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The aim of the paper is to prove two theorems on the existence of solu-
tions to a nonlocal multivalued Darboux problem. The first theorem con-

cerns the case when the orientor field is convex valued. The second
theorem concerns the case when the orientor field is nonconvex valued. A
compactness type condition involving the ball measure of noncompactness
is applied.
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1. Introduction

In this paper we study the existence of solutions to a nonlocal multivalued Darboux
problem in a separable Banach space. Applying a compactness type condition involv-
ing the ball measure of noncompactness, we obtain two theorems on the existence of
the solutions of the nonlocal multivalued Darboux problem. The first theorem con-

cerns the case when the orientor field is convex valued. The second theorem concerns

the case when the orientor field is nonconvex valued.

Printed in the U.S.A. (C)1999 by North Atlantic Science Publishing Company 179



180 LUDWIK BYSZEWSKI and NIKOLAOS S. PAPAGEORGIOU

The results obtained are generalizations of those given by Papageorgiou in [13] on

the existence of solutions of a classical multivalued Darboux problem. They are also
generalizations of those given by Byszewski in [3, 4, 6] and by Byszewski and Laksh-
mikantham in [5] on the existence and uniqueness of solutions of nonlocal Darboux
problems.

The approach applied in the paper is based on results of Papageorgiou [11-13],
Kandilakis and Papageorgiou [8, 9], and Byszewski [3, 4, 6].

The existence of a solution of a classical multivalued problem, where the orientor
field has compact values in a separable Banach space, was also examined by
Dawidowski and Kubiaczyk in [7] using a contraction principle for multifunctions.

2. Prehminaries

Let (f, E) be a measurable space and Y a separable Banach space.
following sets:

We will need the

and
PI(c)(Y): -{A C Y" A is nonempty, closed, (convex)}

P(w)k(c)(Y): --{A C Y: A is nonempty, (weakly-) compact, (convex)}.
A multifunction F: ft---,Pl(Y) is said to be measurable if there exists a sequence of

measurable functions In: ft--,Y (n e N) such that F(co) {In(co)}n e N for all co e ft.

The multifunction F is said to be weakly measurable if for every y* E Y* the
N U {oe}-valued function w---,r(y*, F(co)) sup{(y*, y)’y e F(w)} is measurable.

Let % be the family of bounded subsets of Y. Then the ball measure of noncom-
pactness fl: %4[0, oe) is defined by

(B): -inf{p > 0: B can be covered by finitely many balls of the radii p},

BE%.
(2.1)

Let Yi (i 1,2) be Hausdorff topological spaces.

A multifunction G:YI2Y2\{O} is said to be upper semicontinuous [respectively,
lower semicontinuous] if for every open set A C Y2, {Y YI’G(Y) C A} [respectively,
{y e YI"G(y) Cl A 7 }] is open in YI"
We will need the sets N +" (0, ee) and A" I x I, where I: [0, c] and c > 0.
Let X: C(I,E), where E is a separable Banach space with the norm II [I, and

let C be the Banach space defined by

and equipped with the norm II. II c given by the formula

By Ew we denote the Banach space E with the weak topology.
Let p and r be arbitrary natural numbers.
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For given a multifunction F:A x E--P$c(E [F’A x E--PI(E), respectively] and,
given a (, )E C, satisfying some assumptions, we will study the existence of a solu-
tion of the following Darboux problem"

F(x, y, u(x,y))a.e, in A,

(, 0) + ()(,) (), e ,
j--1

P
u(O,y) -k- E ki(Y)u(ai, Y) (Y), Y I,

i=1

(2.2)

where a (i- 1,...,p) and bj (j- 1,...,r) are given numbers such that

and
O<al<...<ap<_C

0 <bl<...<br<_c.

A function u G C(A,E) is said to be a solution of problem (2.2) if there is f G
LI(A, E) such that

and

where

f(, r/) G F(, r/, u(, r/)) a.e. in A

u(x, y) c(x, y) hj(x)u(x, bj) E ki(Y)u(ai’ Y)
3=1 i=1

x Y

(x, y) E A,

(x, v): () + () (0), (, ) e .

(2.3)

(2.4)

(2.)

Let Z be a fixed nonempty compact subset of E.
By K(A,E) we denote the set of the functions w belonging to C(A,E) such that

w(x, O)+ w(O, y) e Z for (x, y) e A.

Theorem About the Existence of a Solution of the Nonlocal Multi-
valued Darboux Problem with the Convex Valued Orientor Field

Theorem 3.1: Assume that F" A x E--,PIc(E is a multifunction such that"
(i) (x, y, z)---.r(x, y, z) is weakly measurable, z--F(x, y, z) is upper semicon-

tinuous from E into Ew and for all (x,y)G A, F(x,y,.) maps the bounded
sets into relatively weakly compact sets,

(ii) F(x, y, z) -sup{ II
(3.1)_

Cl(x, y) + C2(X y) II z II a..,
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where c (i 1,2) are some functions belonging to LI(A,R +), and

(F(x, y, B)) <_ (x, y)(B) a.e. (3.2)

for every nonempty and bounded set B C E, where is a function belonging
o L(zX, + ).

Moreover, assume lhat
(iii) ,e6,
(iv) hj e C(I,N) (j- 1,...,r), k e C(I,N) (i- 1,...,p), hi(O)- 0 (j-

1,...,r), ki(O --0 (i- 1,...,p) and

P ) ]Ic211LI(A _t_II hj II C(I,) + E II ]ci II c(I,) e < 1. (3.3)
j=l i=1

Then in a class of functions w E K(A,E) problem (2.2) possesses a solution.
Proof: Firstly, we will obtain an a priori evaluation for the solutions of problem

(2.2). For this purpose suppose that u is a solution of problem (2.2). Consequently,
we have, from (2.3)-(2.5), that

p

Il u(x,y) ll <_ [[a(x,y) ll + hj(x) [[u(x, bj)[[ + E ki(y) I[ u(ai, y) ll
3=1 i=1

x Y

(x, y) E A.

(3.4)

Formulas (3.4), (2.3) and (3.1)imply that
x Y

I] t(x,y)II 00 -- Ch, k II t II C(A,E) -- / / [c1(, r]) -" c2(, r])II (,)II ]dd
0 0

(a.)
5 o + ch, II II c(,E) + II C1 II LI(A, +

x Y

0 0
where

o: II II x + II II x + II (0)II
and p

II h II C(I,) -k- E I[ ]ci IICh, k: C(I,)"
j-1 i=l

By (3.5) and Gronwall’s inequality,

II (*, y)II (% + ch, II II c(,z) + II Cl II LI(A,
(,) e .

II c2 II LI(A, +)

(3.6)
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From (3.6), we obtain

1 --Ch, ke

LI(A,
Consequently, by (3.7)and (3.3),

II c2 II LI(A, +) (.7)

Ct0+ [[ Cl II LI(A,_t_ c2 I[ LI(A,[+)
c2 LI(A,

1 Ch, ke
+

Then, from (3.8),

Ilu(x,y)[[ _M, (x,y) GA, (3.9)

where
Ct0q- [[ Cl II LI(A,+) IIc211LI(A +)M" e (3.10)IIc2 ]] LI(A,

1 --Ch, ke +

Define F: A x E--P:fc(E by the formula

{ F(x,y,Z)Mz if II z II M,
(3.11)F(x y,z)

F(x,y, [[z [1) if l[ z 1[ > M,

where M is given by (3.10).
It follows, from (3.11), that

r(x, y, z) r(z, y, pM(z)) in A x E,

where PM is the M-radial retraction in E.
Since PM is Lipschitz continuous then (3.11) and the first part of assumption (i)

imply that (x, y, z)F(x, y, z) is weakly measurable. Moreover, from (3.11), the
second part of assumption (i) and Theorem 7.3.11 from [10], z--+F(x, y,z) is upper
semicontinuous from E into Ew. By (2.1), (3.12), (3.2) and by the inclusion,

PM(B) C conv(B U {0}), B C E,

we have
/3(F(x, y, B)) fl(F(x, y, PM(B))) <_ %(x, y)(PM(B))

(3.13)

< ;(x, y)(conv(B U {0})) <_ (x, y)/3(B) a.e. in A, B C E.
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Observe that, from (3.11)and (3.1),

(3.14)_
Cl(X,y "t- Mc2(x,y -"c3(x,y a.e. with c3 e LI(A, + ).

Define a set by

: { e C(/,E).(,O) + (0,) e z,(,) e ,
r P

u(x, y) o(x, y) E hj(x)u(x, bj) E ki(Y)u(ai’ Y)
j=l i=1

x y

0 0

]1 g(, r#)II - c3(, r#) a.e. in A} (3.15)

and a multifunction

by
T: %t-2%

T(u)" v e C(A, E): v(x, y) c(x, y) hj(x)u(x, bj) E ki(y)u(ai’ Y)
j:l i:1

x Y

0 0

f 6 LI(A,E), f(,?)6 (,, u(,))a.e, in A/, u 6 . (3.16)

Since (,7, z)--+r((,, z) is weakly measurable, (,)F(, , u(, )) is weakly
measurable on A with the Lebesgue a-field which is complete with respect to the
Lebesgue measure on A. So, (,)F(,,u(,))is measurable and, therefore, by
Aumann’s selection theorem (see Theorem 5.10 from [15]), there is f LI(A,E) such
that f(, ) F(, , u(, )) a.e. in A. Consequently, T has nonempty values.

Moreover, since from Proposition 3.1 given by Papageorgiou in [11],

(.,., (.,.
e 1( ): (, v) e (, , (, ))

Pwkc(LI(A,E)), (3.17)

T has values in P]c(C(A,E)).
Additionally, from (3.15), (3.16), and the first part of assumption (iv),



Nonlocal Multivalued Darboux Problem 185

r P

v(x, O) -t- v(O, y) c(x, O) -t- ct(O, y) E hj(x)u(x, bj) E ki(Y)u(ai’ Y)
3--1 --1

(x, o)+ (o, ) z, (x, )
(3.18)

if v E T(u), where u E %.
Let BC be a nonempty set.

(3.17), that
We have, by (2.1), (3.16), (3.15), (3.18)and

where

(T(B)(x, y)) </ f(, q)ddq: f f u B
(., ,,(.,.11’

o 0

<_ (, r, B(, 7))ddq (x, y) A,
0 0

(3.19)

B(, ). {(e,,). e B}, (e, v) e (3.0)

and

/ / (, , B(, q))ddq" h(, q)ddq" h El(A, E),
o o o o

h(, q) @ F(, , B(, q)) a.e. in A (x, y) A.

(3.21)

Observe that, for every x* E*, (,q,z)a(x*,F(,q,z)) is measurable and
(,r])B(,r]) is graph measurable. Therefore, from the Kandilakis-Papageorgiou
theorem (see [9], Theorem 6.1), (,q)---sup[7(x*,F(,q,u))’u B(,q)] is Lebesgue
measurable on A. Hence, by the third part of assumption (i), (,r)-conv
F(,,B(,q)) Pwkc(E). Consequently, applying an argument given by
Papageorgiou in [13] and by Kandilakis-Papageorgiou in [8], we obtain that

(ix/. )Z (, q, B(, q))ddq

_
(, q)Z(B(, l))ddl

0 0 0 0

x Y

0 0

Formulae (3.19)-(3.22)imply that
x Y

f f
0 o

(3.23)
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Let

x y

0 0

(x, y) E A.

-AIIII1/(+(): up , /((,)) (3.24)

for B C % and with , > 0.

Since C C(A,E) is bounded and equicontinuous, by properties of /3 and by
Arzela-Ascoli theorem, is a sublinear measure of noncompactness in the sense of
Banas-Goebel [1]. Therefore, from (3.23)and (3.24),

x y

fl(T(B)(x, y)) <_ IIm II e
0 0

(a.)
x Y

i i II II 1/,(, + ,) (B)_,., II l/,(x + ,) (, ) A.< II m II a (B)dedv < 2
e

0 0

By (3.25)and (3.24),

(T(B)) < 2(B).
The above inequality implies that T is a contraction if , > 1.
Next, we will show that the graph of T

(3.26)

GrT: -{(u,v) e%x%: veT(u)}
is closed in C(A, E) x C(A, E).

To this end, let (un, Vn) GrT (n 1,2,...) and assume that

(Un, v,) n-* (u, v) in % x % C C(A, E) x C(A, E). (3.27)

We know that functions un and vn (n- 1,2,...) satisfy the following conditions"

un(x,O + un(O,y e Z, (x,y) A (n 1,2,...),

v,(x, O) + v,(O, y) Z, (x, y) A (n 1,2,...),

p

vn(x y) o(x, y) hj(x)Un(X bj) E ki(Y)un(ai Y)
j--1 i=1

x Y

-4- S i g’(’lT)ddlT’ (x,71) A (n 1,2,...),
0 0

(3.29)
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with gn ELI(A, E), gn(, rl) (, zl, un(, r/)) (n 1,2,...) a.e. in A.
Since F(,, .)is upper semicontinuous from E into Ew with values in Pat(E),

then, applying Theorem 7.4.2 from [10],

(,,)onvU (,1,,, ’,,(, q)) C(,,,)

is a measurable, Pwkc(E)-valued multifunction such that

a(, v) l: sup{ II, I1:, C(, n)} <_ C3(, r/) a.e. in A.

Consequently, from [11], we have that

5 {g LI(A,E): g(, r) a(, r) a.e. in A}

is weakly compact in LI(A,E). Thus, passing to a subsequence if necessary, we may
assume that

w L1gn ---’ g in (A E).t O

By the fact that z---,F(x, y, z) is upper semicontinuous from E into Ew, by the
convergence of un to u in C(A, E) and by an argument given by Papageorgiou in [12,
13],

g(, q) F(, r/, u(, r/)) a.e. in A.

Therefore, from (3.27) and (3.29),
r P

v(x, y) ct(x, y) E hj(x)u(x, bj) E ki(y)u(ai’ Y)
2=1 i=1

x Y

0 0
with g e LI(A, E) and g(, r/)e (, , u(, )) a.e. in A.

Moreover, by (3.27)and (3.28),

and
u(x, 0)+ u(0, y)e Z for (x,y) zX

(, 0)+ v(0, )e z or (,)e

So (u,v) GrT and, consequently, T has a closed graph in %xCl_t C C(A,E)x
C(/,,E).

Inequality (3.26) and the fact that GrT is closed imply, by the Tarafdar-Vyborny
theorem (see [14], Theorem 4.1), that u T(u).

As in the beginning of the proof of Theorem 3.1, applying the definition of F and
Gronwall’s inequality, we obtain that

II u II c(a,z) <- M, (3.30)

where M is given by formula (3.10).
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Therefore,

Consequently, u e K(A,E)is a solution of problem (2.2).
The proof of Theorem 3.1 is complete.

(3.31)

Theorem About the Existence of a Solution of the Nonlocal Multi-
valued Darboux Problem with the Nonconvex Valued Orientor Field

Theorem 4.1: Suppose that F:A x EPI(E is a multifunction such that"
(a) (x, y, z)---,F(x, y, z) is measurable, z---,F(x, y, z) is lower semicontinuous and

for all (x,y) e A, F(x,y,.) maps the bounded sets into relatively weakly
compact sets,

(b) assumptions (ii)-(iv) of Theorem 3.1 are satisfied.
Then in a class of functions w E K(A, E) problem (2.2) possesses a solution.
Proof: As in the proof of Theorem 3.1, if u E C(A,E) is a solution of problem

(2.2) then

II u(x. y)II M, (x. y) e A,

where M is given by (3.10).
Define F: A x E--PI(E by formula (3.11). Consequently,

F(x,y,z) F(x,y, pM(z)) in A x E,

wher..e PM in the M-radial retraction in E, and Theorem 7.3.11 from [10] implies that
z--,F(x, y, z) is lower semicontinuous.

Introduce a set % by the formula

u: { e C(A. E): (.. O)+ (0. ) e Z. (. ) e .
p

u(x, y) o(x, y) hj(x)u(x, bj) E ki(Y)u(ai’ Y)
3=1 =1

x Y

(x, y) A,

[I g(, rl) II <- c3(x, Y) a.e. in (4.1)

The above set is a nonenpty, bounded, closed an equicontinuous subset of
C(,E).

Let F:%t--,PI(LI(A,E)) be the multifunction defined by

r(). _1
F(.,.,u(., )) ={g LI(A,E):g(,r) (,r/,u(, r)), (, r)E A},



Nonlocal Multivalued Darboux Problem 189

The Papageorgiou theorem (see [12], Theorem 4.1)implies that r is lower semicon-
tinuous. Therefore, from the Bressan-Colombo theorem (see [2], Theorem 3), there is
a continuous mapping 7" %-+LI(A, E) such that 7(u) E I’(u) for all u E %.

Let
p

#(u)(x, y)" o(x, y) hj(x)u(x, bj) E ki(Y)u(ai’ Y)
3=1 =1

x Y

0 0

Then #: %---+% and, by the continuity of 7, # is continuous.
Let B be a nonempty, bounded and closed subset of %.

C(X,E)
be a sequence such that {un}n C B and {Un}n N
(2.1), (4.2), (4.1), (3.18)and (3.2), that

Moreover, let {Un}n N
B. We have, from

x )
0 0

(4.a)

7({Un}n e N)(’ rl)ddrl <- II [I oo/({Un(e, r])} n e N)ddrl
0 0 0 0

x Y

0 0

Define the sublinear measure of noncompactness by formula (3.24).
in the proof of Theorem 3.1, we obtain

Arguing as

(#(B)) _< 22(B). (4.4)

The above inequality implies that # is a contraction if , > 1.
Inequality (4.4) and the Tarafdar-Vyborny theorem (see [14], Theorem 4.1)imply

that u #(u) for some u %.
As in the beginning of the proof of Theorem 3.1, we obtain inequality (3.30).

Therefore, (3.31) holds and u K(A,E) is a solution of problem (2.2).
The proof of Theorem 4.1 is complete.

References

[1] Bands, J. and Goebel, K., Measures of Noncompactness in Banach Spaces, Lect.
Notes in Pure and Appl. Math. 60, Marcel Dekker, New York 1980.



190 LUDWIK BYSZEWSKI and NIKOLAOS S. PAPAGEORGIOU

[10]

[11]

[12]

[13]

[14]

[15]

[2] Bressan, A. and Colombo, G., Extensions and selections of maps with decompos-
able values, Studia Math. 90 (1988), 69-86.

[3] Byszewski, L., Existence and uniqueness of solutions of nonlocal problems for
hyperbolic equation uzt F(x, t,U, Ux) J. of Appl. Math. and Stoch. Anal. 3:3
(1990), 163-168.

[4] Byszewski, L., Theorem about existence and uniqueness of continuous solution
of nonlocM problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991),
173-180.

[5] Byszewski, L. and Lakshmikantham, V., Monotone iterative technique for non-

local hyperbolic differential problem, J. of Math. and Phys. Sc{. 26:4
(1992),345-359.

[6] Byszewski, L., Differential and Functional-Differential Problems with Nonlocal
Condilions, Cracow University of Technology Monograph 184, Cracow 1995.

[7] Dawidowski, M. and Kubiaczyk, I., An existence theorem for the generalized hy-
perbolic equation ’zu F(x,y,z) in Banach space, A nnales Soc. Math. Polonae,
Comment. Math. 30(1990), 41-49.

[8] Kandilakis, D. and Papageorgiou, N.S., On the properties of the Aumann
integral with applications to differential inclusions and optimal control systems,
Czech. Math. J. 39 (1989), 1-15.

[9] Kandilakis, D. and Papageorgiou, N.S., Properties of measurable multifunctions
with stochastic domain and their applications, Math. Japonica 35 (1990), 629-
643.
Klein, E. and Thompson, A., Theory of Correspondence, Wiley, New York
1984.
Papageorgiou, N.S., On the theory of Banach space valued multifunctions, Part
1: Integration and conditional expectation, J. Multiv. Anal. 17 (1985), 185-206.
Papageorgiou, N.S., Convergence theorems for Banach space valued integrable
multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442.
Papageorgiou, N.S., Existence of solutions for hyperbolic differential inclusions
in Banach spaces, Archivum Math. (Brno) 28 (1992), 205-213.
Tarafdar, E. and Vyborny, R., Fixed point theorems for condensing multivalued
mappings on a locally convex topological space, Bull. A ustr. Math. Soc. 12
(1975), 161-170.
Wagner, D., Survey of measurable selection theorems, SIAM J. Control and
Opim. 15 (1977), 859-903.


