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A queueing system (M/G1,G2/1/K) is considered in which the service time
of a customer entering service depends on whether the queue length, N(t),
is above or below a threshold L. The arrival process is Poisson, and the
general service times S1 and S2 depend on whether the queue length at the
time service is initiated is < L or

_
L, respectively. Balance equations

are given for the stationary probabilities of the Markov process (N(t),
X(t)), where X(t) is the remaining service time of the customer currently
in service. Exact solutions for the stationary probabilities are constructed
for both infinite and finite capacity systems. Asymptotic approximations
of the solutions are given, which yield simple formulas for performance
measures such as loss rates and tail probabilities. The numerical accuracy
of the asymptotic results is tested.
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1. Introduction

1.1 Background

Queueing systems arise in a wide variety of applications such as computer systems
and communications networks. A queueing system is a mathematical model to
characterize the system, in which the arrivals and the service of customers (users,
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packets or cells) occur randomly. The customers arrive at the facility and wait in the
queue (or buffer) if the server is not available. If there are many customers in the
queue, they may suffer long delays which causes poor system performance. Thus, the
arrival rate or the service rate may need to be controlled to reduce delays. These sys-
tems may be represented by queueing systems with queue-length-dependent arrival
rates or service times. That is, if the queue length exceeds a threshold value, the arri-
val rate may be reduced (e.g., overload control), or the service rate may be increased
(e.g., the cell discarding scheme of Choi and Choi [2]). Many schemes of traffic con-
trol in ATM (asynchronous transfer mode) networks have been analyzed using such
threshold-based queueing systems (see Choi and Choi [2], Gong, et al. [5], Li [8],
Sriram, et al. [9-11], and Takagi [12]).

In this paper, we analyze a queueing system with queue-length-dependent service
times. Customers arrive at the queue by a Poisson process, and there is only one ser-
ver. The service times of customers depend on the queue length. Concretely, we

specify a threshold value L for the queue. If the queue length at a customer service
initiation is less than the threshold L (respectively, greater than or equal to the
threshold L), the service time of the customer follows a distribution with probability
density function bl(.) (respectively, b2(.)). We believe that our analysis can be
extended ot the case of multiple thresholds. Both infinite (M/G1,G2/1) and finite
capacity (M/G1,G2/1/K) queues are considered.

The analysis of this queueing system was directly motivated by the cell-discard-
ing scheme for voice packets in ATM networks (see Choi and Choi [2], and Sriram, et
al. [9, 11]). In Sriran, et al. [11], a system with deterministic service times was pro-
posed, in which voice packets are divided into high and low priority ATM cells. The
cells arrive as a concatenated pair (i.e., two cells per arrival), and the threshold L
and the capacity K are measured in terms of cell pairs. The cell discarding occurs at
the output of the queue and immediately prior to transmission, based upon ’the total
number of cell pairs in the queue. If this number is less then L, then the next pair of
cells is transmitted (no cells are discarded). However, if the queue length is greater
than or equal to L, then only the high priority cell is transmitted. Thus, the low
priority cell is discarded. The analysis in Sriram, et al. [11] is based on numerically
solving an embedded chain formulation of the problem. The system is studied only
at service time completions. Our results, when specialized to G D (deterministic
service), are directly applicable to this model.

We analyze this queue system using the supplementary variable method. We
first consider the case of an infinite capacity queue, and obtain an explicit formula for
the steady-state queue length distribution Pn" When the service times have different
exponential distributions, the queue length distribution has a simple, closed form.
We also compute asymptotic approximations to the queue length distribution Pn for
various choices of the system parameters. Next, we examine the finite capacity
queue, and again obtain explicit expressions for Pn, and in particular the probability
PK that the queue is full and the probability P0 that it is empty. Also, we

investigate asymptotic approximations for the queue length distribution for large
values of the threshold L and the queue capacity K. We show that this queueing
system has very different tail behavior (and hence loss probability) than other
M/G/1 type models, and that the service tails can sometime determine the tail of the
queue length.

There has been some previous analytical work on queueing systems with queue-
length-dependent service times (see Abolnikov, et al. [1], Dshalalow [3], Fakinos [4],



Applications to Cell Discarding in A TM Networks 37

Harris [6], and Ivnitskiy [7]). Harris [6] considered the MX/G/1 queue with queue-
length-dependent service times. In particular, if there are customers in the queue,
the service time of the customer starting service has a general distribution depending
on i. By using the embedded Markov chain method, Harris [6] derived the probabili-
ty generating function for the queue length at the departure epochs. However, the ob-
tained probability generating functions contains infinitely many unknown constants.
A closed form was obtained only for some special service times of two types. Fakinos
[4] analyzed the G/G/1 queue in which the service discipline is last-come first-served
and the service time depends on the queue length at the arrival epoch of each custom-
er. Abolnikov, Dshalalow and Dukhovny [1] considered queues with bulk arrivals
(i.e., compound Poisson input) and state-dependent arrivals and service. Assuming
that the state-dependence applies only when the queue length is below a critical level,
the authors characterize the generating function (for both transient and steady-state
cases) of the queue length probabilities in terms of the roots of a certain equation.
Ivnitskiy [7] also considers a model with bulk, state-dependent arrivals and state-de-
pendent service. Using the supplementary variable method, he obtains a recursion
relation for the Laplace transforms of the transient queue length probabilities. For a

very good recent survey of work on state-dependent queues, we refer the reader to
Dshalalow [3].

The model here is a special case of that studied in Ivnitskiy [7]. However, we are

able to give more explicit analytical expressions, from which we can easily obtain
asymptotic expansions for tail probabilities and loss rates. These clearly show the
qualitative dependence of these performance measures on the arrival rate and the ser-
vice distribution(s). In particular, we show that the tail behavior of the model with
threshold L is much different than the tail behavior of the standard M/G/1 and
M/G/1/K models.

1.2 Problem Statement

We let N(t) be the queue length at time t, including the customer in service, and let
X(t) be the remaining service time of the customer currently in service. Customers
arrive according to a Poisson process with arrival rate /, and are served on a first-
come-first-serve basis. There is a single server and a queue with finite capacity K.
An arrival that would cause N(t) to exceed K is lost, without effecting future arri-
vals. The service time of each customer depends on the queue length at the time that
customer’s service begins. If the queue length at service initiation is less than L, the
service time of that customer is $1, while if the queue length is greater than or equal
to L, the service time is S2. The service times S1 and S2 have density functions

bl(. and b2(. ), with means m1 and M1, respectively. We define Pl rnl and

P2 "MI" The process (N(t),X(t))is Markov, and X(t) is referred to as a supple-
mentary variable.

The stationary probabilities are denoted by:

pn(x)dx lim Pr[N(t) n, X(t) e (x x + dx)] n 1 K (1.1)

Po =tli_,mPr[N(t) O]. (1.2)

For finite capacity systems (K < oc), these limits clearly exist. For infinite capacity
systems (K oc), we assume the stability condition:
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P2- AM1 / tb2(t)dt < 1.

0
The balance equations for Equations (1.1)-(1.2) are:

(1.3)

Pl(O) "Po
dpl
dx APl(X) + Abl(x)P / bl(X)P2(O)
dPn
dx APn(X) / APn- l(x) + bl(x)Pn + 1(0)’ t 2,...,L- 1

dPL
dx )PL(X) "[- )PL 1(x) -- b2(X)PL -b 1 (0)

dPn
dx APn(X) + Apn l(x) + b2(x)Pn + 1(0)’ n L + 1,...,K 1

dPK
dx --APK-I(X)"

The normalization condition is"
K o

Po / E / Pn(x)dx 1.
n--1 0

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

For infinite capacity systems, we omit Equation (1.9) and let K--,c in Equations
(1.8) and (1.10).

An important local balance result can be obtained by integrating the balance
equations with respect to x from 0 to cx, which leads to:

Pn -t- 1 (0) " J Pn(X)dx’ n >_ 1.

0

(1.11)

In the following sections, we construct exact solutions to the infinite capacity
model and then the finite capacity model. As we will show, the solution of the infin-
ite capacity model can be used to construct the solution of the finite capacity model.
Then we obtain simple formulas for the performance measures by constructing asymp-
totic approximations to the exact solutions.

2. Infinite Capacity System (K- oo)

We consider the infinite capacity model (K- cx))described by Equations (1.4)-(1.8)
with normalization condition from Equation (1.10). For this model, Equation (1.8) is
valid for n > L + 1.

M/M1,M:/1 Queue

To illustrate the important characteristics of the solution, we first consider the case in
which the service times, S1 and 5’2, are exponential with probability density
functions:

"lt u2t (2.1)bl(t -/Ale b2(t)- #2e
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The solution of Equations (1.4)-(1.8) can be constructed in a straightforward manner.
For n < L, we assume a solution of Equations (1.4)-(1.6) in the form Pn(X)-
e- ulxPn, which leads to the difference equation:

Pn + 1 (1 + pl)Pn + plPn_ 1 0 (2.2)

where
P2 PIP1, P1 Po, (2.3)

fll ’’" (2.4)

The solution of Equations (2.2)-(2.3)is:

Pn APoP’- 1, n- 1,...,L- 1, (2.5)

so that
pn(X) ,)ipOpr- le- ttlX, n 1,..., L 1. (2.6)

We now compute PL(X) by first finding the value of PL(O) using Equation (1.6) with
n L- 1 and the known functions PL- 1(x) and PL- 2(x), which leads to:

PL(O ApoflL1- 1. (2.7)

We next solve Equation (1.7) for PL(X) in terms of PL + 1(0) to obtain"

e ttl x --F J’t2 e u2XpL + 1 (0). (2.8)

To compute PL + 1(0), we substitute Equation (2.8) into the local balance result from
Equation (1.11) with n L. This leads to:

PL + 1(0) APoP2PL- 1A + 2
P2 ,1 +Pl’

which when used in Equation (2.8) gives"

pL(x pofl-l[le-lPlX 1-p2x" (2.9)

For n > L, we seek a solution of Equation (1.8) of the form:

p,(x) A,e ttlx -[-" Bne Pt2x, (2.10)

which leads to the system of difference equations:

(A -- #l)An AA,_

(A --F It2)Bn ABn 1 -j J’t2[An + 1 + Bn + 1]"

The solution of the above equations is"

Pl ,n- LAL(A --\1 + Pl]



40 D.I. CHOI, C. KNESSL, and C. TIER

Bn cp AL,L__. ]12--]11 - i -I-ill
where c and AL are to be determined. By setting n- L in Equation (2.10), with An
and Bn defined above, and equating the result to Equation (2.9), we find that"

AL Apopf- 1 ]11

c Ap0PlL 1 A
A + ]11 ]12"

Thus, for n > L, wehave:

Pn(x)-- APopLI -I{( l +P1/91 )n-L1 +!
[ n-L --]12 ( fll )n-L+ll }A

P2 + e-tt2x-t- A_[_]11_]12 Aq--]11--]12 1 qPl

The constant P0 is determined by normalization using Equation (1.10), and the
marginals Pn- f Pn(X)dx are summarized below.

0
Theorem 1: M/M1, M2/1 Queue. Let bi(x)- ]1ie- tix and Pi- A/]1i for i-

1,2, and assume that the stability condition P2 < 1 is satisfied. The marginal probabi-
lities are given by"

Pn POP’S, n O, 1,...,L- 1, (2.11)

n > L, (2 12)Pn popL1- 1 A n L + 1 _[_ A --[- Pl P2A + 1 2
p

where

-p l-pj"
An interesting aspect of the result is the tail behavior as n-. The tail pro-

bability has a different form depending on the parameters:

A n L + 1 if A -[- ]11 > ]12

Pn PopL- 1
A - ]11 ]12

p2

(2.14)
]12--]11 (,,, Pl n-L+l

]12- A- ]1 1 + PI ] if A + ]11 < ]1.

M/G1,G2/1 Queue

We now consider the system in which the service times S1 and S2 have general distri-
butions. For n < L, we solve Equations (1.4)-(1.6) with L-cx by introducing the
generating function

G(z,x)- pn(x)zn (2.15)
n--1
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into Equation (1.5)-(1.6)to obtain:

a(z, )+ (z- 1)a(z, ) 1()(1 z)0- 11()(z, 0), (2.16)

where Gx(z,x OG(z,x)/Ox. The solution of Equation (2.16) is given by:

G(z,x) [G______(z,0) ,(1 z)po]/ e(z- 1)(t-X)bl(t)dt. (2.17)
x

The unknown function G(z, 0) is found by setting x 0 in Equation (2.17) to obtain:

G(z, O) "PZ(Z -^ 1)bl(,- ,z), (2.18)
Z-bl(-Az

where bl(S is the Laplace transform of bl(t). Combining the result Equation (2.18)
for G(z,O) in Equation (2.17) and simplifying, we obtain:

a(z, x)
z

"pO’Z(z-
bl(, -- )z)l) xf e(z 1)(t X)bl(t)dt. (2.19)

We invert G(z,x) to find an integral representation of the stationary probabilities in
the form

"Po / Z --1 x e’\(z -l)(t- X)b
1 (t)dt dz. (2.20)P() -( z[z 1( z)]

The contour C is a loop in the complex z-plane which encircles the origin but
excludes any other poles of the integrand. By setting n- 1 and x- 0 in Equation
(2.20), we find that Equation (1.4) is satisfied. Based on the above calculation, we

see that Equation (2.20)is in fact a solution of Equations (1.5)-(1.6) for L <
Thus, we assume that for n < L, the solution is of the form"

/ z-1 ff eA(z-l)(t-X)b (,)dtdzPn(X)
zn[z bl(, z)] 1

C

n 1,...,L- 1,
(2.21)

for some constant k, which will be determined later.
For n >_ L, defining a different generating function

H(z,x)- E zn-Lpn(x)’
n=L

Equations (1.7)-(1.8) are transformed into:

()Hx(z,x)+’(z-1)H(z,x) --’PL-I(X) + z [PL(O)--H(z,O)]

(2.22)

(2.23)

The solution of Equation (2.23) is"
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H(z,x) / PL- l(t)e)(z- 1)(- X)dt
x

PL(O) H(z, O) / b2(t)e,x(z 1)(t- X)dtZ

x

As before, we determine H(z, O) by setting x- 0 in Equation (2.24) to find that:

PL(O)b2(A z) -- z fPL- l(t)e’(z- 1)tdt
o01

[z

The numerator of Equation (2.25) vanishes as z-+l- using the local balance result of
Equation (1.11) with n L 1:

PL(O) / PL- l(t)dt" (2.26)
0

We use the known solution for PL_l(X) given by Equation (2.21) to compute the
integral in the numerator of Equation (2.25) as:

PL- l(t)eA(z- 1)tdt
0

_k/ w-1
2?ri WL I[W b"l( w)]c

bl(, w) -- bl(, Z).dw (2.27)

and using Equation (2.26), we find that for L > 3

k / w- 1 .dw. (2.28)PL(O)
W
L l[w b*"l() w)]

C

Thus, H(z,O)is determined by Equation (2.25) using Equations (2.27) and (2.28) up
to the constant k. We now use H(z, 0) and PL(O) to construct H(z,x) using Equa-
tion (2.24). After some algebra, we find that:

H(z,x)

k f w 1 fx (e A(z 1)(x u) e ,k(w 1)(x U))b (u)du
2r;J wL i[w ’1( w)] z w dw

c

27ri(z b’2(, ,z)) wL l[w b*" ( ,w)] z w 1 dw

c

x / e- A(z- 1)(x- U)b2(u)du"
x

(2.29)
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Thus, for n > L, the stationary probabilities can be found by inverting Equation
(2.22) using:

pn(x "1 / zn- L + H(z, x)dz. (2.30)
C

The quantities of interest are the marginal probabilities Pn, which are obtained
by removing the dependence on x. We first compute

H(z)- / H(z,x)dx- E Pnzn-L"
0 n_L

The following identity is useful in calculating the marginal probabilities:

eA(x U)bj(u)du dx A
0 x

By integratingH(z,x) and simplifying, we find that"

H(z) k bl(- z)- z j w- 1 dw
2ri z b"2(A Az) wL l[w b"l (, Aw)] z w’

C

onC Iwl > Izl. (2.31)

In addition, we assume that L _> 3, which is needed for the above simplification and
to avoid a degenerate problem. We invert Equation (2.31) to obtain the marginal
probabilities for n- L, L + 1,..

k [[ bl("-"z)-z w-1 dwdz
Pn (27rit2z] ] z b"2(,, Az) wL- lzn- L + l [w_b(A_Aw)](z_w)

The contours for the double complex integral are such that [w > [z on the w-con-

tour, and both are small loops about the origin.
The marginals for n < L are obtained by integrating Equation (2.21) with respect

to x, which leads to"

k f-l+bl(A-Az)dz, (2.33)
C

and, using Equation (1.4), we find that"

k /(z- 1)bl(,- z) l_sdz k.
z

C

(2.34)

Again the contours are small loops inside the unit circle.
To complete the solution, we find the constant k using the normalization condi-

tion from Equation (1.10). First, we compute"
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1 /E Pn H(I) 2ri 1 + Ai(0 C +n’-L

dw
W
L I[W b’l (/ ,w)]’

where on the contour C + we choose [w > 1. If 1 < 1, the only poles inside C +
are atw-0andw-1. Since -bl(0)-mland -b(0)-Ml, We find that:

oo
k 1 Pl f dwE Pn 2ri 1--P2 J wL-l[w-b"l(-w)]’n=L C+

(2.35)

where on the contour C+ we have wl >1 and wl <1+6. In 1< w] <1+6,
the function w-bl(A- Aw) is assumed non-zero.

For n < L, we must compute Po + nL-11pn" We simplify Equation (2.33) as
follows:

Pn

which leads to

k / z- l _dzk nl +- z ’1() ,Z)

L-I k / 1 )(1 1)dzPo + Pn 27r--- z b"l(A Az Z
L 1

n-1
Izl<l

(2.36)

Combining the two sums, we find that:

l_ l_ 1 l-P1[ dw
Po k 2ri 1 P2 J W

L l[w b’l (, ,W)]c+

1/ 1 (ll)dw.-4-
W bl (. ,w wL 1

We simplify Equation (2.37) by noting that if Pl < 1, then:

2ri w b"l(A Aw)
C+

Resw 1 --b"l(%- Aw 1 ,m1’

so that

1 1 1 _+_ [ PI 111/ dw
P- - 1 p----- P2 wL l[w b"I(A Aw)]" (2.38)

c+
By shifting the integration contour, we can remove the restriction that Pl < 1, and
obtain the alternate form for P0 in Equation (2.43).

The final results for the marginals are summarized below.
Theorem 2: (M/G1,G2/1). Let bi(x for i= 1,2 be the density functions for the

general service limes, with moments defined by:
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m -/ Xibl(x)dx, M- / xb2(x)dx,
o o

(2.39)

and let Pl- Arnl and P2- AM1" We assume the stability condition P2- M1 ( 1 is
satisfied, and that L >_ 3. The marginal probabilities are given by:

J; +
1,.. 1, (2.40)

c
and for n L,L + 1,...,

Pn

(2ri)2
z < w

z b^2( ,z) wL --z-- L +1 [w ’1( )w)](z w)" (2.41)

The probability that the system is empty is:

Po k, (2.42)
where

1 l____j.__ + P2- P 1 j dw (2.43)k 1 P2 1 f12 27ri wL- l[w ’1(. )w)]"
C

All the integration contours are small loops about the origin.
To illustrate the formulas in Theorem 2, we consider the case of exponential

service times in which the density functions are defined in Equation (2.1). The
Laplace transforms of the density functions are defined by:

# i-12bi(s) #i+s,

so that for n < L, Equation (2.40) reduces to"

(2.44)

k / dz kp. (2.45)Pn--’- zn(z_ l/Pl)
C

For n _> L, we must compute the double contour integral. For the exponential case,
Equation (2.41) becomes:

_-k ff #2"-kA-Azz-1/P11 I"tl "-A-Aw
Pn (2ri)2 J J ItX q- - ,z z- X/p2 (--)) W- X/pI

1 1 dzdw (2.46)wL--- zn_L+l z--w"

First, we compute the w integral by rewriting the above integral as:

-k/ #2 qA-Az z-1/Pl 1
Pn 2rri 121 + A Az z 1/P2 zn- L + 1

c
dz
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1/ 1 Pl + ) w 1 dw
(_) w_l/pl wL-1 z--w"

The poles of the w integral are located at 0, z, lipI > 1, so that this integral equals
(Residue at l/p1), which gives"

k L- 1 f #2 "- )z 1 1 1.dz (2.48)P, fll J 1 + Az z 1/P2 zn- L +
c

The remaining integral can be evaluated by observing that the integrand has poles at
z=0, l/P2, and l+l/p1. Since the only pole inside of C is at z=0, we have the
equality: -(Residue at 0)= (Residue at 1/p2)+(Residue at 1+ 1/Pl) so that
Equation (2.48), after some simplification, reduces to:

n >_ L. (2.49)

The above results agree with Equations (2.11) and (2.12) in Theorem 1.
formula for P0 in Theorem 2 reduces to Equation (2.13).

Also, the

Asymptotic Approximations

Simple formulas can be obtained by asymptotically expanding the exact integral re-

presentations for the stationary probabilities given in Theorem 2. Important limits
are L >> 1 and n- L >> 1. ^The asymptoti[ expansion in this limit^ depends on the
location of the zeros of w- bl(- w), w- b2(- w), and poles of bl(W). Specifical-
ly, we need to locate the singularities of the integrand which are closest to the origin.
Let A be the non-zero solution of:

+ A / eAZbl(z)dz.
0

We assume that bi(O are analytic for some 0 with (0)< 0, which insures the
existence of a unique solution to Equation (2.50). Clearly, A > -A and satisfies

> <A0ifpll. We let B be the solution of:

+ B /  Z%(z)dz, 1)
0

which satisfies B > 0 when P2 < 1 and B0 as p2T1. The Laplace transform b1(0)
may have singularities in the half-plane %(0)< 0. We assume the singularity with
the largest real part is at 0- -C, and that:

D 0 -C (2.52)bl(0) (0 -f- C)



Applications to Cell Discarding in A TM Networks 47

for some constants u, D > 0 For example, if bI is exponential, then b"l(O
Pl + 0’ so

that D 1, C #1, and u 1 in Equation (2.52). When bl(z)
1 r

_
ttlr

F(r)
e tlzr(#lr)rz -1, r > 0, (i.e., r-stage Erlang), then hi(0 ,lr+O/ ,SO that

D (#it)r, C #1r and u r in Equation (2.52). If the service time is determinis-
tic, (i.e., if bl(Z 5(z- ml)), then no singularity exists.

To derive the asymptotic formula for n > L, we again view the double contour
integral as an iterated integral and approximate the w integration first. The pole of

w-1 that is closest to the origin is at w- 1 + A/A, where A is the root of
W bl (, ,w

Equation (2.50). Thus, if L >> 1,

We define

w- 1 1 1 ldw 2iResw 1 +b-’l( z-

27ri(1 +-) -1 1 (A)L-1z-(1 +) 1 +’(-A) +A

so that I0(A) 1 + A/A and"

Il(A / zleAZbl(z)dz’
0

)L-1 k 1AA 27ri AII(A 1P~ A+

bl(-z)-z dz

[z (1 + A/A)][z b(A Az)] zn L + 1"

(2.54)

If n- L ((1), there is no further simplification. However, if n- L >> 1, we can re-

place the integral in Equation (2.55) by an asymptotic approximation. The inte-
grand is analytic at z 1 + A/A, but has a pole at z 1 + B/A > 1 and (possibly) an

algebraic singularity at z 1 + C/A > 1 (see Figure 1). The asymptotic approxima-
tion depends on the relative sizes of C and B.

z-plane

I+B/) I+C/)

Figure 1: A sketch of the z-plane indicating the location of the poles of the integrand.
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If C> B, then the integral in Equation (2.55) can be approximated as

f (...)dz 2i [Residue at z ], so that as n- L---,c:
Izl =1

Pn Po +2 A B B- A 1- AJ(B) AII(A)-1’
where

Jl(B)- leB%(z)dz, Jo(B)- 1 +.
0

When C < B, the singularity at 1+- of I(A-Az), (Equation (2.52)), deter-
mines the dominant asymptotic behavior. The integral in Equation (2.55) can be
approximated as f (...)dz f(...)dz, where the contour F is drawn in Figure

2.

Figure 2: The contour F.

This leads to the following approximation for Equation (2.55) as n-

P0 A ,+A , 1
Pn 21ri ,Ii(n)-i C-t 1+-2(-C)

x
(I I + C)

d.

The integral can be further simplified by letting z- 1 - c

i D
)’

dz
(-z+C

F

1 w
An-L+1

jw._.( C) -n+L-1 ).-1[ w 1 .1D 1+ (-L+I 1- n-L+ 1 C+
F -- 1 + (n- L + 1)- ,l(C +)

Wb, dw
F

where F’ is shown in Figure 3.

to obtain"

-n+L-1
dw
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z-plane

Figure 3: The contour F’.

Using the substitution w (C + ,) in the integral, we find that it can be expressed
in terms of the Gamma function, so that for C < B,

A 1 1 D 1
Pn POC A )II(A) 1 1 + - ’2( C) -- (C + ,)u -1

x(n_L+l)U-1 ( )L-I(F(u) a+A a+C n-L>>l.

We note that if b(O) has a simple pole at 0- -C, then u- 1 and the algebraic
factor (n L + 1)u- 1 disappears.

We derive an asymptotic formula for L >> 1, n >> 1 and n < L by using Equation
(2.40) and noting that:

,oi i z-i

C C

Po Res /[. ]-2i 1 + II(A)- 1 + A
We now compute asymptotic approximations to P0 for L >> 1. The constant P0

is defined in Theorem 2 as:

1 ._ f12 fll 1 / dw (2.58)Po 1 P2 1 P2 27ri wL l[w ’1( ,w)]"
C

The poles of the integrand closest to w 0 are at w 1 and w 1 + A/,. We appro-
ximate l/p0 when L >> 1 as:

Po 1 P2 1 P2 1 Pl + A 1 ,I
1 (A)

1_ Pl--P2 1 ( , )L-1--1--Pl l--P2 1-,II(A ,+A

If Pl "kin1 < 1, then A > 0 and:
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When/91 > 1, we find that - < A < 0, so that"

1- (p0 -_---- .l--P2 1 + (2.61)

The final case is when Pl 1.
gives:

We set /91-1+ and find that Equation (2.50)

A..- 2a
m2L’

so that A---,0 as L---,cx. In addition, we find that"

1 ,II(A) 1 A / eAZzbl(z)dz , A-+O.
0

Using the above, we find that if Pl 1 alL O(L- 1), then:

P0-/ exp
A2m2

The results are summarized below.
Theorem 3: Asymptotic approximations for M/G1,G2/1 queue. For L >> 1, and

A, B, and C defined by Equations (2.50)-(2.52), the stationary probabilities have the
following asymptotic approximations:

a) n-L>>1 andC>B:

( )L-l( ) )n-L+1 A b’l(-B)-(1-[- -1 (2.63)Pn Po -6 A + B B- A 1 JI(B) II(A)- 1’

whf.re

JI(B)- zteBzb2(z)dz, Jo(B)- 1 +.
0

b) n-L >> l and C < B"

c)

A 1 1 D 1Pn PoC A Mi(A 1 1 + -- ’2( C) - (C + ,) -1

(n-L-l-1)-l( )L-l( , )n-L+1x
F() +A A-C n-L >> 1.

For n >> l and n < L,

and

A nPO A_(A _t_ A )Pn M(A)- 1

(2.64)

i ( )L-1AII(A)( 1 P2) 1 ’t-Pl--P2

/[exp (A222)-- 1]

p1<1

pl>l

pl-l-a/L-O(L-1).
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For L >> 1 and n-L fixed (just above the threshold), the asymptotic result is
given by Equation (2.55) with k- P0 given above.

We specialize the above formulas to the exponential service case with bi(t
#it

-tit for 1,2. For this case, we find that rn1 1/#1, m2 2/#12, M1 1/#2,
and M2 2/#22. We explicitly solve Equations (2.50) and (2.51) to obtain:

A #1 ’, B #2- A.

In addition, from Equation (2.52), we find that"

C-#I D-#I v-l.

Using the above results, we obtain:

II(A)- #1/)2, JI(B)- #2/A2,

so that for n- L >> 1, Equation (2.64) simplifies to:

#2--#1 ( Pl )n-L+lPn #2 A- #1 1 + Pl
which agrees with the result in Equation (2.14). We note that C < B is equivalent to

Pl < #2- A. A similar reduction occurs for the case when C > B.
Finally, we examine the case when C , B, more precisely B- C O(L-1). For

L >> 1, n >> 1 and n < L, we have the approximations from Equation (2.65). We let
C B + r/L, and note that the integral in Equation (2.55) now has singularities (at
1 + B/A and 1 + C/A) that are close to each other. We consider the integral:

1 [ bl(A-Az)-z dzIntegral - ] [z (1 + A/,)][z b(, z)] zn L + 1"

We make the change of variables

z-(1 +)(1 +),
and use the approximations

1 1 1
z- b(A- Az) 1 AJI(B z- 1 B/A

bl(,- ,Z)- Z bl(,- )Z) D
)v DLV[r- (B + A)u]- v

(C + ;-z
to obtain

A -DLv ( A )nT1-L 1 / e(n/L-1)Integral d.B-A1-AJI(B B+A 2i [+(B+A)]

Here the contour P’ is shown in Figure 3, and it encircles both of the singularities of
the integrand. The final approximation to Equation (2.55) is, for n- L---.cx,
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(A [II(A)- 1][1 AJI(B)] + A B / ’
where - [r/+ (B + A)]d.

F

If /- 0 (i.e., B- C), then is explicitly evaluated as:

-u n-1 /r(u+l)-- (B+A)

(2.66)

3. Finite Capacity System (K < oo)

When the queue length has finite capacity, the stationary probabilities are solutions
of the system described by Equations (1.4)-(1.10). The result for the infinite capacity
system from Equation (2.20) is still valid for 1 < n < L, and the result from Equation
(2.30) is valid for L < n < K, except that k- P0 must be recomputed taking into
account that now 0 < n < K. In addition, the probability PK(X) must be computed
by solving Equation (1.9):

PK(x) / PK- I(S)ds" (3.1)
x

We set n- K- 1 in Equation (2.30) and use the result in Equation (3.1) to obtain:

1
L

1
1

w-1 z-1PK(x)
(i) z ( ) W

o
)b

1f h(,)du f( )(- (u)d,
x x Xl_ z

7bl(u)du 7 e,k(1 w)(x U)bl(u)du
x x

1--W

( z) ( ) z + ")2(u)u
x z dzdw.

z_b2()_ Xz 1- z

Here we have used the fact that"

1 bl(u)du eA(1 z)(s U)bl(u)du
x x



Applications to Cell Discarding in A TM Networks 53

The main quantities of interest are again the marginal probabilities. The
marginals for Pn, 1 <_ n < L, and L _< n < g are given by Equations (2.40) and (2.41)
in Theorem 2, respectively. Again the constant k- P0 must be recalculated. The
marginal probability PK must be computed using"

PK- / PK(X)dx"
0

We use the identities

and

to obtain"

(i) (:X)

/ / eA(1 z)(x U)bl(t)dtdx _1
b1(,
A(1-z)

0 x

PK=(27i)2 / / (3.4)

x
1-z 1-w

bl(,- )Z)- 1 bl(,- ,W)- 1

A(z 1)2 A(w 1)2

1 Az)[’ (-_ ,Z)- bl(,- Aw)- z -- w] Lz-b2(A-

b2(A- Az)- 1

X(z- 1)
l--z

This result can be further simplified by noting that:

1 W-ldw-O > Izl L>3,Z--W wL-1
c

l b(A- A)- I 1 1 -1 1- pM+ 1- -b(A- A) 1- A(1- z)2 +A(- 1)(-b(A- A))’

and

)mI 1 1 t w-1
z 1 zK LwL

1 1 ,dzdw
lZ--W w bI () w)

The final result is:

l-P1 / 1
2ri wL 1

c

1

W-bl(-Aw
dw.

l--P1 / 1
2ri wL 1

C

1
w b1 (. w)

dw (3.5)
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1--p2 1 w- 1 1 bl(A- Az) z

z-1 z- W [w_’ (A_ Aw)][z_(A_ Az)]
dzdw

K-LwL-1

The normalization constant P0 is determined by Equation (1.10), which we write as:

L-1/pj) K-1/pj\ PK (3.6)1-1po- +j= I-P- "bj= L
-O) - PO

Substituting Equations (2.40), (2.41) (with k replaced by P0), and (3.5)into Equa-
tion (3.6), we find after simplifying that"

1 1 + Pl / 1 1 dw (3.7)p-’--- - wL-1 ’1(,, )w) w

P2 // 1 W--i 1 bl(A-Az)-z+( z c- 1 z [ -(a a)][-(a az) zl
eze"

The results are summarized below.
Theorem 4: (M/G1,G2/1/K) Let bi(x for i- 1,2 be the density functions for

the general service limes as defined in Theorem 2 and let L >_ 3. The marginal proba-
bilities are given by

Po / 1 + bl(- .z) 1 dz, n 1, L 1 (3.9)P. 2-- z_.(_z z "’"-’
c

and for n L,...,K- 1,

190 fr bl(A-)z)-z w-1 dwdz
Pn (2ri)2 J J z b"2(A Az) wL izn L + 1 [w b"I(A Aw)](z w)"

(3.10)

The probability that the system is full is:

1 Pl / 1 1 .dw (3.11)PK PO 1 + 2ri W
L 1 w b A w1,c

1 w-1 1 bl(A-Az)-z
Z
K LwL 1 Z 1 z w [w ’1 (’ ,wl][z ’2(, Az)]dzdw}.

The normalization constant Po, i.e., the probability that the system is empty, is:

1 1+ Pl / 1 1 dw (3.12)P-- .] wL -1 ’l(,__,W)_W
C

f12 1 w- 1 1 bl(A- Az) z
dzdw.

zK LwL -1 z 1 z w [w ’I(A Aw)][’2(A Az) z]
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On all the contours it is assumed that the origin is the only singularity within the con-
tour.

Asymptotic Approximations

We compute asymptotic approximations for the finite capacity system as K, L-oc,
and for various values of Pl and P2" The asymptotic expansions of Pn, except for P0
and PK, are the same as in the infinite-capacity systems and are given in Theorem 3

<C.for the two cases B >
Next, we expand P0 given by Equation (3.12). The asymptotic approximation

for the integrals depends on the location of the singularities of the integrand that are
closest to the origin, and follows closely the results for the infinite capacity system in
the previous section (see Equation (2.59)). For the single integral, these poles are at
w=l and w=I+A/A, where A>0 if Pl <1" The dominant poles of the double

>0ifintegral are located at z 1, z 1 + B/A, and z 1 + C/A, where C > 0 and B <
P2 X 1. Thus, for K, L >> 1, K- L > 1, and B C, we find that"

1 1 Pl-P2 1 [ A L-1 (313)P0 1-/)1 1-/)2 1-AII(A /,A+AJ

p2A A(Io(B)-Jo(B))
B(B- A) (1 AII(A))(AJI(B 1)

)L-l(  c)K-+(A A L p2A 1 D (K L’U 11__
C(C A) 1 AII(A 1 + C/A Jo(C) \ + C ] r(u)

uniformly in Pl and P2"
We can simplify Equation (3.13) for different values of the parameters. For

example, since C > 0, the last term in Equation (3.13) is always negligible and may
be dropped. The simplifications of Equation (3.13) are summarized below"

1. Pl < 1 and P2 < 1

Po 1 fll /2_ (3.14)

2. Pl < 1 and p2 1

Po 1 fll (3.15)

Pl 1 and P2 < 1

PO xp(2a/(A2rn2))- 1
_a (316)Pl-1

4. Pl > 1 and P2 < 1

1- P2 [1- II(A)](1 -t--)L-1Popl_p2 (3.17)

Pl 1 and P2 1 (heavy traffic limit)

1
2a/(’2m2) 1 e2a/(2a zt- m2)e2b/(’k2M2 1 (3.18)P0 b
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6. Pl > 1 and p2 > 1

P0 (1 + A-)L- 1(1 + _)K-LB(B- A)[1- AII(A)][AJI(B -1]=
p2AA[Io(B Jo(B)]

7. Pl " 1 and p2 > 1

(3.19)

Po u + (3.20)

Pl > 1 and P2 1

( _)L-Ipo,, 1/

9. Pl < 1 and P2 > 1

(b)

[1 AII(A)].pl 1 b 1
1 r exp(2b/(A2M2))_ 1

,k+ ,k+B 1 +((L-1): po

(3.21)

Note that in the last case, Pn has a bimodal behavior as K, L-c, with peaks near
n=Oandn=K.

The asymptotic expansion of PK as K,L--c is computed by using Equation
(3.5) for PK/PO and the expansions of the integrals which were derived for the infin-
ite capacity case in Section 2. The results are summarized below:

Theorem 5: Asymptotic expansions for the M/G1,G2/1/K queue. For K,L >> 1
and A,B and C defined by Equations (2.50)-(2.52), the stationary probabilities Pn
have the asymptotic expansion from Equation (2.65) for n < i and Equations (2.63)-
(2.64) for n- L >> 1. The asymptotic expansion for PK is:

PK ( A )L I A(p2 --1)
PO A + A 1- AII(A)

X

[Io(B)-Jo(B)] ( )K-LB(B- A)[AJI(B 1] + B B<C

K-L ,-1 D 1 A K-L

C + ) C(C A)[1 + C/ Jo(C)] F() ( + C) B > C
(3.22)

where the asymptotic expansions of Po are given by items 1-9 above for various
values of pl and P2"

4. Discussion and Numerical Results

We now demonstrate the usefulness of our results for a finite capacity system, namely
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the M/D1,D2/1/K queue.
are:

For this model, the density functions of the service times

bl(X ((x- ml) b2(x ((x- M1). (4.1)

This model corresponds to cell-discarding model analyzed in Sriram, et al. [11] if
M1 m1/2.

The exact solution is given in Theorem 4 with Equation (4.1) in place of the
general density functions. We illustrate how to numerically compute the exact solu-
tion. This calculation is only feasible for moderate values of L and K. For large
values of L and K, we constructed the asymptotic approximations in Theorem 5. We
demonstrate the accuracy of our asymptotic results by comparison with the exact
solution. As we will see below, our asymptotic results are quite useful for moderate
values of n, L and K, and are extremely accurate when n, L and K are large.

To evaluate the exact solution for Pn in Theorem 4, we must compute the com-
plex integrals in Equations (3.9)-(3.12). The simplest approach is to evaluate the
integrals by using the method of residues. The residue at z-0 in Equation (3.9) is
difficult to compute if n is large. This is a key motivation for the development of
asymptotic expansions. For moderate values of n, we compute the residues using the
symbolic computation program Maple.

The double complex integrals in Equations (3.10)-(3.12) can be evaluated by
rewriting the term 1/(z- w) (which couples the two integrals) as:

1 -1 1 -1 (zJ.z-w- w 1-z/w- w
3-0

Using this result in the integrand in Equation (3.10) allows the double integral to be
separated into:

nL( / )(1/--1j o 1 zj + L n 1...dz -7 wj + L"
c c

where can be identified from Equation (3.10). The sum truncates at j n-L,
since for j > n-L, the z integral vanishes. FinaIly, we must evaluate both integrals
by computing the residues at z 0 and w 0 for each value of j. Again the
calculation is only feasible for L and n-L which are moderate in size. As before, we
use Maple to perform the calculation.

The calculation of the asymptotic approximation requires computing the con-
stants A and B by solving Equations (2.50) and (2.51), respectively. For determinis-
tic service times, there is no singularity C; thus, C oc > B. Given the constants A
and B, we evaluate the Equations (2.65) and (2.63) for Pn if n < K, and Equation
(3.22) for PK" The constant P0 is given by Equations (3.14)-(3.21), depending on the
values of Pl and P2"

In Table 1, we consider a queue with the threshold L 5 and capacity K 10.
The arrival rate is A- 1 and the service times are rnI 1/2 and M1 1/4, so that

Pl- 1/2 and P2- 1/4. Thus, when the queue length exceeds the threshold, the
service time of the jobs entering service is half of the original service time. For these
values of Pi, the asymptotic values of P0 are given by Equation (3.14). The solutions
of Equations (2.50) and (2.51) are A 2.512 and B 9.346, respectively.



58 D.I. CHOI, C. KNESSL, and C. TIER

Table 1
L-5, K-10, p1-1/2, P2-1/4

0
1
2
3
4
5
6
7
8
9
10

Exact

0.50072
0.32483
0.12277
0.03784
0.01092
0.2430e-2
.41153e-3
.56957e-4
.68217e-5
.74209e-6
.63341e-7

Asympt.

0.50000
0.47283
0.13460
0.03831
0.01090
.94023e-2
.90872e-3
.87828e-4
.84885e-5
.82041e-6
.65832e-7

Rel. Err.

.00144

.45562

.09629

.01251

.00156
2.8803
1.2081
.54200
.24434
.1O555
.03933

As we see from Table 1, the asymptotic expansion is quite accurate for n- 0,
n-2 through 4, and n>8. It is not accurate for n-land n-5 through 8. This
is consistent with our results in Theorem 5, since the asymptotic result in Equation
(2.65) is valid for n 1 and Equation (2.63) is valid for n- L 1. It is remarkable
that our results are this accurate since n and n-L are only moderate in size. We
cannot expect the asymptotic solution to be accurate for n- L, since it assumes that
n- L--oc. We have chosen values for L and K that are quite small. In reality, we

would expect them to be of the order 102 (see Sriram, et al. [11]). For such large
values of L and K, calculation of the exact solution would prove difficult while the
evaluation of the asymptotic solution is straightforward.

In Table 2, we consider the same queue as in Table 1, but now K-15. The
values for A and B are the same as for Table 1 since these constants are independent
of L and K. We see that the exact and the asymptotic results are numerically close
to those in the previous example for n < 10, as expected. For n >_ 10, the relative
error starts at about 4% and rapidly decreases to under 1%.

The example in Table 3 is a queue with threshold L- 8 and capacity K- 15.
The arrival rate is - 1, and the service times are mI -2 and M1 -1/2, so that

Pl 2 and P2 1/2. In this example, Pl > 1, so that in the absence of the threshold,
the queue length distribution would be peaked near the capacity K. Now
A -0.7968 and B 2.512. The asymptotic results are quite accurate when n < L.
However, when n _> L the results are not accurate.

In Table 4, we retain L- 8 and increase K to 25. Now the asymptotic results
are accurate to within 5% for 16 _< n_< 25. In Tables 3 and 4, the results are not
accurate for L 8 <_ n <_ 14. Apparently, n- L 6 is too small a value for Equation
(2.63) to be useful for these particular parameter values.
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Table
L- 5, K- 15, fll- 1/2, P2- 1/4

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact

0.50072
0.32483
0.12277
0.03784
0.01092

Asympt.

0.50000
0.47283
0.13460
0.03831
0.01090

Rel. Err.

.00144

.45562

.09629

.01251

.00156
0.24230e-2
.41153e-3
.56957e-4
.68217e-5
.74209e-6
.76088e-7
.75498e-8
.73723e-9
.71503e-10
.69179e-ll
.55527e-12

.94023e-2

.90872e-3

.87828e-4

.84885e-5

.82041e-6

.79293e-7

.76636e-8

.740688e-9

.71587e-10

.69188e-ll

.55518e-12

2.8803
1.2081
.542002
.24434
.10555
.042115
.015072
.0O4686
.001169
.000129
.000148

In Table 5, we consider the same case as in Table 3, except that now M1 -2/3
and hence P2 2/3. Now we have A ,, -0.7968 and B 1.144. The results are to
within 7% if n-L>_4 (i.e., 12_<n_<15). In Table 6, we increase K to 25. The
error is at most 7% for all n- L _> 4 (i.e., 12 _< n _< 25).

Table
L- 8, K- 15, pl- 2, P2- 1/2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact

.28305e-5

.18084e-4

.91796e-4

.00045286

.0022290

.010970

.053991

Asympt.

.28292e-5

.18690e-4

.91986e-4

.00045271

.0022280

.010965

.053967

Rel. Err.

.00044

.03351

.00206

.00033

.00044

.00044

.00044
.26572
.29180
.19878
.10408
.045665
.017598
.0061526
.0020014
.00043941

.26560
4.4929
1.2789
.36408
.10364
.02950
.0083988
.0023908
.00047573

.00044
14.397
5.4341
2.4980
1.2696
.67654
.36508
.19455
.0826589
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Table 4
L- 8, K- 25, p- 2, P2 1/2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Exact

.28292e-5

.18076e-4

.91756e-4
0.000453
0.002228
0.010966
0.053968
0.265605
0.291673
0.198693
0.104037
0.045645
0.01759
0.00615
0.002001
0.000618
0.000185
.53894e-4
.15540e-4
.44505e-5
.12702e-5
.36196e-6
.10308e-6
.29348e-7
.83549e-8
.16624e-8

Asympt.

.28292e-5

.18690e-4

.91986e-4
0.000453
0.002228
0.010966
0.053968
0.265604
4.492908
1.278988
0.364087
0.103644
0.029504
0.008399
0.002391
0.000681
0.000194
.55154e-4
.15700e-4
.44694e-5
.12723e-5
.36218e-6
.10310e-6
.29350e-7
.83550e-8
.16624e-8

Rel. Err.

0.000003
0.033972
0.002507
0.000104
0.000002
0.000003
0.000003
0.000003
14.403916
5.436998
2.499576
1.270637
0.677286
0.365690
0.195078
0.100900
0.049898
0.023365
0.010298
0.004260
0.001652
0.000601
0.000205
0.000064
0.000017
iO.O00001

Our results should be very accurate for K > 25, but it then becomes difficult to
evaluate the exact solution. These numerical comparisons show that the asymptotic
approximations are quite robust, and are accurate even for relatively small values of
L and K. Tables 4 and 6 show that when n-25-K, the two results agree to five
decimal places. Loss rates can thus be calculated to a very high precision using our

asymptotic formulas.
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Table 5
L- 8, K- 15, Pl 2, P2 2/3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Exact
.21329e-5
.13627e-4
.69173e-4
.00034125
.0016796
.0082667
.O40685
.20023
.25976
.21133
.13486
.074723
.038095
.018535
.008803
.0025867

Asympt.
.21219e-5
.14017e-4
.68989e-4
.00033953
.0016710
.0082241
.040475
.19920
.85983
.40103
.18704
.087239
.O4O690
.018978
.0088516
.0025790

Rel. Err.
.0051
.02865
.00265
.00504
.00514
.00514
.00514
.00514
2.3100
.8976
.3869
.1675
.0680
.0239
.OO54
.00295

Table 6
L-8, K-25, Pt--2, P2-2/3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25

Exact
.21219e-5
.13557e-4
.68817e-4
0.00034
0.001671
0.008224
0.040476
0.199204
0.258429
0.210249
0.134169
0.074339
0.0379
0.01844
0.008758
0.004114
0.001924
0.000897

Asympt.
.21219e-5
.14017e-4
.68989e-4
0.00034
0.001671
0.008224
0.040476
0.199203
0.859833
0.401035
0.187047
0.087241
0.04069
0.018978
O.008852
0.004129
0.001926
0.000898

Rel. Err.
0.000005
0.033970
0.002505
0.000103
0.000004
0.000005
0.000005
0.000005
2.327155
0.907433
0.394119
0.173549
0.073622
0.029203
0.010655
0.003551
0.001078
0.000297

0.000419
0.000195
.91124e-4
.42501e-4
.19823e-4
.92457e-5
.43123e-5
.12564e-5

0.000419
0.000195
.91124e-4
.42501e-4
.19823e-4
.92457e-5
.43123e-5
.12564e-5

0.000073
0.000014
0.000001
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