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In this paper, we study a generalized Jacobi transform and obtain images
of certain functions under this transform. Furthermore, we define a Jacobi
random variable and derive its moments, distribution function, and charac-
teristic function.
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1. Introduction

Kalla et al. [4] have studied the following integral,
1

ob o= [ (=24 0P ey M
Z1
with Re(a) > —1, Re(b) > —1 and Pf,a’ﬁ) is the Jacobi function, where
— A
(o, B) _(a+1)u. v,v+ 11—z
P, (x)—r(y+1)2 L 9 (2)

and A=a+ f+1. The authors considered its partial derivatives with respect to a
and b. Some more general results were obtained in [6]. These results were extended
by Sarabia [10] using the following integral:

1

v s = / (1= 2)*(1 +2)P PP P)(z)da, (3)

21
where Pfla’ﬂ) is a generalized Jacobi function defined as
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- Ac
(@Bep)yy @+ D), vivtAdce | _,
By @ =1w71) o2 atlp 2 ) (4)
where
PeC-Z"U{0}a,veC—-Z ;8€C;Re(p—p—c)>0. (4.a)

Hence, Ps,a’ﬂ’c’ P) is continuous on [-1,1]). For p=c, (4) reduces to (2).

In this paper, we define a generalized Jacobi transform and obtain images of
certain functions under this transform. Furthermore, we define a random variable
and derive some statistical properties such as: moments, a distribution function, and
characteristic function.

2. Generalized Jacobi Transform

Let f be a real-valued function defined on [ —1,1], with Re(a) > —1, Re(b) > —1,
and conditions (4a) being held. Then the generalized Jacobi transform (GJT) of f(z)
is defined as

1
JEBOP[f(z),v] = / (1=2)%(1 +2)° Pl 2 P)(2) f(2)dz. (5)
~1

For continuous or sectionally continuous f on [a,b], integral (5) exists. For ¢ = p,
(5) reduces to the well known Jacobi transform [3].
Now, we obtain images of some functions under the generalized Jacobi transform.

(1) For f(z) =1, we have [9, 10]:
(a+1)uB(a+1,b+1) —1/,1/+/\,c,a+1.1 (6)
I'(v+1) 4 a+1,patb+2 [
(ii) f(z)=In(1—z). Since f(z) is not piecewise continuous on [ —1,1], we have
to demonstrate directly that (5) exists.
Indeed: F(:c,y? =(1-z)Y(1+ :c)bP,(ja’ﬂ’c’p)(m) and D,F(z,y)=In(1—z)(1-=z)¥
1+ x)bPl(,a"B’c’p (z) are continuous on D = [A, B] x Bg(a), where

TG oPy] =20 FbH]

[A,B]C(—1,1) and Bg(a) C S5 ={a € C:Re(a) > 6 > —1}.

In addition, for Re(y) > —1 and Bpg(a) C Sy, I % P[1,v] exists.
Also, the constants K; > 0 and K, > 0 exist, such that:

| In(1 - 2)(1 - 2)¥(1 + z)P P{@ Ao P)(g) |

) -Kn(l-2)(1-2)~° z €(0,1]
< M(x) —{ K2(1 +x)Re(b) z €[0,1].

Then, by applying the M-Criterion of Weierstrass, we obtain:
1

/ In(1 - z)(1 - 2)¥(1 + 2)P P B & P)(2)da,
21
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which converges uniformly on Bp(a) and

1
D, / (1= 2)(1+ )PP P)(z)da

1
= / In(1—z)(1—2)¥(1 + )P P2 P P)(g)dz
-1

on Bp(a). Then, for a € C, so that Re(a) > — 1, according to [13],

1
D, / (1—2)3(1 + 2)P PP e P)(z)dg
-1

n(l—z)(1—=2)%1 +x)bP(°‘ ey p)(:l:)d:l:

l\.-

By demonstrating that Jg 3 P[In(1 — z); /] exists and also

J(‘;”lgc*”[ln(l —z)v] = 5%']31,%0»13[1, v],
using (6) and (8), we get

Jg:% S PlIn(l — z);v]

_ %[(a +1),0(b+1)2°1 & (=), (v +2),(c)La+1+ n)}
= 4 ,

T(v+1) @+ D) (p),at+b+2+n)nl
and, hence
JEYePlin(1 - 2)v] = In2- T %Y P[150]
+(a+1),,B(a+1,b+1)g+b+1 i S+ ), (e (a+1),

v+ 1) 2 a+1> (P)pnl(a +5+2),

[Yla+1+n)—¢(a+b+2+n)].
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)

(8)

9)

We can see that (9) has as a particular case (2.2) from [4] when ¢ = p. Likewise and

relatively speaking, it is a more simple representation than [10, eq. (6)].

(iii) f(z) =In(1+z). Reasoning in a similar way as we did in the previous case,
we have that if Re(a), Re(b) > —1 and the conditions considered in (4.a) hold, then
the existence of J"l ©Plin(l — z);v] can be easily proved. Also, by criterions of

uniform convergence, we obtain:
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Jz{,’béc, P[In(l — 1;); 1/] = %[Jg{’y%c, p[l; V]]

and
T Pln(1 — 2);v] = [$(b+1) + In2)J% 5 P[1;v]
(a41),Bla+1,b+1)20T0+1
h I'(v+1)

> _V (V+’\) (C) (a+l)nr

2:: @r ). () nlatbay, platb+2)+5.) (10)
where S, = E;:'%,m for n > 1, S, =0.

Hence,

JLEPln(1 — 2);0] = [¢(b+ 1) +In2 — ¢(a + b+ 2)[J% 4 P[1;0]

(a+1),2°+ 2+ 1Ba+1,b+1)
B F(v+1)

XA (= V)p(v +A)p(e)p(a+1),
Zz:(a+l) (p),nl(a+b+2), S (1)

Clearly, the above results lead to
TG PIn(1 - 2);v] = [W(b+1) + 2In2 — W(a + b+ 2)lJ 24 P[1;0]
L (at1),Bla+1, b+1)20to+1
T +1)

= (= 1)+ N)p(nla+ 1),
=0 e+ 1), (p)nl(a+b+2),

(Y(a+b+2)-¥(a+b+2+n)-S,] (12)

and

7Y i 152 ) = [(a+ b+2) = g(b + D 4 P13]

L (@+1),Bla+1, b+1)20tb+1
I'(v+1)

. > ( - V)n('/ + ’\)n(c)n(a + 1)71,
A= (@t 1) (p)pnl(a+b+2),
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[S,+¥(a+1+n)—¥(a+b+2+n) (13)
(iv) f(z)=1—-z)4A+z)B. Let Re(a)>maz{—1, — Re(A)—1}, Re(b)>

maz{—1, — Re(B) — 1}, that is to say Re(a), Re(b), Re(a+ A), Re(b+ B)> —1;
also let

Re(p—B—¢)>0;, ,veC—-2Z27; BeC. (14)
Hence, equation (6) becomes:
JEYeP((1—2)4 (1 + )P = o HA b+ Boer[isy), (15)

Hence, we arrive at

_(a+1),Bla+A+1,b+B+1)20tATb+B+]

TEHeP[(1 - 2)A(1+2)5;0]

F'(v+1)
—v,w+Ac,a+A+1
- 4 Fy ;1) (15.a)
a+1l,pa+A+b+B+2

() f(z)= P2 d9(z). Let
n=7+68+19€C~-27 U{O0}v,n€C—Z;Re(g—6—d) >0, (16)

and let conditions of (4a) hold true. Then f(z) is continuous on [—1,1] and,
therefore, its GJT exists. Consequently,

1

1
o+ )# / (I—-=z)*(1+ :c)stla’ﬂ’c’p)(x)Pfj’&’d’Q)(:c)da:.

a,b c, ("/16yd1q) . [
I35 PPy (@)v] = [(p+1) )

Since the integral on interval [r, R] C (—1,1) can be interchanged with the series (by
uniform convergence) and since the transform exists, we can interchange the integral
on [ — 1,1] with the series by applying [1, (14.31)].

Hence,
Jasbieop[ p(n 8,d,0) ). ) (@+1),(y+1),Bla+1,b+1)
ay,é M ’ F(V+ 1)F(u+ 1)
_ i (=) (n+m),(d),(a+1),20T0+n+1
= (r+Da(@a(a+b+2),n02"
—-v,v+Aca+n+1
Hal's 1)
a+l,patb+n+2
and

_ (@), (7 +1),Bla+1,b+1)20* 0+
F(v+1DI(p+1)

o l;j c, p[PL‘/» §,d, q)(z); V]

@,
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2 2 (= Wnl+ (D)@ + 1), (= )iV + n)g(c)gla +n +1)
P D s I R e R ON R e e
Recollecting that (h+n)g = %‘f—ﬁ and setting
(a+1),(y+1),Bla+1,b+1)20 F0+1
= Nvihﬂu+0 (18)

we get,

761 d7
Jobe P P8 d )y )]

& & (= wup ) (d)gla+ 1), 4 g (= 0)p(v + A)pe)g
_Hn=o kgo (1), @nla+b+2), 4 ((a+1)p(p)nk! (19)

Using the Kampé de Fériet’s hypergeometric function (see [8, p. 160]) and since the
transform exists, we have:

(a+1),(y+1),Bla+1,b+1)20 041

ayb C, ( 761(1* ) . —_—
N R OIS T(v+ 1I(p+1)

1 a+1
3 —p —Vipt v+ Adc
- F 1,1 | (20)
1 a+b+2
2 y+1l,a+1;¢,p

3. Some Inequalities

In this section, we will obtain some inequalities to the GJT, based on the Luke’s
Inequality (see [7, p. 254], formula (6)):

O3 Qe
(1-02)"7 < , 1 F PUUTR <1 —040(1-2)"7, (21)
P1--Pp
o
where 0 = 5-’21(7,—;7), with0<z<1;0>0;p;20a,>00=1,...,p)

We consider the following conditions:
0>v> —min{l,1+a}0<A+rv<a+l;

O<ce<pip>PB+ca+1,b>0. (22)
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Then0<9=(%{—;’—));<1,andsince0§1;x§1,weobtain
v —v,A+v,c v
—g(lze PATVC 1—a) g4tz
15[1 (L5 )] §3F2( D )51 o+o(1E2)  (9)
and

63 1 "V”\+Vac —
g‘(:—-{- )115(1 —z)%(1+2)- 3F2( ’1_2_)

a+1,p
< (;‘(‘V—J’:)l—")m o)1+ m)b[l e sz‘”)"] (24)

Integrating (24) between —1 and 1, and due to 0 <46 l—;—ﬁ <6 <1 we have the
following, by applying criterions of uniform convergence and simplifying for

(a+1), Bla+1,b+1)28+b+1
I'(v+1)

—v,a+1 —v,v+Ac,a+1
1<,F, 10 1< 4 Fy i1
a+b+2 a+1l,p,a+b+2

T(a+b+2)L(b+v+1)
T+ Dl(a+b+v+2)

, under the same conditions as that of (22),

<1-0+96 (25)

Throughout this section, using (19) we will get a bound to the GJT of f(z), which is
continuous on [ —1,1].
Thus, let M = max{| f(z)|:z € [—1,1]}, then

| I8 5P f(@)iv]] < MISYOPILYIL- JFy

—v,v+Aca+l )
a+1,p,a+b+2 ’

T(a+b+2)T(b+v+1)
S == O G DTt 6+ v +2) (26)
where,
M(a+1), Bla+1,b+1)201t0+1 (A+v)e
L= = A= 30 =———,
T+ 1) et b+ L0=1,

along with conditions (22).
For example, let f(z) = (—1—1—2—5, m = % (minimum) and M = 1 (maximum), with
+

a=0,b=1; —1<v< —%;a:ﬂ:O;c:l,p:2and0<0<4l,then

2
- 4
1SJ8:(1)’1’2[1_:x2;V]S vitv+4 27)

v+2
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4. Generalized Jacobi Random Variable

Statistical distributions have been used in a variety of applications, including the
field of reliability. Recently, Kalla et al. [5] have studied a unified form of gamma-
type distributions. Here we define a Jacobi random variable and derive some statisti-
cal properties.

4.1 Density Function

We define the generalized Jacobi random variable with parameters (e, 3¢, p,v;a,b)
as a random variable, whose density function is given by

(a rerpiv) gy  JEA=D W+ PO ) fore-11]
ya,b (.’L’) - . ( )
0 otherwise,
where
a,b> —1;0,8,c>0;p>0+¢c; —1<v<O. (29)
P (@thED)
Furthermore, K = (@t1), BT 6T DR and
-v,v+Aca+1
R = (F4 ;1) (30)
a+1,p,a+b+2

We can see that (27) becomes a density function of the family of f-random variables
whose parameters are (a + 1,b + 1), displaced on z = 1 — 2u, when v = 0.
Indeed

W) = g5 P00 = 2u) = gy - " (31

Hence, we can consider the generalized Jacobi random variable as a generalization of
the G-random variable.

4.2 Moments of Order m > 0

Clearly, E(X®) =1. For this reason, we let m > 0 and condition (29) hold.
Thus, from [1, (14.31)], we have:

B(Xm) = K- 35 () - 175010 - o))

Then from (15a), for A = s, B =0, we get:
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& (PN =D (a+1),Blat+s+1,b+1)20to+0+1

E(X™ =K
(m=K2, D)
—v,v+Ac,a+s+1
" 4F3 1 (32)
a+1l,pja+s+b+2

which can also be expressed as,

1 a+1
3 —-m, —v;L,v+ X 1l,¢
E(X™) =% F 2,1 | (33)
1 a+b+2
2 L,a+1;1,p

It is also possible to calculate the modified moment of the form,
E((I - X)A(I + X)B) with A > —(1+a); B> —(1+b).
Indeed, from (15a), we have (with conditions (29)),

24+ BBa+A+1,b+B+1)
R-Bla+1,b+1)

—v,v+Ac,a+A+1
-4 Fy 1} (34)

E((I - X)A(I + B)B) =

a+1l,patA+b+B+2’

4.3 Distribution Function

The distribution function of the generalized Jacobi random variable is defined as:

x
Gg‘,"l’,ﬂ’c””")(x):/g((l‘,"l;ﬁ’c’p’”)(:c)dx

— 00
T

= K/(1—t)“(l+t)be,°"ﬁ’c’p)(t)dt,
-1

for |z| <1. Here and in the sequel, we abbreviate this distribution as G(z).
Thus, by virtue of [1, (14.31)], we obtain:

L T (e

n=20

Moreover, since

/(1—t)“+"(1+t)bdt
-1
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=20t0+n+ BG4+ 1,b+1)— By _ (a+n+1,b+1)],
2
where B (a,b) = [&t*~ (1~ t)~1dt is the incomplete beta function,
G(x) = G{(z) — Gy(x), where:

K(a+1),22 2+ 1B(a+1,b41) i (=), v+ ), (c),(a+1),

G = 36
1) YOSV P ENCERIN O CERER R
—v,v+Ac,a+1
:3%.4F3 ;1) (37)
a+1,p,a+b+2
since p—fB—c+b+1>0.
On the other hand, due to [2, p. 87], we have that
P pyl1—g¢
B,(p,q) =5 oF4 se | (p,g>0;0<z<1). (38)
p+1
Therefore,
CK(a+1), & (=), v+ A),(e) 20 T
@2(%) = T 1) ,,Zzzo (@ +1),(p),n12" By_gatn+lb+1)

_K(a+1)u2“+b+lfl—x))a+l
- T'(v+1) \ 2

B D LAY LML VCHCI NI SR
= =y (@+2), 4 (a+1),(p)ntk\ 2 ;
and by using Kampeé de Feriét function, (39) can be expressed as,
_ 1 1—2 a+1
@) = Bar LT DR 2 )
1 a+1
3 —v, =bL,v+Xe,1
N Loslozl  (39.)
1 a+2
\ 2 a+1,1;p,1

Then from (36) and (39.a), the distribution function reduces to:

G(a,,@,c,p,y)(x)zl P —v,v+Aca+1 .
a,b R 473 a+1,p,a+b+2 '

_ 1 /1—x)a+l
B(a+1,b+1)\ 2
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{ 1 a+1 v
3 —v, —bjv+ A\ 1;¢,1
F 1—Tw’_1_§_£ i (40)
1 a+2
\ 2 a+1,1;p,1

4.4 Characteristic Function

For a random variable X with continuous density function f(z), the characteristic
function of X is defined by:

ox(0)= [ U=f(2)ds = V/Eralfle)), (41)

where ¥ is the Fourier’s transform of f(z).
For the generalized Jacobi random variable, under the conditions given in (29), we
have

1
_K(a+1)u

px(t)= —l:m lez‘tx(l —z)%(1+ q:)b

—v, v+ ¢
- 4Fy 152 e (42)
a+1l,p

If we set u =1 5 in (42), it becomes

K(a+1) oypy1 s .
‘PX(t) — P(Vlfl) /elt(l - 2U)ua(l _ u)b
21

P —v,v+ A ¢ (43)
. ju jdu.
3+ 2 a+1,p

;u) and it is continuous on [0,1], due to p—f —¢ >0,

—-v,v+Ac
As F(u) = 3F2( a,—i- 1p

M, M, > 0 exist so that:

b g
e~ 2ituya(1 — u)PF(u) | < h(2) :{ M, (1—u) in [5,1]

ol
Myu? in [0,5]

Furthermore, h(t) is integrable on [0,1], since a> —1 and >0 > —1, and this
ensures the convergence of (43).

1\ o T .
Also, from the uniform convergence of ) ° (D7 @ity)” _ - 2itu

n=0 o on [r,s], Vr,s
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with 0 < r» <s <1, we have that [1, (14.31)] is applicable. Hence,

. 1
K(a+1),20 b+ 18t oo (_1y7(241)n
=KL T oy

n=20

0

—v, v+ A
- gl ;U Jdu. (44)
a+1l,p

Using (7, p. 161 (2)], with p=3=q+1,a+1>0,5>0,and p— 8 —c >0, we have
the following:

K(a+1),2° T 1Ba+1,b+1)e't & (a+1),(— 2it)"

t) =
ex(t) T(v+1) (@t b+2)n!
a+n+1, —v,v+Ac
- 4 1) (45)
a+b+n+2,a+1,p

Finally, ¢ () can be expressed in terms of the Kampé de Feriét’s function,

o a+1; —v,v+ A —;
0 1, —2:t | (46)
’ a+b+2:a+1,p; —;

Observing that, with t = —ir in (46), we have the moment generating function of X.
Indeed,

a+1; —v,v+Ae; —;
My(r) =% F13i0 b 1, —2r | (47)
a+b+2:a+1,p; —;

The above expression can be reached by e*! expansion in

1
M x(t) = /e”K(l —2)%(1+ :c)be,a’ﬂ’ c’p)(:z)dz.
21

Similarly, we have the Fourier transform of

—v, v+ ¢
(1—2)%(1 +z)° 3 F, ’ e
a+l,p

from (46) and (41). Indeed:
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—v,v+Ac
F| (1 —2)%(1 +2)°5F, ;“T“’);t
at+l,p

(et 1), Blat Lb+1)27F0 et g atlimvvtde—; 18
= . :2;0) y — 4T | ( )
V2rT(v +1) a+b+2:a+1,p; —;

-

4.5 The Distribution of X + X’, Where Both of Them are Independent
Generalized Jacobi Random Variables

Let X be a generalized Jacobi random variable whose parameters are (o, 8, ¢, p,v;a,b)
and X' be a generalized Jacobi random variable whose parameters are (o', ', ¢, p’,V/;
a',b'), under the additional assumption that both group of parameters satisfy (29)
and that these random variables are independent.

Since ¢y . x(t) = @ x(t)p (1), from (43) we have:
¢X+X'(t):hz Z Z ZP(a,b,l/,)\,c,a,p,n,k)

n=0 p'=0 k=0 k'=0
P(a', b, v\ N, ¢’ o0 k') (= 2it)" T n', (49)

Here the change of order is made possible due to the absolute convergence of the
intermediate series of the quadruple series as well. Likewise:

(a+1), 4 k(=) + X))k

P = P(a,b,v,\ k) = . 50
(a, YV, ,c,a,P,n ) (a+b+2)n+k(a+l)k(p)kn!k! ( )
Then, from (41), we have that the density function of X + X' in the form:
Fx e x®) = =8 " lox , olt)ia] (51)
Because of uniform convergence, we have from (51) the following result:
1 io: i io: io: +n 17, 2itn + n'
f (T) = === (=20)" TN PP'FT 2" T ).
X+X \/27I'RR,1=0 n=0k=0 k' =0 (52)

Using [8, p. 517(19)], we have from (50) that

fx+x/(m>=3+rai S8 S (coptrppstr e g, ()

n=0 p'=0 k=0 K'=0

where 6(z) is the Dirac generalized function (see [3, p. 11-13] and [11, p. 484-504]).
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