unique one invariant by actions of g € SO(d + 1). By Weyl theorem, the vector
fields {Aiz,k} are smooth. For more detailed properties of the eigenvector fields, we refer the
reader to Appendix A in [1].

Let s > 0 and H*(S%) be the Sobolev space of vector fields on S4, which is the com-
pletion of smooth vector fields with respect to the norm

VI3, = Ld<(—A +1)°V,V)dx. (2.3)

Then, {A}, /(1 +coa)®?, AG /(14 ces)’% €21, 1<k<Dgi, 1<p<Dyy)isanor-

thonormal basis of H®. If we consider

a b

=———, bp=——, a>0,a, b>0,¢>2, 24
(e_l)l+u ¢ (e_l)l+u ( )

ag

then

[ Ge 1 b, B 1
D_le _O<€(ﬂ+d)/2)’ D_g,2 _O<€(a+d)/2>. (25)

Let {Bék(t); ¢>1,1<k < Dy;} fori = 1,2 be two family of independent standard
Brownian motions defined on a probability space (€2, F, P). Consider the series

D, D,
Wiw) = SH14/25 STBE (4L, +1) S B2 (1) A2 (2.6)
t - Dy ¢k ¢k Dy» ¢k ok (7 .

ex1 k=1 7~ k=1

which converges in L2, uniformly with respect to ¢ in any compact subset of [0, +oo[. Accord-
ing to (2.5), (W) is a cylindrical Brownian motion in the Sobolev space H (a+d)/2 Moreover,
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W, takes values in the space H*(S9) for any 0 < s < a/2. By Sobolev embedding theorem, in
order to ensure that W; takes values in the space of C 2 vector fields, @ must be larger than d+2.
In this later case, the classical Kunita’s framework [7] can be applied to integrate the vector
tield W; so that we obtain a flow of diffeomorphisms. For the case of small «, the notion of
statistical solutions was introduced in [6], and the phenomenon of phase transition appears.
It was also shown in [6] that the statistical solutions give rise to a flow of maps if & > 2 and
the solution is not a flow of maps if 0 < a < 2 The critical case a = 2 was studied in [1]. Instead
of introducing (W}), as in (2.6), the authors in [1] consider first the stochastic differential
equations on S¢

2n da Dy, Do
dxfzz{\/ d ZA (x]) 0 dBy (1) + ZA ((xf)edBy (b, xg=x. (27)

=1

Using the specific properties of eigenvector fields, it was proved that x}'(x) converges
uniformly in (t,x) € [0,T] x S% to a solution of the sde (2.8) below. We quote the following
result from [1].

Theorem A (see [1]). Let a = 2 in definition (2.4). Then, the stochastic differential equation on S%

dxt Z

{ day 4 dbg &
=1

ZA (xe) 0 dBy (1) + ZA () odBﬁ/k(t)}, xo=x (2.8)

admits a unique strong solution (x;(x)),so, which gives rise to a flow of homeomorphisms.

In the case of the circle S?, this property of flows of homeomorphisms was discovered
n [8] then studied in [9, 10].

3. Statement of the Result

Consider the small perturbation of (2.8)

0 Dq, Dyp
dx;:ggz{\/d”‘* 3E Al () 0B )+ e ¢ DAL )odB%(t)} x5=x (31)
=1

Equation (3.1) has a unique strong solution (xj (x)),,, according to Theorem A, denoted by x}.

We consider the abstract Wiener space (Q, #, ¥, P) associated with Wiener processes
W(s) = {Bék(t); €>1,1<k<Dyg; i=1,2}. Pis the Wiener measure and

H = {h: {h;,k(t)}, ¢>1,1<k<Dy; i=1,2, ||h% <oo} (3.2)
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is the Cameron-Martin space associated with W, where

Dep T
2, = M{ f|h (t)|2dt+k2=;f0 |h§,k(t)|2dt}. (3.3)

The purpose of this paper is to prove a large deviation principle for the family {x®, € > 0} in
the space C,([0,T], 54) and the collection of continuous functions f from [0, T] into 54 with
£(0) = x. To state the result, let us introduce the rate function. For any h € £, let {S"(t), t €
[0, T]} be the solution of

h < daf e h 1 dbé & h P2 h
s =y ZA (s (t) >h€k(t ZA (s (t))hg,k(t)dt , S"(0) = x.
=1
(3.4)
And for any f € C,([0,T],S%), let
I1(f) :inf{%HhHi,Z:f:Sh, heJé}. (3.5)

We recall the definition of the good rate function.

Definition 3.1. A function I mapping a metric space E into [0, co] is called a good rate function
if for each a < oo, the level set { f € E : I(f) < a} is compact.

Our main result reads as follows.

Theorem 3.2. Let x; be the solution of (3.1) on C.([0, T],S%), then {x;, € > 0} satisfies a large
deviation principle with a good rate function 1(f), f € C([0,T], S%); that is,

(i) for any closed subset C C C.([0,T],S%),

limsup €% log P(x* € C) < —1an(f) (3.6)

e—0

(ii) for any open set G C C,([0,T],S%),

lim inf £? log P(x* > —inf I(f). 7
im inf*log (x* €G) > }IelG (f) (3.7)

4. Skeleton Equation and the Rate Function
Theorem 4.1. For any h € K, (3.4) has a unique solution, denoted by S"(t).

In order to prove Theorem 4.1, we now introduce the following estimates which is
Theorem 2.3 in [1].
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Lemma 4.2. Let

U, (0)
sin 0

V,.(0) 1 cos 0
sin 6 2 sin%0

on(0) = -

7

(4.1)

B.(0) = U (6).

U,,V, is defined respectively, by (2.14) and (2.13) in [1]. Then, there exist some constants N > 0,
¢ > 0 such that for any n > N,

02(0) < CO? log 2771' +27,
(4.2)
27T _
-B,(0) < COlog o +27",

Proof of Theorem 4.1. Let S™" be the solution of the following system:

=1

dsrh(t) = Z{ dag %A (S"’h(t))h},k(t)dt+ dbe DZ“A <S”h(t >h2k(t)dt}
' (4.3)

sh0) = x.

Since Af?,k are smooth, the solution of (4.3) exists.
Forx,y € 5S4, consider the Riemannian distance d(x,y) defined by

cosd(x,y) = (x,y), (4.4)

where (-,-) denotes the inner product in R%*!. Let | - | denote the Euclidean distance. We have
the relation

x
|x-yl<d(xy) s Flx-yl (4.5)
Our aim is to show that S™" converges to a solution of (3.4). By the chain rule,

d<5n,h(t), Sn+1,h(t) > gn h (t), SV h(t) > <Sn,h(t), d5n+1,h(t) >

(d
;[ dac Z(s"“ "), A (S™ (1)) Y (1)

dbf & n+1,h nh 2
Z(s (t), A2 (S'(t)>>hg,k(t)]dt
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+Z[ daéZ<th(t) Al <Sn+lh(t)>>hé,k(t)

dbeDéz o , . i
Doy Z<5 (), A3 (S (t))>h€,k(t)]dt

(4.6)
Let 0] = d(S™"(t), S"™1/(t)), then
der = _ﬁ a(sm(e), 5w, (47)
Let
I (t)

|
- fo sin 67
y :Z_"l [ dae Z <<Sn+1,h(s), Aé,k <Sn,h(s)> > + <Sn,h(s), A}z,k (Sn+1,h(s)> >>h}z,k(5)

gb‘f Dﬁ((snﬂh(s) A2, (57(5)) ) + (57(5), 42, (577 (s) ) >)h§/k(s)]ds

I (t)
=-I§s;es§1[ S (4, (5100 Yo
dbeDe2 wh L 5
B 2 (57, AL (s '<s>)>he,k<s>]ds
(4.8)
We have
0= ( f
x<§;[g—jié<<5n+lh(s)A <S"h(s)>> <S"h(s)A <S"+1h(s)>>>
02 1/2
g_IZD <<Sn+1h(s) A <th(s)>>+<sn,h(s) A2 <Sn+1h(s)>>> ]>
< k=1

(4.9)
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Using Proposition A.4 in [1] and Lemma 4.2, we see that

on

1/2
IF(t) < (It <22{ae [1 — cos 0y (cos 07) + sin®0”y) (cos 92)] +bg[1 - ye(cos67)] }>

0 =1

2" ['Dea Dqp 172 ?
><<Z[ hlk(s)| hzk(s)| ]) ds>
=1 Lk=1

o
<2 It <Z — c0s 07 ye(cos 0) + y,(cos 65)] + be[1 - ye(cos 65)] }>ds

/=1

t 20 [Re 2 Re 2
xf Z[Z )|+ D|h3 )] ]ds

k=1 k=1

t /o
<2||h%, j (Z{ae [1 - cosOye(cosOY) + y,(cosOF)] +be[1 - ye(cos 67)] }>ds

0 \¢=1
(4.10)
Similarly, we have
Iz(t) < Jt 1 Z"Z” ﬂ%<5n,h(s) Al <Sn+1,h(s)> >2
27\ Josine? e Perid ek
1/2
db, & nh 2 n+1,h 2
+D—Mk=1<s (), A3 (S™(9)) )
+1 1/2 2
2” ,2 . 2
><< [ |h;k(s)| S|#o)] D ds>
e=om1 Lk=1 k=1
t 2n+1
<2/nl% | D (ac+be)ds.
0 g=on
(4.11)
Therefore,
|y |* <2120 + 283(1)
¢ oo
< 4||h||e@|: Z ae[1—cos0ye(cos 07) +y,(cos 0)] + be[1 - ye(cos 07)] }ds
0 ¢=1

+J‘t ZZ (ag+be)ds]

0 g=2n41
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T
< 4f o2(0")ds
0
t
4f <(eg)2 log 2—” + 2‘”>ds.
0 es
(4.12)

Using the similar arguments as that in [1], the above inequality implies that there exist con-
stants Cq, C, such that

l67]* < C 27, (4.13)

and Cj, C; are independent of n, t. Hence,

Sty - S”*”‘(t)| <|or| < c2me ™, (4.14)

Thus, S™"(t) uniformly converges to some function S" in C,([0,T], S¢).
Next, we show that {S"(t), t > 0} satisfies (3.4).
It suffices to show that for any u € S,

d(u,S"(t)) = i{ gj‘z %<u Al (")) Yy (pyat
=1
(4.15)

dbé Dy , h .
Dgo Z< Aek<5 t)>>he,k(t)dt}.

Set 17: = (u, S"(t)), n' = (u, S (1)), 67 = d(u, S™"(t)), and 6; = d(u, S"(t)).
Fix Ny > 0, and by Proposition A.4 in [1] and Lemma 4.2, we have

2

daeD“ 1 (gnnggy) Vil AbeRZ ) o fenns N\ 1o
I{ D“Z u’A€k<S (S)>>h’»’/k(s)ds+ Dy Z<”’Aek<5 (5)>>h€,k(s)ds}

Dgp

t 2" da gDé’l u AL (gnh A2 (gnh 2 4
’[ <D“k 1< ’ é’k< (S)>> +_Z< u, e,k< (S)>> S

0 ¢=Nj

J, <D"l h;k(s)| +Z|hék(s)| ds>
t oo on Dea
_ f 5 (ag+bg)sin29?dsxj <

0 ¢=N,

Sk« s)| '2|h§,,k(s)|2>ds
k=1

2" ©
<t S ae + be) < HIRIZ S (ac + b).

Ny Ny
(4.16)
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Thus, for any € > 0, there exists Ny > 0, for 2" > N,

P N(]I { dDCZ A}z,k<5"'h(s)> >h17,k(S)dS+ DZ“< A%_,k(th 5)) >h§,k(s)ds} < ;
(4.17)

By similar reasons, we also have

f { dae u, AL (S"(5)) Vi (s)dds + ‘”” Eﬁ( A2 <Sh@)>>h2(s)}ds
DZ 1 ¢k 4k u, 2k lk

= €
<t|hll% X (ae +be) < 5.
Ny
(4.18)

On the other hand, because S™" = S" in C,([0,T], S%), for any ¢ > 0, one can find N; > 0
such that for n > Nj,

S he S abe(540) - (5409) ibacos

(4.19)
dbé Dgp ) , , . . .
£2;< ,Ae,k(S”/ (S)> _Af,k<5 (S)) >hek(5)d5} 5
Therefore, for any € > 0, one can find N> > 0 such that for n > N>,
d .
f {Di‘i 4, A (S"()) =~ AL (S"(9)) Y (s)ds
dbe Dgp 5 . , . .
Z< U, Ay <S ’ (5)> - Ak (5 (s)> >he,k(5)d5
daé Dm Al (S"'h( 1
ok S)) >hg/k(5)d5
(4.20)

dbgD“ 2 [ enn .
Z< 'Ae,k<5' (S)>>hg’k(5)ds}

f { ?)LZ Aé'k (Sh(s)> >hé,k(5)d5
e No

dbe Rez 5 n 5
Z< 'Ae,k<5 (5)> >hg/k(5)d5}
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Since ¢ is arbitrary, we obtain that

d<u,5h(t)> i{ dag Z( (Sh(t>>h},k(t)dt

e=1 =
(4.21)
dbe & 2 h( 2
Des Z( w, A3, (S"(1)) Y3 (t)at .
The uniqueness is deduced from similar estimates. O

Lemma 4.3. For any N > 0, the set {S" : ||h||_, < N} is relatively compact in C.([0,T], S%).

Proof. By the Ascoli-Arzela lemma, we need to show that {S" : ||h||, < N} is uniformly
bounded and equicontinuous. The first fact is obvious, because ||S"|| = 1 for any h € . Next,
we will show that {S" : ||h||, < N} is equicontinuous.

Let {u;, i=1,...,d+1)} be an orthonormal basis of R**!, and by Proposition A.4in [1]
and Lemma 4.2, we have

= day & 1 n 1
>| - J‘S;[ D_&lg<A€,k<S (”)>,ui>hg,k(u)du

dbg Dgp ]

|<sh(t) — Sh(s), u;

2

Z <A122k <Sh(u)> Uj >h§k(u)du

f% 3 (a5 )+ 3 s () )t

S5

t oo t oo /Dea 5 Dea 2
_ f Z(ag+bg)sin29uduxf Z<Z|h}grk(u)| LA >du
s S ¢=1 \k=1 k=1

=1

il (1) |2 + Dzm|h§,k(u)|2> du
k=1

[©]

< Di(ag +bo)||hllZ |t = s,
g_

(4.22)
where 0; = d(S"(t),u;). Thus,
o dtl 2 0 )
St -S"s)| = X [(S"B - S" ) u)| < @+ DY (ae + bkl -5, (423)
i=1 =1
which finishes the proof. U

Lemma 4.4. The mapping h — S" is continuous from {h : ||h||, < N} with respect to the topology
on Q into C([0,T], S%).
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Proof. Let h, € K with ||h,|l_, < N and assume that h, converges to h in Q, then h, — h
weakly in #. By Lemma 4.2, {S™, n > 1} is relatively compact. Let ¢ € C,([0,T],S%) be a
limit of any convergent subsequence of {S", n > 1}. We will finish the proof the lemma by
showing that ¢ = S". Now, for simplicity, we drop the subindex k

St (1) = x+f [ d”ZA (8" ) ) 0 () + db”%A (8" ) gk<u>]du,

Dy, Déz
Sh(t) = x + I [ dae ZA <Sh(u)>h1€,k(u) + ZA <Sh(u)>h§,k(u):|du.
0 ¢=1
(4.24)
It is sufficient to show that S" = S" in C,([0,T], S%).
Write Sh (t) — Sh(t) = I; - I with I, Iy being given by
MOZ[MZ<<wwwﬁwwmww>
=1
dbe DZ”(A2 (sh (u)) ~ A2 (sh(u)))h2 (u)]du
DZ 2,k 2k n,é,k 4
t oo d .
I :f [ ‘”ZA (870 (o (10) = I (1))
0 ¢=1
db Dez . .
d ZA <sh (1) ) (2 0 ) = B2 (u)>:| du
(4.25)

Let 0; = d(S"(t), S (t)), and by Proposition A.4 in [1] and Lemma 4.2, we have

Dep

1/2
s [E(B )l - gy

=) 0, Dg» 2 1/2
x lz <Z nek(” | Z hi,z,k(”)l >] du
2=1 1 k=1

t oo
< hnll <I > [2dag —2ae(d -1+ cos 6,,)ye(cos 8,,) — cos 6,sin6,y,(cos 6,,)

0 ¢=1

1/2
+2db, — 2b, (d cos 0,ye(cos 0,) — sin®6,,y,(cos 6,,))] du>

<l (Lt 2[daG(0) - a((d - 1 + cos?6,)G(0,) + cos 0, sin0,G'(0))
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1/2
+dbG(0) - b(d cos 8,G(6,) +sin 6,G'(6,))] du)

1/2
<I CQZ log —du) .

(4.26)
Let
fek(v) f V dag Sh(u) I[Ot (w)du,
(4.27)
fek(v) f V dbe Sh(u) I[Ot (w)du
Then, f = ((f;,k(v))gzl’ 1<k<Der” (fék(v))ezl, 15kst) € H, because of
0 t De,
e = 35, e St (5o | e 5 (5400) ]
=170 Felin (428)
iJ‘ (ag + bg)du < 0.
Therefore,
tel [day . .
Ii={(fha—h), = fo ;[ D;Z éA}Lk (8" () (Trhg () = Il (1a) ) b
Dez . , (4.29)
dbe Z A2 (8" ) (g w) - 3 () du]

— 0 asn— oo.

Combining above estimates,

0= d(S" (), ™)) <

NS

1/2
[(I COZ%log —du> + [{(f, hn - h}ﬂ] . (4.30)

Hence,
92<2Cf 9210g du+2|(fh -k, |* (4.31)

This implies

6r < Cal(f,hn—h) |, (4.32)



14 International Journal of Stochastic Analysis

which yields

S —= S" as n = oo. (4.33)

Lemma 4.5. I(f) is a good rate function.

Proof. For any a > 0,
(1) < a} = {$" 3 hlEe < a} = " (1hi < V2a). @34)

The subset {||h||, < v/2a} is a compact set in Q and h — S" is a continuous map for any a.
Therefore, {I(f) < a} is a compact set for any a. So, I(f) is a good rate function. O

5. The Proof of Theorem 3.2

Let x;° be the solution to

1,€ < dllg e 1 1,€ 1 dbl Qe 2 n,e 2 n,e
dx;® =€) D, DAk (x1) 0 dBy (1) + D—ZAelk(xt odBj . (t) ¢, xp°=x.
=1 4l k=1 2215
(5.1)
We first have the following proposition.
Proposition 5.1. Forany 6 >0,
lim limsup e*log P( sup |x{ - x| > 6 ) = —c0. (5.2)
TR g0 0<t<T

Proof. Let 05(t) = d(x;”*,xf). Using the similar estimates as that in [1] (see pages 582-585),
there exists a real-valued Brownian motion W, (t) such that

O (1) = —e0, (H)AW, (t) — €2B, () dt, (5.3)

where o, (t) = 0,(05(t)), B, (t) = B,(05(t)) are defined as in Lemma 4.2.
Let &,(t) = (69)*(t), we have

g (1) = 205()d0; (1) + 6%, (1)d05 (1)
= ~260,(1)0 (05(1) AW, (1) + & (02(05(1) ~ 205 (OB (O3 (1) )dt,  (54)

A&, (t)dE, (1) = 4665 (£)* 02 (05 (t) ) dt.



International Journal of Stochastic Analysis 15

Introduce the function ¢, : (0, e!) - Rby

¢Mhﬁ§¥£%ﬁ; 55)
Then, for any 0 < £ < 1,
%@H@M®=ﬁggj%;5=+w, (56)
asp — 0.
Define for A > 0,
D, (&) = e ). (5.7)
We have
@, ($10g 7 +p) =12, 0),
V1 8) = PO e + 10 ) : L;Zi(/zgi é;)z 58)
< X2@,, () ! ifg<e.

Y (Elogr /) + p)?

Without loss of generality, we may assume 6 < e”!. Define 7, = inf{t > 0, 05(t) > 6}. By Ito
formula, we have

tAT, tAT,

Dy (Eu(EAT)) =1+ f "q);,k(gn(s))dgn(s)+§ O a()din(5)dE(s)

0
ATy,
=128 0 (0(5)) (05 )0 (0 5)) AW ()
i f;A @, (8(s)) (02(65(5)) ) s (5.9)

ATy,
-2 L D | (4 (5)) (05 (5)Bu(05(5)))ds

tAT,
#2609 (04970304 51 ).
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Using Lemma 4.2, 3N such that n > N,

L) (B logCr/0 ) +27)
én(s) log (2 /&n(s)) +p = (9;(5))Zlog<2n/92(s)2) o
165 () (=B (65(s)))  _ AC(03(5)" og(2/03(s)) +27) <G, (5.10)

¢n(s)log(2m/én(s)) +p ~ (eg(s))zlog<2ar/9§(s)2) +p

n

(8nlog(m/&n) +p)° <9,i(s)210g<27r/92(5)2> +P>2

20655 2E5(5) _ 20260;(5)* (83(5)" log (2 /85,(s)) +27") <20°C,.

Therefore, it follows from (5.9) that

E[®,) (&n(t AT))] <1+£Cy <A2 + A)E f; D, (s A Ty))ds, (5.11)
which implies that
E[®,1(u(t ATy))] < BSOS, (5.12)
Since
E[@p1 (a1 AT)] 2 E[@pu(@n(1ATa)), Ta<1] =@ P(r,<1),  (513)
we have
P<sup1 0: (t) > 6> = P(1, < 1) < e 10 (09) gC2 e (5.14)
<t<

Taking A = 1/&2, we obtain that

lim lim & logP<sup 05 (t) > 6> <-¢, (62> +C — —o0. (5.15)

n—we—0 0<t<1

Let p — 0 to get (5.2). The proof is complete. O

Define

() =int{ 31071, 50 - 1, 5.16)
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where

n_ 1 y
h = <<hé,k>15552n, revemn () o sng[l)’ (5.17)

5 2" (D1 AT ) 2 D¢y T ) 2
B2 = Z{ZI Ih;k(t)| dt+2f |h§rk(t)' dt}. (5.18)
2=1 k=170 k=170
It is obvious that
L(f) > I(f). (5.19)

Proof of Theorem 3.2. For any closed subset C C C,([0,T],S%) and 6 > 0,

P(xf € C) < P(|x*-x"|| <6, x* € C)+P(|]x* - x"*|| > 6, x* € C)

(5.20)
< P(x™* € Cg) + P(||Jx* — x™|| > 6),
where
Cs = {feCx<[0,T],Sd),;relg||f—g|| §6}. (5.21)
Therefore,

limsup €% log P(x° € C) < limsup &> log P(x™* € Cg) V lim sup &* log P(||x® — x™*|| > &)

e—0 e—0 e—0
< <— inf I,,(f) v limsup £* log P(||x* — x| > 6)>
feCs e—0

< <— ian(f)> V lim sup €% log P(|x* — x™¢|| > 6).

feCs e—0
(5.22)
Letn — oo to get
: 2 £ < — —1
llr?jz)lps logP(x* € C) < ;gcfﬁl(f) — }I;g[(f) as 6 — 0, (5.23)

which gives the upper bound of Theorem 3.2(i).
Let G € Cx([0,T], S%) be an open subset. Take f € G with I(f) < oo. Then, there exists
h € H such that

=8t () = 5l (5.24)
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Let f" = S"", h" be defined as (5.17). Then, f* = f asn — oo and also I,(f") <
(1/2)[|h"| - Choose 6 > 0 such that Bf(26) = {g € C.([0,T],8%,|If - gll <26} C G. Then,
there exists N > 0 such that forn > N,

lf"-fll <6  Bm(6)CG. (5.25)

Therefore,
P(x"'g € By (6)) < P(||x™ - xf|| <8, x™ € B (6)) + P(||x”'5 —xf|| > 6, x"* € Bfn(6))

< P(x° € B§(26)) + P<| X0 — x*

> 6)

< P(xf € G) + P(J|x™* — x®|| > 6).

(5.26)
Thus,
—%uh"nig <-L,(f") < 1iglig1f52 log P(x"€ € Bf:(6))
(5.27)
< ligligfsz log P(x* € G) Vv lir;:s:)lp e*log P(||x™* - xf|| > 6).
Letn — oo to obtain
11335&52 log P(x* € G) > —%||h||4e =-I(f). (5.28)
Because f is arbitrary,
ligrliglfgz logP(x° € G) > —}IeléI(f), (5.29)
we complete the proof of Theorem 3.2. O

Acknowledgments

The author thanks Professor Tusheng Zhang for very useful discussions and the referee and
the editor for their suggestion which helped her to improve the paper in many ways. The re-
search of the author is supported in part by NSFC no. 10971032 and NSFC no. 11026058.

References

[1] S. Fang and T. Zhang, “Isotropic stochastic flow of homeomorphisms on S¢ for the critical Sobolev
exponent,” Journal de Mathématiques Pures et Appliquées, vol. 85, no. 4, pp. 580-597, 2006.

[2] M. Freidlin and A. Wentzell, “On small random perturbations of dynamical systems,” Russian Math-
ematical Surveys, vol. 25, pp. 1-55, 1970.



International Journal of Stochastic Analysis 19

[3] J. Ren and X. Zhang, “Schilder theorem for the Brownian motion on the diffeomorphism group of the
circle,” Journal of Functional Analysis, vol. 224, no. 1, pp. 107-133, 2005.

[4] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley, New
York, NY, USA, 1997.

[5] Z. Liang, “Stochastic differential equation driven by countably many Brownian motions with non-
Lipschitzian coefficients,” Stochastic Analysis and Applications, vol. 24, no. 3, pp. 501-529, 2006.

[6] Y. Le Jan and O. Raimond, “Integration of Brownian vector fields,” Annals of Probability, vol. 30, no. 2,
pp. 826-873, 2002.

[7] H. Kunita, Stochastic Flows, Cambridge University Press, Cambridge, UK, 1988.

[8] P.Malliavin, “The canonic diffusion above the diffeomorphism group of the circle,” Comptes Rendus de
I"Académie des Sciences, vol. 329, no. 4, pp. 325-329, 1999.

[9] S.Fang, “Canonical Brownian motion on the diffeomorphism group of the circle,” Journal of Functional
Analysis, vol. 196, no. 1, pp. 162-179, 2002.

[10] H. Airault and J. Ren, “Modulus of continuity of the canonic Brownian motion “on the group of dif-

feomorphisms of the circle”,” Journal of Functional Analysis, vol. 196, no. 2, pp. 395-426, 2002.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



