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We consider a transmission problem for semilinear parabolic-hyperbolic equations. Exis-
tence, uniqueness, and continuous dependence of the solution upon the data are proved
by using the time-discretization method. Besides, some convergence results of the ap-
proximations are established.
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1. Introduction

In the present paper, we consider a transmission problem for semilinear parabolic-
hyperbolic equations in a multidimensional structure. Precisely, let Q = Q; U Q; be an
open bounded domain of R” with sufficiently smooth boundary I' =T, UT5, Q; and O,
having a common portion of boundary . In the cylinder Q = Q x (0, T), let the unknown
function w = (w!,w?):

wi(xt), (51) € Q=0 x(0,T),
w(x,t) = (1.1)
Wz(-x)t)> (x> t) € Q2 = Q2 X (0) T))
checking the following couple of partial differential equations:
1
5% —Aw' = fl(x,t,w!), inQ,
(1.2)
’?w? 2 o N
atz - Aw _f (.x,t,W )) m QZ’

subject to the initial conditions
w(x,0) = (w!(x,0),w*(x,0)) = (¢'(x),9*(x)), x€Q,

2 (1.3)
93§59=wux x €y,
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2 A transmission semilinear parabolic-hyperbolic problem

the boundary conditions
w=(whw?) =0, onIx(0,T), (1.4)

and the transmission conditions

wl=w?, onXx(0,T),

ow!  ow? (1.5)
87914'87‘92—0, OI]ZX(O,T),

where fP¢?, (p = 1,2), y are known functions.

The linear case of problem (1.2)—(1.5) has been studied by several authors. We re-
fer the reader, for instance, to [1, 4, 8, 9] and references cited therein. In [8] the au-
thors proved the existence and uniqueness of the solution for a similar problem, by using
Oleinik’s method [10]. However, the author of [9] has employed the variational method
to investigate a boundary value problem where the geometrical domain consists of one
3-dimensional part Q; and one 1-dimensional part (,, with a point A common to the
two boundaries. The model which is studied by the author consists in a parabolic (resp.,
hyperbolic) equation in Q,; (resp., ;) with transmission conditions at A. The work in
[4] (resp., [1]) shows the existence and the uniqueness of the weak (resp., strong) solu-
tion, of a transmission problem for parabolic-hyperbolic equations by using the energy-
integral method. Lastly, one quotes [5, 6] in which the author has used the energy-integral
method to investigate more general problems.

Differently to these works, in the present paper we prove the well-posedness of prob-
lem (1.2)—(1.5) via approximation by using the time-discretization method. So, the semi-
linear parabolic-hyperbolic problem is approximated by a recurrent system of elliptic
problems, to be solved at each subsequent time point.

To this end, we introduce two unknown functions:

_ ow?(x, 1)

1 SR 2 .
u'(x,t) :=w(x,1), u=(x,t): %

(1.6)
then
w(x,t) = Ju? + ¢*(x), (1.7)

where

S’ = J u?(+,s)ds. (1.8)

0
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So, problem (1.2)—(1.5) is seen to be equivalent to the following problem: find the func-

tion u = (u',u?) verifying

1
ai—Au1=f1(x,t,u‘), in Qi
ot
32 (1.9)
a_ut —AJ? = f2(x,t,Ju% +¢*) + Ag?,  in Qy,
u(x,0) = up(x) = (¢'(x),¥(x)), x€Q, (1.10)
u=(u',u*) =0, onIx(0,T), (1.11)
u'=u?, onXx(0,7T),
ou' 93 0 (1.12)

39, + 35, + 39 =0, onXx(0,T).

Hence, instead of looking for the function w = (w',w?), we search for the function u =

(u!,u?). The solution of problem (1.2)—(1.5) will be given by w! = u! and w? = J,u? + ¢2.
In order to solve problem (1.9)—(1.12) by the time-discretization method, we divide

the interval I into n subintervals by points ¢; = jhu> j =0,...,n, where h,, := T/n is a step

time. Set, for j = 1,...,n,

uj:(u},u?), withuf:=up(tj), 5,4?:% (p=12),
n

= (1.13)
= ua), ff :=f2(tj,hn2u?-1+¢2)-
i=1

Then, we are conducted to solve successively, for j = 1,...,n, the following linearized
problems.
Starting from

ug = (ug,u5) = (9", 9), (1.14)
find functions u; : ) — R such that

Su} —Au} =f]-1, inQq,

j
dut —hyA Y Auj = f7+A¢?,  inQy,

i=1

uj = (uj,uj) =0, onT, (1.15)
u :uﬁ, on 2,
ou' I oud 32
j j ¢
== thy ) =~ +=5 =0, by
39, 23 , 99, on
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The plan of this paper is as follows. Section 2 is devoted to some preliminaries: no-
tations, appropriate function spaces, and basic assumptions on the data are introduced
in Section 2.1, while in Section 2.2 we give some auxiliary results needed throughout the
paper. The variational formulation of the problem and the concept of the solution we are
considering are given in Section 2.3. In Section 3, we establish some a priori estimates
for the discretized problem. Then, we proceed with some convergence results and prove
the existence of the solution in Section 4. Finally, we demonstrate the uniqueness and
continuous dependence of the solution upon the data in Section 5.

2. Preliminaries

2.1. Notations and assumptions. First, we introduce some functions obtained from the
approximates uf (p = 1,2) by piecewise linear interpolation and piecewise constant with
respect to the time, respectively:

u™ = (ul(n))MZ(n)), " = (Hl(”),ﬁz(”)), (2.1)
with

wW() = b +0ul(t—ti1) (p=12)st€[tnti], j=1.on  (22)

ug, fort € [ - h,,0],

" (t) = (2.3)
uf, fort e (tji-1,t;], (p=1,2), j=1,...,m,

U%(t) := 9,12, (2.4)

U2 (t) := 9,72, (2.5)

huud, fort € [ - h,,0],

U (t) = j (2.6)
hay u?, forte (tji_itj], j=1,..,n
i-1

Moreover, we use the notation

7, 0" (x,t) = 7' (x,t - hy), (2.7a)

™ UZ(”)

n

(6,t) = T (x,t — hy), (2.7b)
then we write

Tp(n)(t,w) = fP(tj,w) (p=12), (2.8)
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thus, for t € (tj_1,¢;], j = 1,...,n, we have

—1(n) _
T, w8 ™) = f(tu)) = £

2.
o (2.9)

j-1
76,0+ g2) = (tj,hn D+ ¢2> - f2.
i=1

Let H'(Q,) be the usual first-order Sobolev space on Q, with scalar product (-, )10,
and corresponding norm || - ||],QP, let (-, ')O,QP and || - HO’QP be the scalar product and
corresponding norm, respectively, in L*(€),), and let

H(A,Qp) :={v* € H'(Qp),Av? € L*(Q,), (p = 1,2)} (2.10)
endowed with the norm

5 N
||Vp||H(A,QP) = (”VPHHl(QP) + ||AVP||0,QP) : (2.11)

We will also make frequent use of the seminorm

ov?P
Bxi

) o\ 12
) . (2.12)

0,0,

n
10, = 1997, = (3

i=1

Since ), is bounded, there exists a constant C(€),) such that

P P P < P
v e v, v ||0,QP <C(Qp) [v |1,QP (2.13)
(known as the Poincaré-Friedrichs inequality). Therefore, the seminorm | - |1, is a
norm over the space V*, equivalent to the norm || - [|1,q,.

Let V be the space of functions defined by
Vis{v= () e Ve (p=1,2), v [y =[5}, (2.14)
where
VPi={y» € H(Qp)/v* =00onT,} (p=1,2). (2.15)

The space V is equipped with the norm || - ||1,o,, defined by

2
vl = > [IvP[15 - (2.16)
p=1

We identify v € V with a function v: Q — R for which v|q, = v#, (p = 1,2). Similarly, we
introduce the product space 1.2(Q) = L?(Q;) X L?>(Q,) equipped with the scalar product
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and the associated norm

2

2
(u,v)o0= . (uP,vP)O)QP, luldo=> ||uP||§’QP, (2.17)
p=1 p=1

respectively.

Moreover, we will use the standard functional spaces L*(I,H), C(I,H), L*(I,H), and
C%(I,H), where H is a Hilbert space. For their properties, we refer the reader, for in-
stance, to [7].

Next we formulate the assumptions which are supposed to hold throughout the paper.

Assumption 2.1. fP(t,uP) : 1 x L*(Qp) — L*(£2p) is bounded in L*(€))) and fulfills the
Lipschitz condition

1F (6 = £ Yo, <L(1E= 1+ 1~ [l ) 2.18)

forall t,t' €I, and u?,u?" € L*(Qp) (p = 1,2).
Assumption 2.2. ¢f € H(A,Q,) (p=1,2); v € H(A, Q).

Assumption 2.3. Compatibility conditions: ¢! = y, and 9¢'/09; + h,(0y/99,) + 9¢*/99,
=0,on 2.

2.2. Auxiliary results. The following results are used in this paper. We list them for con-
venience.

LEmMMA 2.4 (an analogue of Gronwall’s lemma in continuous form [2]). Let fi(t) (i=1,
2) be real continuous functions on the interval (0,T), f3(t) = 0 nondecreasing function on t,
and C > 0. If the inequality

t t
L fls)ds+ f(t) < f3(t)+CJOf2(s)ds (2.19)

fulfills, then the inequality

t
L fs)ds+ f(8) < fr()ec (2.20)

holds for all t € (0, T).

LEmMA 2.5 (Gronwall’s lemma in discrete form [11]). Let {a;} be a sequence of real, non-
negative numbers, and A, C, and h,, are positive constants.
(1) If the inequality

j-1
aj <A+Chy, > a (2.21)

i=1
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takes place for all j = 1,...,n, then the estimate

a; < AeCU=Dm (2.22)
holds for all j = 1,2,...,n.
(2) If the inequality
j
aj <A+Ch, > a; (2.23)
i=1
fulfills and h < 1/C, then
a: < A eC(j—l)hn/(l—Chn) (2 24)
'S 1-Chy, ‘

takes place for all j = 1,2,...,n.

LemMa 2.6 [3]. Let V, Y be reflexive Banach spaces and let the imbedding V — Y be com-
pact. If the estimates

)

hold for all n > ny > 0, then there exist u € C(I,Y) N L*(I, V) with du/dt € L*(I,Y) (u is
differentiable a.e. t € 1) and a subsequence {u™} of {u™} such that u"™) — u in C(I,Y),
u(t) — u(t), ™ (t) — u(t) in V for all t € I and du (t)/dt — du(t)/dt in L*(I,Y).
Moreover, if |du™(t)/dtlly < C for all n > ny >0 and a.e. t € I, then du/dt € L*(I,Y)
and u: 1 — Y is Lipschitz continuous, that is,

du" (t)
dt

2
dt<C, ||, <C, Vtel (2.25)
Y

[|lu(t) —u)||y <Clt-t'|, Vit €l (2.26)

Moreover, the following identity will be frequently employed:

(u(t) = w(B)u(D)q = > (Ilu®)gq +llut) = wn)llo 0 — IwB)oq), (2.27)

Do —

forallt 1.

2.3. Variational formulation. Taking the scalar product in L2(Q) of (1.9) and v = (v!,
v%), we have

(E)u(-,t)

py ,V)OQ — (A (-, 1),v") g0, — (AT?v?) 0,

(2.28)
= (f'(stul)v ) gq, + (26302 +97) +A9%v%) -
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Carrying out some integration by parts and using (1.12), (2.14), and (2.15), we get

<8u(-,t)

- ,v)m+(w1(-,t),w1)m+(vstu2,w2)mz

(2.29)
= (f'(tu')v ) gq, + (26302 +92),v7) 00, — (VOL,VV) ..

Then, we look for a weak solution in the following sense.

Definition 2.7. The weak solution of problem (1.9)—(1.12), intended to be a function
u: I — 12(Q) verifying the following.

(i) u € COMI,1L2(Q)) N LI, V) and u? € L*(I,V?).

(ii) J;u? € CON(I,L*(Q,)) N L™ (1, V?).

(iii) u has a strong derivative (a.e. in I) du/dt € L*(I,L%(Q)).

(iv) 1(0) = o = (uh,1d) = (¢,y) in L2(QQ).

(v) Identity (2.29) holds forallv € V and t € I.

We remark that since u € C*!(I,1.2(Q))) c C'(I,L*())), the condition (iv) makes sense,
and according to (i), (ii), (iii) together with Assumption 2.1 each term in the integral
identity (2.29) is well defined.

Then, for each n > 1, problem (1.9)—(1.12) may be approximated by the following
time-discretized problems.

Starting from the initial conditions

uo = (ud,ud) = (¢, y), inQ, (2.30)

find successively for j = 1,...,n, functions u; : Q — R, verifying the integral identity

j
(8ujyv) oo+ (Vuj, Vvl) g +ha (v S, Vv2>
0,0

i=1 (2.31)
= (fjl,vl)o,Ql + (sz,vz)o)Qz — (V(pz,sz)O)Qz, VvevV,
which may be rewritten as follows:
1
W (uj,v)o,Q + (Vu}, Vvl)o,Ql + hn(Vuﬁ, VVZ)O,Q2
1
"y (j-1v)o0+ (f>voq, + (fv)og, (2.32)
j-1
—(Vo", V)4, — hn <v > ud, v%), vYyveV,
i=1
together with the boundary conditions
uj = (u},uf) =0, onT, (2.33)
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and the transmission conditions

u} = uf, ony,

hzasz 892 0, onZ2X.

Our assumptions permit a successive application of the Lax-Milgram theorem to con-
clude that the set of linear elliptic transmission problems admits a unique solution u; =
(uj,u3), for j=1,...,n

By using notation from Section 2.1, identity (2.31) may be written in the form

du™ 1 +2(n)
+ (vl vyl vU V12
( dt (t))v)o,Q ( u (t)) v )O,Ql ( (t)> v )(),Q2

(7l —1(n)\ .1 —2(n) +52(n) 2\ 2 (2.35)
= (f (t,h,u'"™),v )0,01+<f (t,ThnU +¢ ),v )0)02
— (V¢2,VV2)0,QZ, Yvev.

3. A priori estimates for the discretized problem
Now, we derive some a priori estimates.

LEMMA 3.1. Let Assumptions 2.1-2.3 be fulfilled. Then the following estimates:

[6ujllyq, < Cis (3.1)
il < G (3.2)
|ui |, <Ci (3.3)

hold for j = 1,...,n, where C, and C, are positive constants independent of h,, and j.

Proof. Taking the difference of identity (2.31) and the same identity written for j — 1, and
setting v = du;j = (5u},5u§), we have

(Ouj — duj1,0uj) o+ (V Vuj 1,V5u})0)0l +hn(Vuf,V8u?)o,Qz

= (f f] 1’5” )oo +(f fJ 1:5“ )o.0,>

(3.4)

whence, in view of identity (2.27) and some rearrangement, we obtain

||5”j||3,0+h3:||52“j||3,0+2hn|8“}|iol+2|“?|iﬂz
= (f f; 1’5” )091+2(f f; 1>8” )o.0, (3.5)

2
+ ||5uj,1||0’Q +2(Vu?,Vu§,1)O’QZ.
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Owing to the Cauchy inequality, it comes
2 2 2 2
||8“j||0,0 +hi||52”j“0,0 +2h, | 5”} | Lot | ”? | 1O,

1
< (1 = fhalloa, + 17 = Falla,) + Balldulloq, + 18uj-1 o+ 1451 170,
(3.6)

Neglecting the second and third terms in the left-hand side of the last inequality and
summing up over i = 2,..., j, this yields

2 2
||5“j||0,0+ |“§ | 1,0,

j j
2 2 1 2 2 2
< ||5”1||o,o + |ui| L0, T h, Z (||le - 1‘171”0,01 +|[f7 - i2—1||0,02) +hy z ||5”j||o,o~
i=2 i=2
(3.7)
According to Assumption 2.1, we get
A= i1—1||0,01 =1/ (tuiy) _fl(ti—lﬂ/‘zl—z)Ho,Q1
<L(hat [l = ulallog,) = Lha (14186l 4l )
i-1 i-2 (3.8)
157 Rl = |12 (e S8 49°) =2 (100 S35 497)
j=1 j=1 0,
< Lhy (14124 l00, )-
Consequently, it follows that
4 2 2
‘ (||le - i£1||0,01+||,7(i2_ i%1||0,92)
= (3.9)

j j
. 2 2
<SALPRA(j— 1) +2L7h ). oui_1llo.q, +2L7H, > e 110,00,
i=2 i=2

in light of which (3.7) becomes

2 2 2 2
8wl + |”§ |10, <l0mllog+ |41, +4L°T

j j-1 j-1
2 2 2
+hy, z ||5”j||0,0 +2L%h, Z ||5“}||0,Q. +2L%h, Z ||u12||0,02'
i=2 i=1 i=1
(3.10)



Abdelfatah Bouziani 11

This inequality can be rewritten in the following way:
2 2 2 2
||8“j||0,(2+ |“§ | Lo, S ||5“1||0,Q+ | “% | 1,Q, +4L°T

j i S (3.11)
+(2L% + 1)hnz ||8ui||o,9 +2L%h, Z ||“12||o,02‘

i=1 i=1

Thus, owing to inequality (2.13), we get

2 2 2 2
||5uj||o,o + |“? | 1,Os < ||5u1||0’9 + |“% | 1,0, +4LT

j ) 5 (3.12)
+max (2L2 + 1,2L2Cs)hy > ([|0uil[o o + 421 q,)»
i=1

where C; = C(Q). To estimate the first two terms in the right-hand side of (3.12), we
consider identity (2.31) for j = 1:

(8ur,v) g0+ (Vul, V') oo, +ha(Vui, Vv?) o o

= (flla"l)o,ﬂl + (f12>V2)0,Qz - (V‘PZ’V"Z)o,Qz) VveV, o1
hence
(8u1,v) g0+ hn(VOuL, V') o+ (VOui, Vv?) o o
= (f11>V1)o,Ql + (f12’V2)0,Q2 - (V”éav"l)o,ol (3.14)
—hn(Vu%,sz)Oﬂ2 - (V(pz,sz)O,Qz, vvev,
$0

(8ur1,v) g0+ hn(VOuL, V') o +hp (VOui, Vv?) o o,
= (fll"’l)o,o1 + (f12>1’2)o,92 - (V‘P1>VV1)0,01 (3.15)
—ha(Vy, V) g, — (VO3 VV) g, VVEV.

However, observe that

¢!

_ 1 1 - _ e P | 1,1

(Vo', Vv, Lluz 39, vido+ (Mg v') g,

—hn(W,VW)o,QZ - (V<I’2>VV2)0,Q2 (3.16)

= al ai(/)z) 2 2 2 2
B JFZUZ (hn 8192 * 892 v d0+hn(AI//,V )O,Qz + (A¢ vV )O,Qz'

Therefore, in view of (2.14), (2.15), and Assumption 2.3, we have

—(Vo', Vi) o — h (Vy, V2, o — (V2 Vi?)
® 0,0, v 0,0, % 0,0, ( )
3.17

= (A(P1>V1)0,Ql +h?’l(Av/>V2)0,QZ + (A(PZ)VZ)O,QZ'
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Substituting (3.17) into (3.15) yields

(8u1,v) g0+ Bn(VOuL, V') g o + B (VOui, Vv?) o

— (L +A9" V) gq + (f2 +haby + M@)o 0, VY EV. (319
Testing the resulting identity with v = du; = (8u},du?), we obtain
[18e1llo + P | 8ut [T, + 12|80 | g,
< (1Al + 180! lo.0, ) 181 1o, (3.19)

+ (12l o, + Pall Aylloay + 1892l 0, ) 1863110 0,
It is easy to see that
1 o0, <L (00") = £1(0,0) o0, +11F1 (61,0) o, < LlI@H o0, + M,
121, < I (tshny +9%) = £2(81,0)llg 0, + 11 (81,0) o, (3.20)
< Lhnllyllog, +Lllg*lloq, + M,

where M = max;er || f7(£,0)lo,0p- Then, inserting (3.20) into (3.19), it follows that
2 2 2
||6“1||0,Q +hy | 5”% | Lot hi | 6“% | 1,Q,
< (Lllg' o, +11Ag" loq, +M)|[81]]oq, (3.21)

+ (hn(L”V/”O,Qz +lAylloq,) +L||§02||0,02 + ||A‘P2||0,Q2 +M> ||8”%||0,Qz)

which implies

1 2 2 2
E||6”1HO,Q +hy | ‘S”% | LO, +hi | 5”% | 1,Q,
2 2
< (max5(1,L%,T%,L°T?)/2) <||(p1||H(A,Ql) +10*[[ha0,) + ”W”%—I(A,Qz)) +4M?.
(3.22)
Hence, omitting the last two terms in the left-hand side of (3.22) yields
[6u1]]0,q < Cs, (3.23)

where

2
Cs = \/maXS(l,L2, T2,12T?) <||<P1 ||?—I(A,Q,) +0? a0 * ”W”%{(A,Qz)) +8M2 (3.24)
However, since

u; = h,0uy + ug, (3.25)
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then
[ea1]lg.0 < PallSurllg 0 + |10l o 00 (3.26)
from which
lea1]]g.0, < Cs, (3.27)

owing to (3.23), where Cs = TCs + [lug|lo,o. On the other hand, consider identity (3.18),
tested with v = (v!,v?) = (u},8u}), which is an element of V,

2 2
(8”%)14%)0,01 + ||5“%||0,02 +hn(V8u%,Vu{)0’Ql +hi | 8“% | 1,Q, (3.28)
=(fil + A(pl,u{)o)ﬂl +(f? +hnA1V+A‘P2’5“%)o,QZ~

Applying identity (2.27) to the third term in the left-hand side, hence (3.28) becomes
after some rearrangement

2 1 2 2
||5”%||0,Q2 + 5 |“i | Lot | u% | 1,O,
1 2
< 5 lo' Lo T |l//|%,02 + (= 0uy + f *’A‘Pl’”%)o,o1 +(f¢ +hﬂAv/+A¢2’8u%)0,Qz’
(3.29)
from which it comes
1603 |[5.q, + |11 |50 < Cr, (3.30)
Ha 42 >
where

2 2
C; = max (3,31, 3L°T, T) <||¢1||H(A,Ql) +0? rra0,) ”W”%—I(A,Qﬁ) +5M* +3C5 +C3.
(3.31)

Consequently,
|3}, <Cr. (3.32)
Inserting (3.23) and (3.32) into (3.12) yields
i1
2 2 2 2
10ujllon + 4315 q, < Cs+max (2L2 + 1,2L2C3) hu 3. (|[8uilloq + |42 ]1g,),  (3.33)
i=1

with Cg := C? + C;.
Thanks to Lemma 2.5, we obtain

||6uj||(2))ﬂ+ |u§ |i02 < Cgexp (max (212 +1,2L%C5) (j — 1)h,) < Cy, Vj=1,2,...,n,
(3.34)
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where
Cy = Cgexp (max (2L +1,2L2C3)T),
from which we get estimates (3.1) and (3.3), with C; = Cé/ 2. However, since
j
uj = hnz&tj + ug,
i=1

then

j
H”j”o,ﬂ < hnz ||6”j||0,0 + ||“0||0,Q’

i=1

whence

||“j||o,Q < jhaCi+ ||”0||0,Q)

(3.35)

(3.36)

(3.37)

(3.38)

from which we obtain estimate (3.2) with C, = C, T + |[ugllo,o. This achieves the proof of

Lemma 3.1.
As a consequence of Lemma 3.1, we have the following results.

COROLLARY 3.2. The functions u™ and 4™ obey the estimates
" ()| o< Co VEeT,
[Z" ()0 <Co VEE,

J @002, dt < CT, Viel,

T (1) ] 10, <CT, Vi€l
‘ dut(t)

dt
[P () = uf ()], < Cihwy VeI (p=12),

<C;, aeinl,
0,0

[P ™ (t) — 7, 7™ ()], o, G h,, Vtel(p=12),

7" @

WD), < Cohny  VEEL
1T () ~ 0, T (D)l < Cohy  VEET

where Cyg = C, T, Cy and C; are the same constants given in Lemma 3.1.

O

(3.39a)
(3.39b)

(3.40a)

(3.40b)

(3.41)

(3.42)

(3.43)

Proof. Estimates (3.39) are an immediate consequence of (3.1), with the same constant,
while estimate (3.40a) follows directly from (3.39b). As for estimate (3.40b), we have, in
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light of (2.6)

7" =,

e

uj, Vte (tionti], j=1,...,m,

i=1

so, according to (3.3), we have

j
1T | o, e > |42 10, <Cihnj < Cuo.
i=1

However, it follows from (2.2) that

du(t) _ (dul(”)(t) du?™(t)

= 1842 = Sy
ar i 4@ )—(8u1,8uj) Suj,

forall, t € (tj_1,t;] j = 1,...,n. Hence, thanks to (3.1), it is easy to get

du™ (t)
dt

<C,, foraetel,
0,0

from which we have

2

du™ (t)
dt

)

dt < Cu,
0,0

with C; = C3T.
Next, observe that

() — uP" () = (t; - t)0uf, Vte (ti,t] (j=1,...,n),
(1) =1, (1) = uf —uf_, Ve (ti,t] (G=1,...,n),
in view of (2.2)-(2.3), and (2.3), (2.7a), respectively. Consequently, we have
7P (§) _ 1,p(n)
@ () = uP™ (1)]]g g, < Cihn,  VEEIL

[P () = 7,5 (D] 0, < Ciha,  VEEL

in view of (3.1). On the other hand, it comes from (2.5), (2.6), and (2.3) for p = 2:

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

J t
T - U0 = by 3w~ | w()ds
i=1 0
j i1 .in, t
=hy > u? - 2[ ﬁz(”)(s)ds—J 7" (s)ds = (t; —t)u?, Vte (tj-1,t],
S S laom, (i=Dh,

(3.51)
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therefore
1T () — U2 (¢ Olloq, < Cohny Vi€, (3.52)

according to (3.2). Similarly, it follows from (2.6) and (2.7b), for t € (¢;_1,¢;],

J j-1
T () 0, T () = hy > — by > i} = hyii?, (3.53)
i=1 i=1
$O
1T (1) - 7, T t)||0,02 < hall3]g., < Coltn, (3.54)
which completes the proof of Corollary 3.2. O

Moreover, we need two other estimates.

LemMma 3.3. Under Assumptions 2.1, the following estimates take place:

(7 @) (7 0, T 92) ),

(3.55)
< Culivllon, VveV,Vtel,
_ —=2(ny)
‘ (V" (6), V) g, + (VU™ (t),sz)O)Qz
(3.56)
<Cilvig VveV,aetel
Proof. Observe that
1(nk) —1(mk) 1 —2(ny) —2(ng) 5 5
(7 @ ) o (P (60, T 02)0),
1(nk) n —=2(nk)
<7 @O o I g, + £ (67, T 4 02) || 12
<If o, ||V1||0,01 + 1o, 1V llog,
(3.57)
thanks to the Schwarz inequality and (2.9). By virtue of Assumption 2.1, we have
1 fitllo.q, < IFH(Eujo0) = £1{E:0)loq, + 11 (£:0) o,
<Ll flyg, + M.
j-1
170, < |2 (o S+ 9°) - 60| 170000, 09
i=1 0.0

j-1

< Lhy, Z ||u1‘2||0,02 +L||§02||0,Qz +M,
i=1
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from where, according to estimate (3.2), we obtain

1/ 1lo0, SLC+M,
(3.59)
17, < L(TC+l9?lla,) + M

Hence, substituting (3.59) into (3.57), we obtain (3.55), where Cj; = v2max(LC, + M,

L(TCy+ ll9*llo,) + M).
On the other hand, it follows from the integral identity (2.35) that

‘ (V™) (1), 9o 0, + (VO™ (0),V92)

0,

:<71( )(t Th, ul(nk))’v>0,01+<72( )(t T, T (P2>’V2)0,Qz (3.60)

B (di/:lt (t)’v> = (Vg*Vv?)q, VvEV,aetel,
0,0

whence, owing to the Schwarz inequality and estimates (3.41) and (3.55), it comes that

‘(va“nk)(t),vw)ml + (VT (1), vv?)

0:02; (3.61)

<(Ca+C)lIvllog + |g1)2|1,92 |v2|1)02, VveV,aetel,

from which we obtain (3.56), where Ci3 = C1 + Cy + [¢?|1,0,. O

4. Convergence and existence results

First, owing to (3.39b), (3.41), and the continuous imbedding V < 12()), we obtain, on
the basis of Lemma 2.6, that there exist

ue LI, V)n C*(I,L2(Q)), (4.1)
with

% € L=(I,1L.2(Q)) (uis differentiable a.e. in I), (4.2)

and subsequences {u")} and (7"} of {u™} and {#™M}, respectively, such that

u™ — u, in C(I,L%(Q)), (4.3)

u™ (1), T (¢) u(t), inVvVvtel, (4.4)
(i)

du ™ du i (L)), (4.5)

dt dt’
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Similarly, by virtue of (3.40), and the continuous imbedding V2 — L?((),), we deduce
that there exist

Su? € L* (I, V?) n CON(I, L2 (Q)), (4.6)
with
u? € L*(I,1*(Q,)), (4.7)

and subsequences {U2m)} and {Uz(nk)} of {U2M} and {Uz(")}, respectively, verifying

U2m) — U2, in C(I,12(Q)), (4.8)
v, Ty — V), inV2viel, (4.9)
72(m) u?, in L*(I,V?). (4.10)

Therefore, the first three points of Definition 2.7 are already verified. Besides, since by
definition u™)(0) = (u'")(0),u™)(0)) = (u},ud) = uo, it then follows from (4.3) that
u(0) = up holds in L2(Q)), thus point (iv) of Definition 2.7 is fulfilled. As for point (v),
we integrate identity (2.35) written for ny, over (0,f) C I by taking into account that if
u™)(0) = ug, we get

t _ —=2(ng)
(um) (£) — ”O)V)o,Q +L ((Vul(nk)(s),vvl)o’nl + (VU “(s), sz)o,m)cls

Ll i) _ —2(m) —2(m) 4.11)
- (F™ sm,a)w) o+ (7 (50,0 1 g2) ), Jds

0

- t(Vgoz,sz)o’Qz, Vtel, VveV.

In order to investigate the behavior of (4.11) as #j tends to infinity, we prove some con-
vergence statements. First, due to (4.3), we have

(W™ (1),v) 00

(u(t),v)gq Vtel (4.12)

N — 00

Furthermore, in view of (4.4) and (4.9), we deduce that

(Vﬁl(nk)(t)’vvl)(),ﬂ] + (VUZ(”")(t),sz)OQ
o (4.13)
— (Vul (1), V1) o, + (VU(1), V) 4 .

from which together with estimate (3.56), we may apply the Lebesgue theorem of domi-
nated convergence to obtain

t
) 1 +52(nk) 2
L ((w D, V), + (VT ™(), Vv >o,oz>d5

—_— t ((Vul(s),Vvl)O’Q] + (VUZ(S),VVZ)O’QZ)CZS.

N — 0 0

(4.14)



Abdelfatah Bouziani 19
On the other hand, by virtue of (2.9), Assumption 2.1, and estimates (3.42) at p = 1, it
follows, for all t € (t;_1,¢;] (j = 1,...,n), that

l(ﬂk)

I7 709) — £ (6 )

0,
= Hf t])Th u' )) _fl(t>ul(t))||o,gl
L[t =t + [z, 2™ = u' (D)l
(4.15)
<Ly + [, @ =T (0| 0, + (7" (6) = 1 P (1),

+ ||u1<n“)(t) - ul(t)HO,Ql)

<L((1+2C0) A + [0 =l )

Hence, passing to the limit when 7 tends to infinity by taking into account (4.3), we get

Hf (tz, @) = fH (6l ()| ——0, VteL (4.16)

0,Q; ng—oo

Similarly, we have

Hfz(nk) (5,7, T +9%) = £2(, U3 (0) + ¢*) HO,QZ

o+, T T 0, 00 - 000,

0,0
(4.17)

+||UPm) (1) — U2(t)||0,02)

< L<(1 + 2C2)hnk + |~U2(nk)(t) - Uz(t)HC(I,LZ(Qz)))’

in view of Assumption 2.1 and estimates (3.43). Then, owing to the continuous imbed-
ding V2 — [?(€);) and limit relation (4.8), we obtain

HfZ(nk U2(nk)+(pz) *fz(t, Uz(t)+¢2)H — 0, Vtel (4.18)

O,Qz Ny — 00
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Therefore, by virtue of estimates (3.55), and limit relations (4.16) and (4.18), the Lebesgue
theorem of dominated convergence implies that

Jt ((?MHk)(S, Thnkﬂl(nk))>1/1>0,01 + (?zmk) (5) Thy, UZ(nk (Pz)’vz)o,ﬂz)ds

0

. (4.19)

e o ((fl(S,ul(S))ml)O,Ql +(f*(s, Iu? +(p2),v2)0,02>ds,
forallve Vandallt e I.
Now we are ready to pass to the limit as #x — oo in (4.11). Observing (4.12), (4.14),
and (4.19), then (4.11) passes into the following integral identity:

(u(t)>V)O,Q+JO (Vul(s), V') g, ds+J (VU(s), Vv?) 4, ds

= Ir ((f1 (S,I/ll(s)),vl)o,Ql + (f2 (S,Ssuz + ¢2),V2)0’Qz>ds (4.20)
0

+ (u0,v) 0.0 — t(VQ:VV) 0 )5

forallt €1, forall v € V. Since u: I — V is strongly differentiable for a.e. t € I, then the
differentiation of the above identity with respect to f leads to the desired identity (2.35)
thanks to the equality

d d
$(u(l‘),v)0’Q (dt (1), V)O,Q’ ae.tel,VveV. (4.21)

Thus, we have proved the following theorem.

THEOREM 4.1. Let Assumptions 2.1-2.3 be fulfilled. Then, problem (1.9)—(1.12) admits at
most a solution in the sense of Definition 2.7, verifying u € L*(I, V) n COY(I,12(Q)) with
u? € L*(I,V?), du/dt € L*(1,12(Q)), and 3,u* € L™ (I, V?) N CON(I,L*((2,)).

A subsequence {u"™)} [{7"™)}, resp.) of {u™} and ({w\™}, resp.) converges to the solu-
tion u in the following sense:

(i) u™ — yin C(I,L2(Q));

(i) u) (t) — u(t) in V forall t € I;
(iil) 7™ (t) — u(t) in V forallt € I;
(iv) UXm) — Stu m C(I,L*());
(v) U2 (1), e ")~ I in V2 forallt € I;
(vi) 2" — u? in I2(1,1*(2));

(vil) dul™)/dt — du/dt in L2(I,12(Q)),
as ni tends to infinity.

5. Continuous dependence and uniqueness

We, first, prove the continuous dependence of the solution upon the data. Then, the
uniqueness is an immediate corollary of it. To this end, we subtract the integral iden-
tity (2.29) written for u** from (2.29) written for u*, and setting v = u*(¢) — u**(¢) in
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the obtained identity, we find for a.e. t € I,

(G O-w Ot -uw)
+ (V™ (1) = Vu'** (1), Vu'* (£) = Vu'** (1)) 0.0,
+(V (32 +92*) = V(B2 +92*%), Vud* (1) — Vi * (1)) 0, (5.1)
= (f (6 ul (1) = F75 (6w 5 (0),u* (8) = u* () 4.0,
(2 (1, B2 +97) — F2F (1, 52% + g2 %), u2* (1) — 1 (1)) o 0,

whence

d d
2|u ()= u* O g,+ O —w* Ollg ot o [Tl +97) = (32497 |1,

< 2||f1>)< (t,ul*(t)) —fl**(t,ul**(t))Ho)Ql||u1*(t) _ ”1**(””0,01

+2||f2* (t,Stu*z +¢*2) _ fz** (t,flsu**z + (/’**2)”0,92 % ||u2*(t) _ ”2**(t)||0,02-
(5.2)

Then integrating (5.2) over (0,¢) and applying the Cauchy inequality, it follows that
2 [ (-9 g s (0 - Ol + | (3 17— (32 19 [,
<me”@m”@»—f”*@u”ﬂﬂﬂﬁmm
+ Jot ||f2* (s,Ssu*z + (p*z) _ fz** (s,Ssu**z + (p**2)||(2),02d5

+ Lt [|u*(s) — u** (s)||3’0ds. -
5.3

According to Lemma 2.4, (5.3) becomes
t
[|u* (1) —u**(t)||é’n+2 Jo | ul* (s) —ul**(s) |?’Qlds+ [(Teu?* +9> ) — (JeuP > +92**)| ?,02

<ot [ (I @) - £ st ) [,

+ ||f2* (s,Ssu*Z + ‘P*Z) _ fz** (s,Ssu**Z + ‘P**Z) ||(2),Qz>d5-
(5.4)
Consequently, we can state the following theorem.

THEOREM 5.1. Assume that (f*,u’*) and (f**,u’**) satisfy Assumptions 2.1-2.3. Let
u*(x,t) and u**(x,t) be two solutions of problem (1.9)—(1.12) corresponding, respectively,
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to the above data. Then the estimate

[l () = w** (D)5
t
< C(L (I (s () = £ (5,6 () [l + 177 (5,32 +9%) (5.5
—fz**(s,iisuz** +g02**)||0)02)d5+||u0* _uo**”gﬂ)

takes place for all t € I, where C is a positive constant depending only on the known data.
This theorem leads to the following result.

CoROLLARY 5.2. Under assumptions of Theorem 5.1, the weak solution of problem (1.9)—
(1.12) is unique.

Proof. Assume that # and # are two weak solutions of (1.9)—(1.12). Taking the differ-
ence of the integral identities (2.29) corresponding to # and # tested with v = & — % and
performing a similar calculation to that for Theorem 5.1, we obtain

t
zjo |01 (s) — ()| g ds+ [|ii(e) — 0) [P + | 94822 — 32|,

< P ) - £ 7 @) g, ds
(5.6)

t
# [ 172690 +97) - (5,90 4 9o g, s
0 ,

t
[ 1136 - 26 s

Employing Assumption 2.1 and omitting the first term in the left-hand side of (5.6), we
find

() — B[ o + |50 - 382 |7 o,

t t t
<D L 3 (s) - 7(5) | ds + jo 19,022 — 9,322 o ds+ jo [(s) — B4(s) 2. s,

(5.7)
from which, by using inequality (2.13), we get
186 = (D)o + | 9682 = 5,02 g,
¢ , ¢ ) (5.8)
< max (12 +1,C(Q)) (J la(s) ﬁ(s)||00ds+J 5402 - 9,02 des).
0 ’ 0 ’
Thanks to Lemma 2.4, we deduce that & = %, which completes the proof. O

Remark 5.3. By standard arguments we see that the uniqueness of the solution implies
that all our convergence results for subsequences (4.3)—(4.10) take place for the whole
sequences corresponding to a subdivision with arbitrary 4, — 0, too.
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Remark 5.4. Our results can be extended to the following differential equations:

ow! (1,1 4 (1)1 1 1 :
5 AW 50w = fl(xtw!), inQ,
(5.9)
*w? .
ot? +APw? +8@w? = f2(x,t,w?), inQy,

with corresponding boundary and transmission conditions [5, 6], where A
=D a<om alf (x)D* is a positive elliptic operator in Q, for each t € I, S/ = 9P/9tP +
0(x)P 1/t + 3, <’ (x)DF (p = 1,2). Here D = (Dy,..., D,), Dy = —id/dxx, & =
(@i san), = (p15e o pn)s lal = lar| + - - +laql, and [ul = [pi |+« - - + |l
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