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1. Introduction

The study of random processes and fields with correlations decaying at hyperbolic
rates, i.e., those with long-range dependence (LRD), presents interesting and challeng-
ing probabilistic as well as statistical problems. Progress has been made in the past
two decades or so on the theoretical aspects of the subject. On the other hand, recent
applications have confirmed that data in a large number of fields (including hydrolo-
gy, geophysics, turbulence, economics and finance) display LRD. Many stochastic
models have been developed for description and analysis of this phenomenon. For re-

cent developments, see Beren [6], Barndorff-Nielsen [5], Anh and Heyde [2], Leonenko
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[20], among others.
The non-central limit theorem, which describes the limiting distributions of addi-

tive functionals, plays a key role in the theory of random processes and fields with
LRD. The main references here are Taqqu [35, 37], and Dobrushin and Major [10]
(see also, Surgailis [34], Samorodnitsky and Taqqu [33], Leonenko and ilac-Benic
[21], Ho and Hsing [16], Leonenko and Woyczynski [24], Ash and Leonenko [4],
among others). The limiting distributions have finite second-order moment but may
have non-Gaussian structure. The problem of rate of convergence in the non-central
limit theorem is therefore of considerable interest.

Some results on the rate of convergence to the Gaussian distribution for integral
functionals of Gaussian random processes and fields with LRD were considered by
Leonenko [19] (see also, Ivanov and Leonenko [17], pp. 64-70, Leonenko et al. [22],
and Leonenko and Woyczynski [23]). These results correspond to Hermitian rank
m 1 (defined in Section 2).

In this paper, we provide the rate of convergence (in the uniform Kolmogorov dis-
tance) of probability distributions of normalized integral functionals of Gaussian pro-
cesses with LRD and a special form of the covariance function (see condition C
below) to a limiting non-Gaussian distribution called the Rosenblatt distribution.
The result corresponds to Hermitian rank m 2, which is new.

2. Preliminaries

Let (a,,P) be a complete probability space and ((t)= ((w,t):ftxRR be a
random process in continuous time.
We first list the relevant assumptions, not all of which will be needed at the same

The process (t), t E N, is a real measurable mean-square continuous
stationary Gaussian process with mean E(t)= 0 and covariance function
B(t) B( t cov((O),(t)),t , such that B(0) 1.

A’. The covariance function B(t), , is of the form

B(t) -L(lt[) 0<a<l (1)

where L(t):(0, oc)(.0, oc)is bounded on each finite interval and slowly
varying for large values of t; i.e., for each > 0, limt[L(1t); L(t)] 1.

Most of the papers devoted to limit theorems for random processes with LRD have
used the covariance function of the form (1). Nevertheless, for continuous-time pro-
cesses, it is not easy to find exact examples of non-negative definite continuous func-
tions which satisfy (1). Note that the class of covariance functions of real-valued sta-
tionary processes coincides with the class of characteristic functions of symmetric pro-
bability distributions. From the theory of characteristic functions we are currently
able to present only the following examples of covariance functions of the form (1):

Bo(t)-(l+t2)-a/2, 0<a< 1;

Bl(t)-(l+ Iris) -1, 0<c<l;

B2(t)-(l+ IriS) -, 0<u<l,teN.
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The function Bo(t), t E , is known as the Fourier transform of Bessel potential (see
Donoghue [11], p. 294) or characteristic function of symmetric Bessel distributions
(see Oberhettinger [27], p. 156, or Fang et al. [14], p. 69). It has the spectral repre-
sentation

Bo(t ] cos(At)f(A)d, (2)

with an exact form of spectral density fa (see (17) below)such that

fa(,) Cl(OZ) a-1 0<a<l

as ---0, where the Tauberian constant

c(c) 2r(c)cols(cr/2). (4)

The process (t), t E R, itself satisfying condition A with covariance function B0, has
the spectral representation

(t) / eitv/f()W(dA), (5)

where W(. is the complex Gaussian white noise.
The function Bl(t), t G N, is known as the characteristic function of the Linnik dis-

tribution (see Kotz et al. [18]). This distribution has a density function (i.e., the co-

variance function B1 has a spectral density). Kotz et al. [18] investigated the asymp-
totic behavior at frequency 0 are quite distinct in the cases:

(i) 1/a being an integer,
(ii) 1/a being a non-integer rational number, and
(iii) a being an irrational number.

Similar properties hold for the covariance function B2(t), t , which is known as

the characteristic function of the generalized Linnik distribution (see Erdoan and
Ostrovskii [13]).

In this paper, we shall consider the covariance function Bo(t), t , as the key
example of covariance functions of random processes in continuous time in the sense
of representation (1). In principle, our method is also applicable to the cases of covar-
iance functions Bl(t and B2(t). The method uses the second term in the asymptotic
expansion of the spectral density at frequency zero, which depends on the arithmetic
nature of the parameter c (see Kotz et al. [18]). Hence the rate of convergence de-
pends on the arithmetic nature of a and is different for the cases (i)-(iii). This pro-
blem will be addressed elsewhere.

Viano et al. [39] introduced continuous-time fractional ARMA processes. Some
asymptotic results for the correlation functions and spectral densities of these process-
es were obtained. However, these results are not useful to the problem of this paper,
since in our approach we need exact results (such as Lemma 4.5 below) on the asymp-
totic behavior of the spectral density at frequency zero. See also Remark 3.3 below.

B. A non-random Borel function G:--, is defined such that
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with

<

1 e u2/2 e

The nonlinear function G(u), u E N can then be expanded in the series

G(u) E CkHk(u)/k!’ Ck G(u)Hk(u)(u)du k O, 1, 2,..., (6)

of orthogonal Chebyshev-Hermite polynomials

Hk(U (-- 1)keu2/2 dk e- u2/2 k-O, 1,2,...,

which form a complete orthogonal system in Hilbert space L2(N, (u)du).
Additionally, we will assume that the function G satisfies the condition
B’. There exists an integer m _> 1 such that C1 =... Cm_ 1 O, Cm 75 O.
The integer m _> 1 will be called the Hermitian rank G (see, for example, Taqqu

[35, 37]; Dobrushin and Major [10]).
We state the following non-central limit theorem due to Taqqu [35, 37] and

Dobrushin and Major [10]. See also Rosenblatt [32].
Theorem 2.1" Under conditions A, A’, B and B’ with a (0, l/m), where m _> 1 is

the Hermitian rank of the function G, the finite-dimensional distributions of the ran-
dom processes

T
8

YT(S) d(1T) / [G((t)) Co]dt 0 _<s _< 1, (7)
0

with

d(T)- Tl-am/2Lm/:(T

converge weakly, as T---+oo, to the finite-dimensional distributions of the random
process

Cm ]m/2 / ei(1 +"" + m)S 1 W(d/l)’" "W(d/m)Ym(s) -.[Cl(ff) i(.1 d-" + m) 11..Am i(1 -a)/2’ 0 _< s _< 1, (8)
m

where CO and Cm are defined by (6) and f Rm... is a multiple stochastic integral

with respect to complex Gaussian white noise W(.) (with integration on the hyper-
planes Ai + Aj, i, j 1,..., m, 7k j, being excluded).

Remark 2.1: The definition and properties of the multiple stochastic integral (8)
can be found in Major [25] or Taqqu [37].

Remark 2.2: The normalizing factor d(T)in (7) is chosen such that, as

par Hm((t))dt d2(T)rn!c2(rn, a)(1 + o(1)),
0

(9)
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where 1 1

Remark 2.3: Note that EIY.(s) Ie< , but for m _> 2 the process rm(s) have
non-Gaussian structure.

For a random process in continuous time, the proof of Theorem 2.1 may be con-

structed from Taqqu [37] and Dobrushin and Major [15] by using the argument of
Berman [7].

The Gaussian process Yl(S), s > 0, defined in (8) with m 1, is fractional Brown-
ian motion. This process plays an important role in applications in hydrology, turbu-
lence, finance, etc. An extension of this process has been recently proposed by Anh et
al. [3]. They introduced fractional Riesz-Bessel motion, which provides a generaliza-
tion of fractional Brownian motion and describes long-range dependence as well as

second-order intermittency. The latter is another important feature of turbulence
and financial processes. The spectral density of increments of such processes is a

generalization of the spectral density of fractional Ornstein-Uhlenbeck-type processes
(see Comte [9]).

The process Y2(s), s > 0, defined in (8) with m 2, is called the Rosenblatt
process (See Taqqu [35, 37]) because it first appeared in Rosenblatt [30] (see also
Rosenblatt [31]). Some moment properties of these distributions can be found in
Taqqu [35, 36] and Taqqu and Goldberg [38]. In particular, the marginal distribu-
tion of the random processes

2(S y2(s c1( e 1 1 1

u:
> (10)

0<c< 1/2

is called the Rosenblatt distribution. Note that
2 12 1/2. (11)

From Rosenblatt [30, 31], Taqqu [35] and Berman [7], we obtain the characteristic
function of the random variable

R2- R2(1)/[C2c1(o)/2]. (12)

It has the form

where
{Eexp {iuR2} exp

[0,]J
We shall also use the following representation of Rosenblatt distribution (12), which
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follows from the representation (10) and
Dobrushin and Major [10])"

the results of McKean [26] see also

R2- E }(X-1), E < o, E }- oc, (13)
k--1 k=l k=l

where Xk, k- 1,2,3,..., is a sequence of independent standard normal variables, and

k, k-1,2,3,..., is a sequence of non-negative real numbers which are the
eigenvalues of the self-adjoint Hilbert-Schmidt operator

.Af(A) / H(A, ,2)f(,2)dA2" L2( dA)--L2( dA) (14)

such that

(see, for example, Dunford and Schwartz [12]) with the symmetric kernel

i(A1 4- A2) 1 (c,- 1)/2H(AI’2) i(’1 + )2) "lA2

H(I, 2) H(- A1, A2) and ] H(A1, A2) 2dAldA2 < o.

R2
Here L2( dA) is the Hilbert space of complex-valued functions f(A), A E , such that

f()--f(-), / l/()[2d<c

with scalar product

(f ]

Let Ck, k- 1,2, 3,..., be the complete orthonormal system of the eigenvectors of the
operator .l. Then

H(A1, 2) E PkCk(A1)k(2 (15)
k=l

and by ItG’s formula (see, for example, Taqqu [37])

H(AI’A2)W(dA1)W(dA2)- E UkU2 Ck(A)W(dA)
[2 k=l

k=l

which can be traced back to McKean [26].
It is easy to see that t is a compact operator and the bounds

m inf{(Af, f), II f [[ 1}, M sup{(Af, f), [[ f [[ 1}
are different from zero; therefore they are in the spectrum of t. Thus, there exist at
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least two non-zero eigenvalues Vp and Uq such that

/p (16)

In fact, at least one non-zero eigenvalue exists because t is a non-zero operator with
non-zero norm. Suppose that there is only one non-zero eigenvalue u with
corresponding non-zero eigenvector bl(A); then putting "1 A2 in (15) and using (11)
we obtain A1 $1(A1) 2 0, which is a contradiction. Using the same argument, it is
easy to prove that if there exist two non-zero eigenvalues, then they are different.

Recently, Albin [1] proved that the Rosenblatt distribution has a density function
which belongs to the type-1 domain of attraction of extremes. Albin [1] also used the
representation (13) where

and the Laplace transform of R2 is given by

Eexp{-sR2}-exp ln(1

)

3. Main Result

We present a result on the rate of convergence in the uniform Kolmogorov distance)
of probability distributions of random variables YT(1), defined in (7) for a special
covariance function (see condition C below), to the Rosenblatt distribution of R2(1),
defined in (10) or (12) and (13). Some results on the rate of convergence to the
normal law along the line of Theorem 2.1 were obtained by Leonenko [19] (see also
Ivanov and Leonenko [17, p. 64-70]). These results correspond to the case rn 1 (see
condition B’) in Theorem 2.1. In this paper, we examine the case m 2.

For technical reasons, we formulate the following assumption for the covariance
function.

C. The covariance function B(t), E , of the process (t), t E , has the form

1B(t)
(1 + t2)/2’

0 < c < 1. (17)

Remark 3.1: Let condition C hold. Then condition (1) is satisfied.
Remark 3.2: Under condition C, the spectral density f(A) f(IAI), A N, has

the following exact form (see, for example, Donoghue [11], p. 293, or Oberhettinger

2(1-c)/2f(A) f(ll) r(c/2)/_z_K(lv’
_)/2(11)11(-1)/2, z , (18)

where

lexp{--1/2z(s nt- l-g))ds, z> O,
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is the modified Bessel function of the third kind of order u (see, for example, Watson
[40]). We note that

/t’(Z) F(/])2- 1Z-, zO, /2 > 0 (19)

and for a large value of z the following approximation holds:

K(z) ,]/-Z 1/2e z (1 + # 1 (# 1)(# 9) (# 1)(# 9)(# 25)
82 +

2!(8z)2
+

3!(82)3

(20)

where #- 4u2. Using (18) and (29), we obtain the following representation (see
Donoghue [11], p. 295)

f( A Cl(C)I A - 1(1- (21)

where 0( , )---0 as --+0. The spectral density f(! ix I), A e N, corresponding to
the covariance function (17) is the Bessel potential of order ce (0,1) (see for
example, Donoghue [11], p. 294), that is,

f(p) (4r)l/r() o
p2/(4)e ta#(a- 1)/2d#--, p- I,x

Therefore, for the spectral density fa( " ), A E R, the following convolution
equation holds:

fa + () / fa(,’)f(,’- ,)d,’, a > O,/3 > O. (22)

From (2) we obtain

Bin(t)- f cs(At)f*m(A)dA’

where the convolutions f.m(,) are defined recursively as

f.l(,)_ f(),f,()_ f f,(-ll(,)f(,_)d,,,_ 2,3,

In particular, we obtain from (22) the following elegant formula for the spectral
density (18)"

f*m(A)- fm(A), A G , 0 < am < 1,

where fmc(1),, is given by (18). Using (iS)-(21) and the relation

/ A-2"sin2AdA_ -4sin(7r)F(l-27)27-2,7 G (21-,23-),
0

we obtain from Lemma 4.2 (see Section 4 below) with U(z)- sin2z and 6- rna-3,
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0 < am < 1 the following formula:

vat Hm((t))dt 2m! sin2(-X)-
0 0

T2-mCrn!c2(rn, c)(1 + o(1))

Let X and Y be arbitrary random variables. Introduce a uniform (or
Kolmogorov’s) distance between the distributions of the random variables X and Y
via the formula

%(2, Y) sup lP(X <_ z)- P(Y 5

The main result of this paper describes the rate of convergence (as T+c) in
Theorem 2.1 with m- 2 and is contained in the following.

Theorem 3.1: Let assumptions A, B, B’ and C hold with m- 2 and c @ (0,1/3).
Then

(/ )lim supTa/3% .T11roo :0 [G((t)) Co]dt, R2(1
0

exists and does not exceed the constant

2 G2
(1- 3a)(2 an) (u)

where Co, C2 are defined in (6) and the constant Cl(C is defined in (4). The numbers

p and ,q are defined in (16), and the random variable R2(1 which has the
Rosenblatt distribution is defined in (10) or (12) and (13).

Remark 3.3: Our methodology in principle, is applicable to more general Gaussian
processes in continuous time. For this, we have to replace condition C by a more

general condition which can be given in the spectral form, such as (21), together with
the type of results of Lemma 4.5 and a precise behavior of the spectral density near

infinity (for example, f(A) O(]A[ -1-a) as ])[--OO). Then, instead of the
convolution property (22), we may use the Riesz Composition Formula (see Lemma
4.6 below) for an investigation of the asymptotic behavior of convolutions of spectral
density. Lemma 4.2 can next be used again to obtain the asymptotic formulae
similar to (9) but in terms of the spectral density. Then the proof can be completed
by following the same principal steps. We will address this approach in a separate
paper together with a generalization to random fields.

4. Proof of the Main Result

Before proving Theorem 3.1, we state some well-known results.
Lemma 4.1: Let (,) be a Gaussian vector with E- Eq- O, E2

E(- p. Then for all m >_O, q >_O,
Er]2 1,

eHm()Hq(r) 5qmPmm!,
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where 6q
m is the Kronecker symbol.

The proof of Lemma 4.1 is well-known (see for example, Ivanov and Leonenko
[1], . ).
Lemma 4.2: Consider the integral

/ U(AT)A6(A)dA"S(T)
0

Suppose that
(a) the function () is continuous in a neighborhood of zero, (0)7 0 and

(A) is bounded on [0, cx);

Then

U(z) zedz < .
S(T) T -- 1(0)f(6)(1 + o(1)) as

The proof of Lemma 4.2 can be found, for example, in Ivanov and Leonenko [17],
pp. 29-30.

The following lemma is due to Petrov [28], p. 29.
Lemma 4.3: Let X,Y,Z be arbitrary random variables such that

P(X <_ z)- P(Z <_ z) <_ K,

where K is a constant. Then for any > 0

where

and

%(X + Y,Z) <_ K + Le + P( Y >_ ),

Le maxsup{ T(z + )- T(z) T(z-)-T(z)l }
z

T(z) P(a < z).

We now formulate the following statement.
Lemma 4.4: Consider the random variable R2(1 which has the Rosenblatt distribu-

tion (see (10)). Then there exists a density function
C2c1(o)p(z)- zP(R2(1) _< z) _< C3 2 v/UpUq’ (23)

where C2 is defined in (6), the constant Cl(C is defined in (4) and Up and Uq are

defined in (16).
Proof: Using representations (13), we obtain that

where
R2 r]l -[-/]2, (24)

u 2_ 1)- Uq(X2p + X2q)-(up +r]1 p(X2p-1) + uq(Xq

and

rl2 E utc(X 1). (25)
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The random variables Xp and Xq are independent standard normal.
2 2 is of the formdensity function of the random variable t3Xp + Xq

v()- / v (,-x)Vx(X)dXp po

Thus the

1

2I"2(1/2)/31/2
u/2 / (u x) l/2x-1/2e- (1//3-1)X/2dx

0

2(’p/l,’q)1/2"

Thus, the density function of the random variable/]1 is also bounded:

1 (26)Prl(tt)
_

2 41,pl,,q
From (24) and (5) we obtain that there exists a density function of Rosenblatt pro-
cess /2"

p-s(x)- dP(R2<_ x)- /pl(X-y)dFr2(y)< 2v/lupuq,
where Fv2(y P(r/2 _< y) and P’I(X) is the density function of the random variable

r/1. The density function of the random variable R2(1 defined in (10), also exists
and is bounded by a constant ca, defined in (23). gl

Some further information on the density function of the Rosenblatt distribution
can be found in Albin [1].
Lemma 4.5: Let fc(.), I G , be a spectral density given by (lS). Then the

asymptotic relation (21) holds as I,10 with

0( I/ KIll 1 -(1 + o(1)),

where K is a posilive constant.
Proof: From Formula 4 of 3.773 of Gradshteyn and Ryzhik [15], we obtain

i (1+ 1/2 ( ) (13-a’2)cos,t 1 c 1 F2 2 2 4t2)c/2dt B
2’ 2 1

0

+7 r(IF ,2, 2 ;4 ’ >0’

( 1/2 2 )--a-1(1)(4-
a1+ -+ 1+B2, a-.,4 7 r() .+4

2 2 2 2

a > 0, where 1F2 is a hypergeometric function. The statement of Lemma 4.5 now

follows by direct computations.
The following statement is known as the Riesz Composition Formula (see, for

example, Plessis [29], pp. 71-72).
Lemma4.6: For O < a < 1, 0 < < 1, O < c + < 1, the following identity holds:
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where_.

C4(O,/9)1 x y la + ;3 1

C4(O, }9
v/-r()r()r12
[,(1 - )r(L_)r( + )

Proof of Theorem 3.1" Let L2( be a Hilbert space of random variables with
finite second moments. From (6) and (7), we obtain the following expansion in
L2():

T

]G((t)) Co]dt E --V. (m(T)’
0 k=m

where

and, by Lemma 4.1,

where by (17)

T

k(T)- / Hk((t))dt’
0

E(k(T)(r(T k,r 2.o(T), 1 >_ rn,

r2(T) E Hk((t))dt B( t- s )dtds
0 0 0

1 1

T2 ka ] ]’ Bk(T t s Tkadtds
0 0

T2-kac2(k,a)(1 + o(1)) as T-oo,

c2(k a) being defined in (9) and 0 < ]ca < 1.
In order to apply Lemma 4.3 with Z- R2(1), we represent

T

YT(1
T1-al / [G((t)) Co]dt XT + YT,

0
where

and

T

c2f Tl_aXT -- H2(((t))dt/
0

YT- k(T /T1 -c.

By (17), Lemma 4.1 and the Parseval identity, we obtain for 0 < c < 1/3 that

varYT E C _2, T2 2c-KtT)/
k=3
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We have

1 1

<_ ((r)/r- )(a)_< r
0 0

(27)

i%g() c(3, ), (28)

the constant c2(3 a) being defined in (9), and the constant

c(a) c/! a:()()- c0 c
2"

k=3 -o

(29)

Using Lemma 4.4 we have the following estimate for Le defined in Lemma 4.3:

Le <_ "CC3,

where (]3 is given in (23).
By Lemma 4.3 (with X XT, Y YT,

inequality, we obtain from (27)-(30), that

(30)

Z R2(1)) and the Chebyshev

(3)1 c(G)(XT+ YT, R2(1)) <_ %(XT, R2(1))+c3 +-- Ta gT(a)

Using (5), condition C and Itg’s formula (see for example, Taqqu [37], Major [25]),
we obtain

i(A1 + A2)tH2((t)) e v/fa(,l)fa(2)W(d,l)W(d2), (32)

2
where fa(1)is defined in (18).

Using the self-similarity property of the Gaussian white noise (formally,
W(ad,) d v/W(d,), where d__ stands for equality of distributions), we obtain from
(7) and (32) the following representation:

XT d C2 e (’xl +’x) 1 1
_-g- i(A1 -}- A2 ,1/2 (1- c)/2

2 (33)

( zl "21)Ifc()fo()W(d,’l)W(d2).
From (10)and (33), we have

X,T_ XT_R2(1) __/ e()’I +)’2)- I 1
i(al+a) al (1-)/

((1"1 "21)l--ai()’2 1 (@))x W W fa fa cl() W(dl)W(da2)’
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and by the properties of multiple stochastic integrals (see, for example, Major [25]),
we obtain

2

varX 1 C ]" ei(Al + )2)_ 1 Q,T(l,J2)a.dJld)2Ta 4 i(A1 + A2) [A1A2 1-

where

f, f, -c()

(34)

From (18)-(21), we can see that the function

T-CQT(,kl, 2) <_ K1.

Consider now

ei(A1 + A2)-- 1
i(1 + A2) QT(AI’A2,dAldA2

I’kll _< Tl-a, IA2[ _<T1-a

I,I > Tl-C, I:21 > Tl-a IXl > Tl-a, IX21 <_t1-a

11 + 12 + 13.
A

By Lemma 4.5, for [-fl <_ -a, 1, 2 and Toe, we obtain

-2

QT(AIA2)--TacI(a)[(IO(] AI Jo(I 1

-- +o(1)

I ,1 [2(1- c) ,2 12(1- c)41_(1 ’1TaCl(OZ) + + --using the approximation (1 x)1/2 1 1/2x + o(x).
i- 1,2, -- +o(1)

A.
Note that, for

+(
1 ]

_
K2T a(1

Thus,

1i1 K3T c(1- 2c,)( 1 + o(1)) as T---oc and for 0 < c < . (35)
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Using Lemma 4.6 and change of variables" A1 + A2- u, 2- u, we obtain for 12 the
following estimate:

2A + A2

// sin 1
2 dld212 IilTa (AIWA2)2 [,1,211-a

<_K4Ta ul_c Tl+C lull-Clu_/l l-c

2T c T1 c

< K5T- O < < l
3" (36)

Combining the arguments for estimates of 11 and I2, we obtain

a_ Kr-1-/( + o()) s T. (37)

From (35)-(38), we have for 0 < a < 1/3,

ktT(o) A1 -[-

QT(A1 A2)NdAldA2__+0
,1,2 1- (3s)

as T---c.
We are now in a position to apply Lemrna 4.3 again with X- R2(1), Y- X and

Z R2(1). In this case, we can choose K 0 in the statement of Lemma 4.3. Thus,
for any >0,

%(XT,/i2(1)) _< c3 q- P( Xr > }
(3)

_< + vrX,,
where c3 is defined in (23) and varX, is given by (34).

From (31), (34) and (39) we obtain, for any > 0,

1 TI__a(c(G)gT(a)+ #T(Ct) (40)%(XT q- YT, R2(1))

_
2c3 -+- -where #T(a)is defined in (38) and gT(a)is defined in (27) and (28).

In order to minimize the right-hand side of (40), we set

{2T-a(c(G)gT(oz + #T(O))/2c3}1/3.

We then obtain the following inequality"

T1 -a [G((t))-Co]dr, R2(1)

_
Tla/5[c(G)gr(a)+ #T(a)]1/3 3c23/3

0

where gT(a)--c2(3, a) and #T(a)--,O as T-oo.
from the above inequality.

Theorem 3.1 now follows directly
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Remark 4.1: It should be noted that the Rosenblatt distribution is absolutely
continuous (see (13), (23)or Albin [1]). Hence convergence in distribution to the
Rosenblatt distribution implies convergence of the Kolmogorov distance to zero.

5. Extension

Theorem 3.1 gives the convergence rate to zero of the Kolmogorov distance between
normalized functionals of random processes with LRD and the Rosenblatt
distribution only for a 6 (0,1/3). On the other hand, it follows from Theorem 2.1
that the convergence of the Kolmogorov distance to zero holds for a 6 (0, 1/2). As it
turns out, our method is also applicable for the interval c [1/3,1/2), but the
outcome is a slower convergence rate.

Theorem 5.1: Let assumptions A, B, B’ and C hold with rn- 2 and a e [1/2,1/2).
Then

a(1 T/
lim supT a(1 + c) %

r1 c, [G((()) Co]d, R(1)
Zc

0

exists and does not exceed the constant
1

2 + 2(1 21)(1 -a G2(u)(u)du- C- )3C2[c1(o)]-/(
1

lZpb’q 3.

Proof: We follow the scheme of the proof of Theorem 3.1, incorporating necessary
modifications. In particular, we represent

where

Observe that

YT(1) XT + YT,

varYT < c(G) 2,T)T_ 2c0"3t

5_ 1-2c
1 +c (0, 1),5 < 1- 2a, a5 _< 1-2-5 (41)

for a G [1/2, 1/2). Thus,

T T T

0 0 0

T6

2T [ +
J
0

< 2T + 6
T

+ B(TS)2T i B(’)(1 )dt
T
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< 2T1 +

and using (41), we have

+ B(TC)T2-2c/ / (B(T t_ s )T2)Cdtds,
0 0

2c(a) c(a)~varYT -- T1 2c 5 + TC5 gT(a)’

where as
1 1

T(a) TaSB(T) / / [B(T t- s )T]2dtds
0 0 (42)

By Lemma 4.3 we obtain in a similar way to (40) that

1;G%(XT + YT, R(1)) < %(Xr(1),R(1)) + c3e +- [2 + yT()]. (43)

Following the scheme of the proof of Theorem 3.1, we obtain the estimate (34) in
1 The estimate (35) holds for c e (0,1/2). Using the1 is replaced by

Ta5.which

following formula (see Gradshteyn and Ryzhik [15], formula 2 of 3.194)

/ xp-1 t ’ (
u

(1 +/3x)udx -/3u(u- #) 2F1 r,, p-/t; t/- # q- 1;

with Reu > Re#, we obtain for c E (0,1/2)

Therefore,

I2 < KsT/ dA2 TC_2 Fl(2,2_ct, 3_aA-a 2

2T1 c

and for a E (0,1/2)

T1 -a

lim 12 O.

Similarly,

lim 13 --0 for a (0,1/2).
Thus from (43)

1 1(XT,/2(1))

_
2c3 -[-- -((c(G)(2 -[-T(C)))-t-/T(Ct)), (44)
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where
0.

Let us set

2T
6c(G)(2 +

1

2c3

We then obtain the following inequality:

( / )%
T11 a [G((t))- Co]dt, R2(1

0

1 2

< +
T a

with

From (42)-(45), Theorem 5.1 follows.

(45)

6. Concluding Remarks

This paper addresses the issue of measuring the speed of convergence to the Rosen-
blatt distribution, as measured by the Kolmogorov distance, for some functionals of
nonlinear transformations of long-range dependent Gaussian processes with Hermite
rank m 2. Our method is based on a direct probabilistic analysis of the main term
(m 2) as well as the second term (m 3). Due to the nature of limiting laws in
the situation of LRD, it is not straightforward to present an argument on the sharp-
ness of the results as in the traditional situation of short-range dependence. In parti-
cular, the rate of convergence in Theorem 5.1 is not optimal, hence yields a gap in
the rate of convergence at a 1/3 between Theorems 3.1 and 5.1. However, the
paper takes the first step towards solving the important and difficult problem of
sharp convergence rate in non-central limit theorems.

The method of this paper in fact is general. It can be applied to nonlinear
functionals of non-Gaussian random processes with LRD and special bilinear
expansions of their bivariate densities in orthogonal polynomials such as Chebyshev-
Hermite polynomials, Laguerre polynomials. In particular, the rate of convergence to
the non-Gaussian Laguerre processes with Laguerre rank rn 1 has been obtained in
Anh and Leonenko [4] (see also Leonenko [20]).
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