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We present a new continuation theorem for �κ
c -type maps. The analysis is elementary and

relies on properties of retractions and fixed point theory for self-maps. Also we present
some Birkhoff-Kellogg type theorems on invariant directions.

1. Introduction

This paper presents a new essential map approach, motivated in part by the paper of
Granas [8], for �κ

c -type maps. The theory differs from that in [2]. In particular, we obtain
new results for maps which are either

(a) Kakutani;
(b) acyclic;
(c) O’Neill;
(d) approximable;
(e) admissible in the sense of Górniewicz; or
(f) in �κ

c .

The maps considered will also satisfy various compactness criteria described in Section 2.
Our analysis is elementary and combines properties of the Minkowski functional with
fixed point theory for self-maps. Also using our new homotopy theorem, we will present
an “invariant direction” result for particular classes of maps. The theory and results in
this paper complement and extend previously known results in the literature (see [2, 7, 8,
10, 11, 12] and the references therein).

For the remainder of this section, we present some definitions and some known facts.
Let X and Y be subsets of Hausdorff topological vector spaces E1 and E2, respectively.
We will look at maps F : X → K(Y); here K(Y) denotes the family of nonempty compact
subsets of Y . We say that F : X → K(Y) is Kakutani if F is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reduced Čech
homology groups over the rationals are trivial. Now F : X → K(Y) is acyclic if F is upper
semicontinuous with acyclic values. The map F : X → K(Y) is said to be an O’Neill map
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if F is continuous and if the values of F consist of one or m acyclic components (here m
is fixed).

Given two open neighborhoods U and V of the origins in E1 and E2, respectively, a
(U ,V)-approximate continuous selection [4] of F : X → K(Y) is a continuous function
s : X → Y satisfying

s(x)∈ (F[(x+U)∩X
]

+V
)∩Y for every x ∈ X. (1.1)

We say that F : X → K(Y) is approximable if it is a closed map and if its restriction F|K to
any compact subset K of X admits a (U ,V)-approximate continuous selection for every
open neighborhood U and V of the origins in E1 and E2, respectively.

For our next definition, let X and Y be metric spaces. A continuous single-valued map
p : Y → X is called a Vietoris map if the following two conditions are satisfied:

(i) for each x ∈ X , the set p−1(x) is acyclic,
(ii) p is a proper map, that is, for every compact A ⊆ X , we have that p−1(A) is

compact.

Definition 1.1. A multifunction φ : X → K(Y) is admissible (strongly) in the sense of
Górniewicz if φ : X → K(Y) is upper semicontinuous and if there exists a metric space
Z and two continuous maps p : Z → X and q : Z → Y such that

(i) p is a Vietoris map,
(ii) φ(x)= q(p−1(x)) for any x ∈ X .

Remark 1.2. It should be noted [7, page 179] that φ upper semicontinuous is redundant
in Definition 1.1.

Suppose that X and Y are Hausdorff topological spaces. Given a class � of maps,
�(X ,Y) denotes the set of maps F : X → 2Y (nonempty subsets of Y) belonging to �,
and �c the set of finite compositions of maps in �. A class � of maps is defined by the
following properties:

(i) � contains the class � of single-valued continuous functions;
(ii) each F ∈�c is upper semicontinuous and compact valued;

(iii) for any polytope P, F ∈�c(P,P) has a fixed point, where the intermediate spaces
of composites are suitably chosen for each �.

Definition 1.3. The map F ∈�κ
c (X ,Y) if for any compact subset K of X , there is a G ∈

�c(K ,Y) with G(x)⊆ F(x) for each x ∈ K .

Examples of �κ
c maps are the Kakutani maps, the acyclic maps, the O’Neill maps, the

approximable maps, and the maps admissible in the sense of Górniewicz.
Let (E,d) be a pseudometric space. For S⊆ E, let B(S,ε)= {x ∈ E : d(x,S)≤ ε}, ε > 0,

where d(x,S) = inf y∈Y d(x, y). The measure of noncompactness [6] of the set M ⊆ E is
defined by α(M)= inf Q(M), where

Q(M)= {ε > 0 : M ⊆ B(A,ε) for some finite subset A of E
}
. (1.2)

Let E be a locally convex Hausdorff topological vector space, and let P be a defining sys-
tem of seminorms on E. Suppose that F : S→ 2E; here S ⊆ E. The map F is said to be
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a countably P-concentrative mapping [6] if F(S) is bounded, and for p ∈ P for each
countably bounded subset X of S, we have αp(F(X)) ≤ αp(X), and for p ∈ P for each
countably bounded non-p-precompact subset X of S (i.e., X is not precompact in the
pseudonormed space (E, p)), we have αp(F(X)) < αp(X); here αp(·) denotes the measure
of noncompactness in the pseudonormed space (E, p). In this paper, when we consider
countably P-concentrative maps, it is worth remarking here that in fact, the results hold
if the maps are countably condensing in the sense of [13, pages 353, 356].

2. Essential maps and invariant directions

In this section, we begin by presenting a “homotopy”-type property for a general class of
maps. Here E is a Hausdorff locally convex topological vector space, C is a closed convex
subset of E, U ⊆ C is convex, U is an open subset of E, and 0∈U . Notice that intCU =U
since U is open in C. We will consider maps F : U → K(C); here U denotes the closure of
U in C. Throughout, our map F will satisfy one of the following conditions:

(H1) F is compact;
(H2) if D ⊆ C and D ⊆ co({0}∪F(co({0}∪D)∩U)), then D is compact;
(H3) F is countably P-concentrative and E is Fréchet (here P is a defining system of

seminorms);
(H4) if D ⊆ C and D ⊆ co({0}∪ F(co({0}∪D)∩U)), then D is compact and in this

case, we also assume that for any relatively compact subsetA ofU , we have F(A)⊆
F(A); or

(H5) if D ⊆ C, D ⊆ co({0}∪ F(co({0}∪D)∩U)) with K ⊆ D countable and K = D,
then D is compact and in this case, we also assume that

(i) for any relatively compact subset A of U , we have F(A)⊆ F(A),
(ii) F maps compact sets into relatively compact sets,

(iii) for any relatively compact convex setA of E, there exists a countable set B ⊆ A
with B =A,

(iv) if Q is a compact subset of E, then co(Q) is compact.

Remark 2.1. If F is a Kakutani map, then the condition “for any relatively compact subset
A of U , we have F(A)⊆ F(A)” can be removed in (H4) and (H5).

Also in this paper, we will consider maps F : C→ K(C) which satisfy (Hi)� for some i∈
{1,2,3,4,5}. Now (H1)� = (H1), (H3)� = (H3), and the others are defined as follows:

(H2)� if D ⊆ C and D = co({0}∪F(D)), then D is compact;
(H4)� if D ⊆ C and D = co({0} ∪ F(D)), then D is compact and in this case, we also

assume for any relatively compact subset A of C, we have F(A)⊆ F(A);
(H5)� if D ⊆ C, D = co({0}∪F(D)) withK ⊆D countable andK =D, thenD is compact

and in this case, we also assume that
(i) for any relatively compact subset A of C, we have F(A)⊆ F(A),

(ii) F maps compact sets into relatively compact sets,
(iii) for any relatively compact convex set A of E, there exists a countable set B ⊆ A

with B = A,
(iv) if Q is a compact subset of E, then co(Q) is compact.
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Remark 2.2. If F is a Kakutani map, then the condition “for any relatively compact subset
A of C, we have F(A)⊆ F(A)” can be removed in (H4)� and (H5)�.

Definition 2.3. The map F ∈ LS(U ,C) if F : U → K(C) satisfies condition (A).
We assume condition (A) is such that

for any map F ∈ LS(U ,C) and any continuous
single-valued map r : E −→U , we have that Fr
satisfies condition (A).

(2.1)

Example 2.4. If condition (A) means the map F is either

(a) Kakutani;
(b) acyclic;
(c) O’Neill;
(d) approximable;
(e) admissible (strongly) with respect to Górniewicz; or
(f) in �κ

c (U ,C),

then clearly (2.1) holds.

Fix i∈ {1,2,3,4,5}.
Definition 2.5. The map F ∈ LSi(U ,C) if F ∈ LS(U ,C) satisfies (Hi).

Definition 2.6. The map F ∈ LSi∂U(U ,C) if F ∈ LSi(U ,C) with x /∈ Fx for x ∈ ∂U ; here
∂U denotes the boundary of U in C.

Definition 2.7. A map F ∈ LSi∂U(U ,C) is essential in LSi∂U(U ,C) if for every G∈ LSi∂U(U ,
C) with G|∂U = F|∂U , there exists x ∈U with x ∈G(x).

Definition 2.8. The map F ∈ ELSi(C,C) if F ∈ LS(C,C) satisfies (Hi)�.

Theorem 2.9. Fix i∈ {1,2,3,4,5} and let E be a Hausdorff locally convex topological vector
space, C a closed convex subset of E, U ⊆ C convex, U an open subset of E, 0 ∈ U , and
F ∈ LSi(U ,C), and assume that (2.1) and the following conditions are satisfied:

x /∈ λFx for x ∈ ∂U , λ∈ (0,1], (2.2)

any map Φ∈ ELSi(C,C) has a fixed point. (2.3)

Then F is essential in LSi∂U(U ,C) (in particular, F has a fixed point in U).

Proof. Let H ∈ LSi∂U(U ,C) with H|∂U = F|∂U . We must show that H has a fixed point in
U . Let µ be the Minkowski functional on U and let r : E→U be given by

r(x)= x

max
{

1,µ(x)
} for x ∈ E. (2.4)

LetG=Hr. NowG∈ LS(C,C) from (2.1). Next we show thatG∈ ELSi(C,C). We will just
consider the case i = 4 since the cases i = 2 and i = 5 are similar and the cases i = 1 and
i = 3 are immediate. Let i = 4 and we show that G satisfies (H4)�. Since H ∈ LS4(U ,C)
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and r is continuous, we have

G(A)=H
(
r(A)

)⊆H
(
r(A)

)⊆H
(
r(A)

)=G(A) (2.5)

for any relatively compact subset A of C (note that r(A) is compact since r is continuous).
Now let D ⊆ C and D = co({0}∪G(D)). Then since r(A)⊆ co({0}∪A) for any subset A
of E, we have

D ⊆ co
({0}∪H

(
co
({0}∪D

)∩U
))
. (2.6)

Now since H ∈ LS4(U ,C), we have that D is compact, and as a result, G∈ ELS4(C,C).
Now (2.3) guarantees that there exists y ∈ C with y ∈G(y)=Hr(y). Also notice that

(2.2) with H|∂U = F|∂U guarantees that

x /∈ λH(x) for x ∈ ∂U , λ∈ (0,1]. (2.7)

Let z = r(y). Then z ∈ rH(z), that is, z = r(w) for some w ∈H(z). Now either w ∈U or
w /∈ U . If w ∈ U = U ∪ ∂U (note that intCU = U since U is open in E), then r(w) = w,
so z = w ∈ H(z), and we are finished (note that (2.7) implies that z = w ∈ U). If w /∈
U , then z = r(w) = w/µ(w) with µ(w) > 1. Thus z = λw (i.e., z ∈ λH(z)) with 0 < λ =
1/µ(w) < 1. Note that z ∈ ∂U since µ(z)= µ(λw)= 1 (note that ∂U = ∂EU since intCU =
U). As a result, z ∈ λH(z) with λ= 1/µ(w)∈ (0,1) and z ∈ ∂U . This of course contradicts
(2.7). �

Remark 2.10. In fact, Theorem 2.9 is a homotopy result since we will now show that the
zero map is essential in LSi∂U(U ,C). Then the zero map is essential in LSi∂U(U ,C) with F ∼=
0, and (2.1), (2.2), and (2.3) guarantee (Theorem 2.9) that F is essential in LSi∂U(U ,C).

To show that the zero map is essential in LSi∂U(U ,C), let θ ∈ LSi∂U(U ,C) with θ|∂U =
{0}. Let µ and r be as in Theorem 2.9 and let J = θr. As in Theorem 2.9, there exists y ∈ C
with y ∈ J(y)= θr(y). Let z = r(y) and essentially the same argument as in Theorem 2.9
yields x ∈U with z ∈ θ(z).

Example 2.11. If condition (A) means the map F is either

(a) Kakutani;
(b) acyclic;
(c) O’Neill;
(d) approximable;
(e) admissible (strongly) with respect to Górniewicz; or
(f) in �κ

c (U ,C),

then [1, 3, 9] guarantees that (2.3) holds. Note that if condition (A) means the map is
Kakutani, then the condition “for any relatively compact subset A of U , we have F(A)⊆
F(A)” can be removed from (H4) and (H5).

Now from Theorem 2.9, we obtain the following Birkhoff-Kellogg type theorem.
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Theorem 2.12. Let i= 1 and let E be a Hausdorff locally convex topological vector space, C
a closed convex subset of E, U ⊆ C convex, U an open subset of E, 0∈U , and F ∈ LS1(U ,C),
and assume that (2.1) and (2.3) (with i= 1) hold. Also assume that condition (A) satisfies
the following condition:

for any map F ∈ LS(U ,C) and any λ ∈ R,
we have that λF satisfies condition (A).

(2.8)

Finally, suppose that the following condition holds:

∃µ∈R with µF(U)∩U =∅. (2.9)

Then there exist λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx; here µ 
= 0 is chosen as in (2.9).

Remark 2.13. Notice that 0∈U guarantees that µ 
= 0 in (2.9).

Remark 2.14. If µ = 1 in (2.9), then assumption (2.8) is not needed in the statement of
Theorem 2.12.

Example 2.15. If condition (A) means the map F is either

(a) Kakutani;
(b) acyclic;
(c) O’Neill;
(d) approximable; or
(e) admissible (strongly) with respect to Górniewicz,

then clearly (2.8) (and of course (2.1) and (2.3) (with i= 1)) is true.

Proof of Theorem 2.12. Let µ 
= 0 be chosen as in (2.9). Now (2.8) guarantees that µF ∈
LS1(U ,C). Also (2.9) guarantees that µF has no fixed points in U . Theorem 2.9 (applied
to µF) guarantees that there exist λ ∈ (0,1) and x ∈ ∂U with x ∈ λ(µF)x. As a result
(λ−1µ−1)x ∈ Fx and we are finished. �

Theorem 2.16. Fix i= 3 and let E be a Hausdorff locally convex topological vector space, C
a closed convex subset of E, U ⊆ C convex, U an open subset of E, 0∈U , and F ∈ LS3(U ,C),
and assume that (2.1) and (2.3) (with i= 3) hold. Also assume that condition (A) satisfies
the following condition:

for any map F ∈ LS(U ,C) and any λ∈R with |λ| ≤ 1,
we have that λF satisfies condition (A).

(2.10)

Finally, suppose that the following condition is satisfied:

∃µ∈R with |µ| ≤ 1, µF(U)∩U =∅. (2.11)

Then there exists λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

Remark 2.17. If µ= 1 in (2.11), then assumption (2.10) is not needed in the statement of
Theorem 2.16.
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Proof. Let µ 
= 0 be chosen as in (2.11). Now µF ∈ LS(U ,C) from (2.10) and it is easy to
check that µF ∈ LS3(U ,C) since |µ| ≤ 1. Apply Theorem 2.9 to µF. �

Theorem 2.18. Fix i= 2 and let E be a Hausdorff locally convex topological vector space, C
a closed convex subset of E, U ⊆ C convex, U an open subset of E, 0∈U , and F ∈ LS2(U ,C),
and assume that (2.1), (2.3) (with i= 2), (2.8), and (2.9) hold. Also assume that the follow-
ing condition is satisfied:

if D ⊆ C with D ⊆ co
({0} ∪ µF

(
co
({0} ∪D

)∩U
))

,
then D is compact; here µ is as in (2.9).

(2.12)

Then there exists λ∈ (0,1) and x ∈ ∂U with (λ−1µ−1)x ∈ Fx.

Remark 2.19. If µ = 1 in (2.9), then assumptions (2.8) and (2.12) are not needed in the
statement of Theorem 2.18.

Proof of Theorem 2.18. Let µ 
= 0 be chosen as in (2.9). Now µF ∈ LS2(U ,C) from (2.8)
and (2.12). Apply Theorem 2.9 to µF. �

Remark 2.20. One could also obtain an analogue of Theorem 2.18 for the cases i= 4 and
i= 5. We leave the details to the reader.

In Theorem 2.12, if µ > 0 in (2.9), we say that F|∂U has an invariant direction. We
complete this paper by presenting one invariant direction result.

Theorem 2.21. Let i= 1, E = (E,‖ · ‖) an infinite-dimensional normed linear space,C = E,
U = B, and F ∈ LS1(B,E), and assume that (2.1), (2.3) (with i = 1), and (2.8) hold; here
B = {x ∈ E : ‖x‖ < 1}. In addition, suppose that the following two conditions are satisfied:

for any continuous map r : B −→ S,
we have that Fr satisfies condition (A),

(2.13)

0 /∈ F(S); (2.14)

here S= {x ∈ E : ‖x‖ = 1}. Then F has an invariant direction.

Example 2.22. If condition (A) means the map F is either

(a) Kakutani;
(b) acyclic;
(c) O’Neill;
(d) approximable;
(e) admissible (strongly) with respect to Górniewicz; or
(f) in �κ

c (U ,C),

then (2.13) holds.

Remark 2.23. In Theorem 2.21, F ∈ LS1(B,E) could be replaced by F ∈ LS1(S,E).

Remark 2.24. In Theorem 2.21, we could replace B by any open set U of E with 0 ∈ U
(here E is any Hausdorff locally convex topological vector space), provided ∂U is a retract
of U , and in this case, (2.14) is replaced by ∃µ > 0 with µF(∂U)∩U =∅ (note that if
µ= 1, then assumption (2.8) is not needed in the statement of Theorem 2.21).
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Proof of Theorem 2.21. We know [5] that there exists a continuous retraction r : B→ S.
Let G= Fr and notice that G∈ LS(B,E) from (2.13). We now claim that there exists µ > 0
with

µF(S)∩B =∅. (2.15)

If (2.15) is true, then

µG(B)∩B =∅, (2.16)

and so Theorem 2.12 (applied to G with U = B and C = E) guarantees that there exist
λ∈ (0,1) and x ∈ ∂B = S with λ−1µ−1x ∈Gx = Frx = Fx, and we are finished. It remains
to prove (2.15), but this is immediate since 0 /∈ F(S) (i.e., if (2.15) was false, then for each
n∈ {1,2, . . .}, there exist yn ∈ F(S) and wn ∈ B with yn = (1/n)wn). �
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