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We establish sufficient conditions under which all solutions of the third-order nonlinear
differential equation

...
x +ψ(x, ẋ, ẍ)ẍ + f (x, ẋ) = p(t,x, ẋ, ẍ) are bounded and converge to

zero as t→∞.

1. Introduction

The differential equation considered here is of the form

...
x +ψ(x, ẋ, ẍ)ẍ+ f (x, ẋ)= p(t,x, ẋ, ẍ), (1.1)

where ψ ∈ C(R×R×R,R), f ∈ C(R×R,R), and p ∈ C([0,∞)×R×R×R,R). It is
also supposed that the functions ψ, f , and p depend only on the arguments displayed
explicitly, and the dots denote differentiation with respect to t. However, we shall require
that f (0,0) = 0, the derivatives ∂ψ(x, ẋ, ẍ)/∂x ≡ ψx(x, ẋ, ẍ), ∂ψ(x, ẋ, ẍ)/∂ẍ ≡ ψẍ(x, ẋ, ẍ),
and ∂ f (x, ẋ)/∂x ≡ fx(x, ẋ) exist and are continuous, and the uniqueness of the solutions
of (1.1) will be assumed.

In relevant literature, a good deal of work has been done and many interesting results
have been obtained concerning the asymptotic behavior of solutions in the particular
cases of (1.1), see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and
the references cited therein. In the relevant references, the authors dealt with the prob-
lems and obtained the criteria for the asymptotic behavior of the solutions by employing
Lyapunov functions as a main tool. In this matter, Singh [13] discussed the asymptotic
behavior of solutions of the third-order linear differential equations of the form

ÿ + p(t) ẏ + q(t)y = 0. (1.2)

In [2], Ezeilo investigated the stability of solutions of the differential equation

...
x +ψ(x, ẋ)ẍ+φ(ẋ) + g(x)= p(t,x, ẋ, ẍ). (1.3)
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Swick [14] studied the asymptotic behavior of solutions of the nonlinear differential
equations

...
x + aẍ+ g(x)ẋ+h(x)= e(t),

...
x + p(t)ẍ+ q(t)g(ẋ) +h(x)= e(t),

(1.4)

respectively.
In [5], Nakashima considered the differential equations

...
x + aẍ+ g(x)ẋ+h(x)= e(t,x, ẋ, ẍ),

...
x + p(t)ẍ+ q(t)g(ẋ) +h(x)= e(t,x, ẋ, ẍ),

(1.5)

and established some results on the qualitative behavior of solutions of the equations.
Goldwyn and Narendra [3] also studied the same subject for the following third-order
nonlinear differential equation:

...
x +h(ẋ)ẍ+µ(ẋ)ẋ+ k(x)x = 0. (1.6)

Recently, Qian [7, 8] discussed the global stability and asymptotic behavior of solutions
of the equations of the form

...
x +ψ(x, ẋ)ẍ+ f (x, ẋ)= 0,
...
x +ψ(x, ẋ)ẍ+ f (x, ẋ)= p(t),

(1.7)

respectively.
The motivation for the present work has come from the papers mentioned above.

Our aim is to obtain two similar results for (1.1). Namely, we will present here sufficient
conditions, which ensure that all solutions of (1.1) are uniformly bounded and converge
to zero as t→∞.

In what follows we use the following differential system which is equivalent to (1.1):

ẋ = y, ẏ = z, ż =−ψ(x, y,z)z− f (x, y) + p(t,x, y,z). (1.8)

2. Boundedness of solutions

In this section, the following result is established. For the proof of the result Lyapunov’s
second method is utilized.

Theorem 2.1. Further to the basic assumptions on the functions ψ, f , and p suppose the
following:

(i)
∫ x

0 f (u,0)du > 0 for x �= 0;
(ii) lim|x|→∞ sup

∫ x
0 f (u,0)du=∞;

(iii)
∫ y

0 f (0,v)dv ≥ 0;
(iv) the function p satisfies |p(t,x, y,z)| ≤ |e(t)| uniformly in t, where e(t) is a continuous

function of t such that
∫∞

0 |e(t)|dt <∞;
(v) there is a positive constant B such that

ψ(x, y,z)≥ B; (2.1)
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(vi) B[ f (x, y)− f (x,0)− ∫ y0 ψx(x,v,0)vdv]y ≥ y
∫ y

0 fx(x,v)dv;
(vii) 4B

∫ x
0 f (u,0)du{∫ y0 [ f (x,v)− f (x,0)]dv + B

∫ y
0 [ψ(x,v,0)− B]vdv} ≥ y2 f 2(x,0) for

all xy �= 0;
(viii) yψz(x, y,z)≥ 0.

Then for any solution (x(t), y(t),z(t)) of system (1.8), there are positive constants c1, c2,
and c3 such that

|x(t)| < c1, |y(t)| < c2, |z(t)| < c3 for t ≥ 0. (2.2)

Remark 2.2. The theorem just stated above improves the theorem established in [1] and
includes the result established in [8, Theorem 1]. The results of Ezeilo [2], Ogurtsov [6],
and Goldwyn and Narendra [3] are also direct consequences of our result.

Proof of Theorem 2.1. The proof depends on a scalar differentiable comparison Lyapunov
function V = V(t,x, y,z). This function and its total time derivative satisfy some funda-
mental inequalities. We define V as follows:

V = e−P(t)
[
BF(x) + y f (x,0) +Φ(x, y) +B

∫ y

0

[
ψ(x,v,0)−B]vdv+

(z+By)2

2
+ 2
]

,

(2.3)

where

P(t)=
∫ t

0

∣∣e(s)∣∣ds, F(x)=
∫ x

0
f (u,0)du, Φ(x, y)=

∫ y

0

[
f (x,v)− f (x,0)

]
dv.

(2.4)

First we show that V is a positive-definite function. For the sake of convenience, let

G(x, y)= BF(x) + y f (x,0) +Φ(x, y) +B
∫ y

0

[
ψ(x,v,0)−B]vdv. (2.5)

Then V can be written as follows:

V(t,x, y,z)= e−P(t)
[
G(x, y) +

(z+By)2

2
+ 2
]
. (2.6)

Now, it is clear from (2.6) that if G(x, y) is nonnegative, then V is a positive-definite
function. Indeed, observe that when x = 0,

G(0, y)=Φ(0, y) +B
∫ y

0

[
ψ(0,v,0)−B]vdv. (2.7)

Hence, in view of the assumptions (iii), (v) of Theorem 2.1 and f (0,0) = 0, it is easy to
see that G(0, y)≥ 0. Next, assume that x �= 0. Then G(x, y) can be rearranged as

G(x, y)=
[√
BF(x) +

1
2
y f (x,0)√
BF(x)

]2

+
[
Φ(x, y) +B

∫ y

0

(
ψ(x,v,0)−B)vdv− y2 f 2(x,0)

4bF(x)

]
.

(2.8)
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The assumption (vii) of Theorem 2.1 also shows that G(x, y)≥ 0. So, it can be followed
that V is a positive-definite function.

By a straightforward elementary differentiation from (2.3) and (1.8) it can be verified
that

dV

dt
= V̇ =

{
−∣∣e−P(t)

∣∣[G(x, y) +
(z+By)2

2
+ 2
]}

+ e−P(t)y
{
B
[
f (x,0)− f (x, y) +

∫ y

0
ψx(x,v,0)vdv

]
+
∫ y

0
fx(x,v)dv

}

+ e−P(t)[B−ψ(x, y,z)
]
z2 + e−P(t)(z+By)p(t,x, y,z)− e−P(t)W ,

(2.9)

where

W ≡ Bψ(x, y,z)yz−Bψ(x, y,0)yz. (2.10)

Next, we show that dV/dt = V̇ ≤ 0.
By noting the assumptions (v), (viii) of Theorem 2.1 and the mean value theorem for

derivative, it follows that

W = Byz2
[
ψ(x, y,z)−ψ(x, y,0)

z

]
= Byz2ψz(x, y,θz)≥ 0, 0≤ θ ≤ 1; (2.11)

but W = 0 when z = 0. Hence

W ≥ 0. (2.12)

In addition, observe that the assumption (iv) of Theorem 2.1 implies that |z + By| < 2,
then

(z+By)p(t,x, y,z)≤ 2
∣∣p(t,x, y,z)

∣∣≤ 2|e(t)|; (2.13)

if |z+By| ≥ 2, then

(z+By)p(t,x, y,z)≤ (z+By)2

2

∣∣p(t,x, y,z)
∣∣≤ (z+By)2

2
|e(t)|. (2.14)

Hence, for any t,x, y, and z, we get

(z+By)p(t,x, y,z)≤
(

2 +
(z+By)2

2

)∣∣p(t,x, y,z)
∣∣≤

(
2 +

(z+By)2

2

)∣∣e(t)∣∣. (2.15)

On gathering the estimates (2.12) and (2.15) into (2.9) we obtain

V̇ ≤ e−P(t){−∣∣e(t)∣∣G(x, y) +
[
B−ψ(x, y,z)

]
z2}

+ e−P(t)y
{
B
[
f (x,0)− f (x, y) +

∫ y

0
ψx(x,v,0)vdv

]
+
∫ y

0
fx(x,v)dv

}
.

(2.16)
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In view of the assumptions (v), (vi) of Theorem 2.1 and G(x, y) ≥ 0, it is obvious that
V̇ ≤ 0. Finally, we show that all solutions of (1.8) are bounded. Assume that (x(t), y(t),
z(t)) is a solution of (1.8) with the initial condition

(
x(0), y(0),z(0)

)= (x0, y0,z0
)
. (2.17)

The remaining proof of Theorem 2.1 is similar to that of Qian [8, Theorem 1] and hence
it is omitted. �

3. Asymptotic behavior of solutions

The following lemma is important for the proof of our next theorem.

Lemma 3.1. Let Q be an open set in Rn and I = [0,∞). Consider the differential system

dx

dt
=H(x) +G(t,x), (3.1)

where H is continuous on Q,G is continuous on I ×Q, and for any continuous and bounded
function x(t) on t0 ≤ t <∞,

∫∞
0

∣∣G(s,x(s)
)∣∣ds <∞. (3.2)

Assume that all the solutions of (3.1) are bounded, and that there exists a nonnega-
tive continuous function V(t,x) which satisfies locally a Lipschitz condition with respect
to x in Q such that V̇(t,x) ≤ −W(x), where W(x) is positive definite with respect to a
closed set Ω in Q. Then all the solutions of (3.1) approach the largest semi-invariant set
contained in Ω of the equation

dx

dt
=H(x) (3.3)

on Ω.
For the proof of Lemma 3.1, see Yoshizawa [16].
In this section, the following theorem is the main result.

Theorem 3.2. Suppose the following:

(i) there is a positive constant B such that the assumptions (iv)–(viii) of Theorem 2.1
hold;

(ii) x f (x,0) > 0 for x �= 0;
(iii) lim|x|→∞ sup

∫ x
0 f (u,0)du=∞;

(iv)
∫ y

0 f (0,v)dv ≥ 0;
(v) B[ f (x, y)− f (x,0)− ∫ y0 ψx(x,v,0)vdv]y +ψ(x, y,z)≥ y ∫ y0 fx(x,v)dv+B for (y �=0).

Then every solution (x(t), y(t),z(t)) of system (1.8) satisfies

lim
t→∞x(t)= 0, lim

t→∞ y(t)= 0, lim
t→∞z(t)= 0. (3.4)

Remark 3.3. Theorem 3.2 improves the result of Ezeilo [2] and generalizes the second
result obtained in [8, Theorem 2].



34 On the asymptotic behavior of solutions

It should be noted that for the proof of this theorem our main tool is the Lyapunov
function V defined by (2.3) again.

Proof of Theorem 3.2. Now, consider the Lyapunov function defined by (2.3) and the sys-
tem (1.8). As is shown in the proof of Theorem 2.1, because ofG(x, y)≥ 0, it follows from
(2.16) that

V̇ ≤ e−P(∞)[B−ψ(x, y,z)
]
z2

+ e−P(∞)y
{
B
[
f (x,0)− f (x, y) +

∫ y

0
ψx(x,v,0)vdv

]
+
∫ y

0
fx(x,v)dv

}
.

(3.5)

Set

W1(x, y,z)=−e−P(∞)[B−ψ(x, y,z)
]
z2

− e−P(∞)y
{
B
[
f (x,0)− f (x, y)−

∫ y

0
ψx(x,v,0)vdv

]
+
∫ y

0
fx(x,v)dv

}
.

(3.6)

By noting assumptions of the theorem, we see that W1(x, y,z) ≥ 0. Now, we consider
the set

Ω= {(x, y,z) :W1(x, y,z)= 0
}
. (3.7)

Because the function W1 is continuous, the set Ω is closed and W1 is positive definite
with respect to Ω. Now, consider the system

ẋ = y, ẏ = z, ż =−ψ(x, y,z)z− f (x, y). (3.8)

In view of the arguments arising in Qian [8, Theorem 2], it can easily be followed that
(0,0,0) is the largest semi-invariant set of (3.8) contained in Ω. Next, because all the hy-
potheses of Theorem 2.1 are satisfied, it is obvious that every solution of (1.8) is bounded.
Now, let

x = (x, y,z)T , H(x)=(x, y,− f (x, y)−ψ(x, y,z)z
)T

, G(t,x)=(0,0, p(t,x, y,z)
)T
.

(3.9)

Clearly, the system (1.8) is of the form (3.1). Then, from the above discussion, it is easy
to check that all the hypotheses in Lemma 3.1 are satisfied. Hence, by Lemma 3.1, every
solution of (1.8) tends to the largest semi-invariant set contained in Ω of (3.8) on Ω, that
is, (0,0,0).

It follows thus the original statement of the theorem. �
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