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In this paper we present a queueing model for the performance analysis of
Available Bit Rate (ABR) tm i Asynchronous Transfer Mode (ATM)
networks. We consider a multi-channel service station with two types of
customers, denoted by high priority and low priority customers. In prin-
ciple, high priority customers have preemptive priority over low priority
customers, except on a fixed number of channels that are reserved for low
priority traffic. The arrivals occur according to two independent Poisson
processes, and service times are assumed to be exponentially distributed.
Each high priority customer requires a single server, whereas low priority
customers are served in processor sharing fashion. We derive the joint dis-
tribution of the numbers of customers (of both types) in ’the system in
steady state. Numerical results illustrate the effect of high priority traffic
on the service performance of low priority traffic.
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1. Introduction

It is our pleasure to contribute this paper to the special issue in honor of Ryszard
Syski. During a time span of more than forty years, Professor Syski has made many
lasting contributions to Applied Probability in general and Teletraffic in particular.
The second author fondly remembers the very pleasant cooperation with Ryszard
Syski in editing the book Queueing Theory and its Applications Liber Amicorum

for J.W. Cohen (North-Holland Publ. Cy., Amsterdam, 1988).
The diverse characteristics and service requirements of the different traffic types

that are carried by ATM (Asynchronous Transfer Mode) networks have led to the de-
finition of different service categories that should be offered to users of such a net-
work. We briefly discuss those differences, distinguishing three large categories: Con-
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slanl Bil Rate (CBR) traffic, Variable Bil Rate (VBR) traffic and Available Bit Rate
(ABR) traffic.

The CBR service class guarantees a fixed pre-determined transmission capacity to
its users. Therefore, this service is useful for traffic that requires both very small (or
no) delays and very small (or no) losses. At the burst-level (where we distinguish
different bursts of traffic coming from the same connection, but not the separate
ATM-cells that form a burst), it is reasonable to assume that all CBR traffic requires
a fixed amount of capacity over time. In all further considerations, we will leave out
the CBR traffic and use the term "capacity" to indicate the total capacity minus the
capacity reserved for CBR traffic.

For VBR traffic, we make a subdivision into real-time and non real-time connect-
ions. For both these subclasses, the users must specify many characterizing para-
meters such as minimum cell rate, mean cell rate, peak cell rate and maximum burst
size. The difference lies in the requirements. The main issue for real-time connect-
ions such as voice and possibly video is the delay of the transmission; the loss of
small amounts of information during the transmission is less important for these con-
nections. This traffic lends itself very well for multiplexing. On the other hand, non
real-time VBR traffic requires small losses and the delays are less important. To en-
sure that losses are small, large buffers are used to store non real-time VBR traffic
when the communication network is heavily loaded.

The last category, ABR traffic, was introduced to cope with specific problems that
arise when transmitting data. For this traffic, losses lead to retransmission of data
(because of the extreme sensitivity to losses), which introduces a lot of overhead in im-
plementations. Since transmission delays are of less importance for data traffic, the
setting of non real-time VBR seems to be the appropriate one to carry data traffic.
However, data traffic is very bursty and the required parameters for VBR connections
are difficult to specify by the users. For ABR connections, no parameters need to be
specified. Only a small amount of capacity is reserved for the transmission of ABR
traffic. Additionally, the capacity that is not currently being required by VBR (and
CBR) traffic is used for ABR traffic. When the total capacity currently available to
ABR is too small, ABR traffic is stored in very large buffers, ensuring a small loss
probability, until the available capacity increases again. The advantage here is that
ABR traffic gets all the capacity that is left over. For the server, this means a higher
utilization of the network’s resources. As pointed out above, the main service guaran-
tee for ABR traffic is a very small loss fraction or, in principle, no loss at all. No gua-
rantee can be given on transmission delays.
A special issue of ABR is that the available capacity should be shared fairly

among all ABR users. In queueing models, it seems reasonable to incorporate this
with the queue discipline of processor sharing. In this discipline, all "customers" re-
ceive an equal share of the service capacity.

In addition to the large storage buffers, some feedback control mechanism can be
used to keep the loss of information small. The buffers can store incoming data that
can not be transmitted immediately, due to a temporarily overloaded system. Feed-
back control can be used to slow down data sources when the buffers are heavily
loaded and an overflow may occur. We refer to the ATM Forum [1, 2] for more de-
tailed specifications of ABR.

Since the conceptual introduction of ABR, many papers on the subject have been
published. Most studies so far emphasize the modeling and (feedback) control as-
pects, see for instance Iliadis [12] and Ritter [20]. In [21], Ritter investigates the
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problem of dimensioning the buffer for ABR traffic in order to avoid large losses. In
[22] and [23], aitter considers the case with feedback control, under the assumption
that the source of ABR traffic is saturated (i.e., it sends continuously at the allowed
rate).
A drawback in most studies is the assumption of a fixed available capacity for

transmission of ABR traffic. As it was pointed out above, one of the essential fea-
tures of ABR is that it makes use of the capacity that is left over by VBR traffic.
Therefore, there is a need for a detailed performance analysis of ABR in the presence
of other traffic. In the present paper, our goal is to devise and analyze a model that
captures the influence of real-time VBR traffic on ABR traffic. We compare the per-
formance of the ABR traffic in our model under variable available capacity, with the
performance in an equivalent model with fixed available capacity.

Our model is basically a multi-server queue with two types of customers: (i) high
priority customers (real-time VBR traffic); and (ii)low priority customers (ABR
traffic). We assume that the high priority customers have a waiting room with a

finite, typically small capacity- thus modeling the real-time requirement and each
accepted customer is served by a single server. Low priority customers have an in-
finite waiting room (buffer) and equally share the remaining capacity according to
the processor sharing principle- this models the large storage buffers for ABR traffic
and the fair sharing of the available capacity between ABR users. The servers at the
service-station are divided into two groups: (i) there are N servers that are dedicated
principally to the high priority customers (we call these the normal servers); and
(ii) NL servers are purely reserved for the low priority traffic (we call these the L-ser-
vers). On the normal servers, the high priority customers have preemptive priority
over the low priority customers.
We point out that this is a call-level model: A customer represents a request of an

ABR source to transmit data, and the service requirement of the customer is
identified with the amount of data to be transmitted. In our analysis, we assume
that arrivals occur according to two independent Poisson processes. This assumption
is justified in the case where many sources are connected to the communication
network.

Although we present the model in the context of (future) ABR traffic, it can just
as easily be seen in the context of existing situations, where real-time VBR has
priority over non real-time VBR. In this case, the processor sharing discipline for the
low priority traffic should be. replaced by the First Come First Served (FCFS)
discipline. Also, the processor sharing among ABR sources is interesting in the light
of per VC (Virtual Connection) queueing, where sources do not queue behind one

another, but each source gets a separate access to the server (parallel to one another).
The feature of processor sharing can further be generalized to weighted fair queueing
(generalized processor sharing), where the total capacity is divided between the active
sources according to some weighting factors.

Related two-dimensional Markov models have been studied in a number of papers.
The case where both types of customers have an infinite waiting space, and within
each customer type the service discipline is FCFS, was solved first by Mitrani and
King [15], and later by Gail, Hantler, and Taylor [8]. The non-preemptive variant of
that model was studied by Gail, Hantler, and Taylor [7]. Falin, Khalil, and Stanford
[5] treated the preemptive case with processor sharing among the low priority custom-
ers. A discrete-time variant modeled as an M/G/l-type Markov Chain is considered
in Gail, Hantler, Konheim, and Taylor [6]. A more extensive treatment of the



342 R. NEZ-QUEIJA and O.J. BOXMA

spectral analysis of M/G/l-type Markov Chains is given in Gail, Hantler, and Taylor
[9]. A model related to the one presented in this paper, addressing the case with
finite buffer capacity, is treated in Nfiez-Queija [18]. In [3], Blaabjerg et al. consider
a model similar to ours and give various performance measures in terms of the
steady-state distribution, rather than analyzing this distribution in greater detail.
Our main goal is to give a detailed analysis of the steady-state distribution itself.

In our analysis we are inspired by Gail, Hantler, and Taylor [8], but we make use

of methods from other approaches. Instead of transforming the involved distributions
into generating functions, the present work focuses directly on the distribution itself.
It does so relying mainly on the matrix geometric approach of Neuts [17] and the
spectral expansion approach (see for instance Mitrani and Chakka [14] and Mitrani
and Mitra [16]).

The paper is organized as follows. We give a description of the model in Section 2.
In Section 3, we mention some relevant results of the theory of matrix-geometric solu-
tions for the steady-state analysis of GI/M/1-type Markov Chains developed by
Neuts [17]. We use this in Section 4 as a starting point of our analysis. In Section 5,
we give a complete characterization of the joint distribution of the numbers of cus-
tomers of both types in the system at steady state. Numerical results are presented
in Section 6 to illustrate the effect of high priority traffic on the service performance
of low priority traffic.

2. The Model

Consider a service station consisting of N + NL identical servers (N and NL both are
positive integers) that are divided into two groups: (i) A number of N servers,
which we call the normal servers; and (ii) the remaining NL servers, henceforth called
L-servers. Two types of customers- high and low priority customers- require service
from the station. At the station, there is a waiting room for K high priority
customer (K being a nonnegative integer) and a room of infinite capacity for low
priority customers.

High priority customers arrive at the station according to a Poisson process with
rate ,kH. If the N normal servers are all occupied by other high priority customers,
then a newly arrived high priority customer takes his place in the finite waiting room.
If there are already K other high priority customers in the waiting room, then the
new customer is rejected and leaves the system without receiving service. If there are
less than N other high priority customers currently being served, then a new high
priority customer is immediately taken into service by one server. Also, if the service
of a high priority customer is completed and the waiting room is not empty, then one
of the waiting high priority customers immediately enters service. Service times of
the high priority customers are assumed to be exponentially distributed with mean

1/#H and independent of everything else.
Low priority customers arrive according to a Poisson process with rate AL, inde-

pendent of high priority customers. Their service requirement is assumed to be expo-
nentially distributed with mean 1/#L, independent of everything else. Furthermore,
they are served according to the processor sharing discipline by the L-servers, andthe
normal servers that are not occupied by a high priority customer. Thus, if there are

high priority and j _> 1 low priority customers present, then each of the low priority
customers receives service at rate"
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NL + max(N- i, 0)
j #L"

(The servers work at unit rate).
We will further use the notation PH:--H/#H and #L:- "L/#L" We are

interested in the steady-state behavior of the numbers of both types of customers in
the system.

Let XH(t (XL(t)) be the number of high priority (low priority) customers present
in the system at time t. Then the process (XH(t),XL(t))is an irreducible and
aperiodic Markovian process. Moreover, we note that the high priority customers are
not influenced by the low priority customers, and therefore follow an

M/M/N/(N + g)-queue, i.e., if we define Pi: P{XH i}: limt-P{XH(t) i}:

Po i! N! 1 PH/Ni=o

(PH)i
i-- 1,2,...,N- 1, (1)P Po i!

Pi PO g! N, N + I,..., N + K.

The process (XH(t),XL(t)) is ergodic if and only if the following (intuitive)
condition holds:

PL < NL + E[max(0, N- XH)]. (2)
We come back to this at the end of this section.
We define the equilibrium probabilities:

-limP{XH(t)-i,xL(t)-j},7ri, j P{XH XL j}
to

(3)

and partition them into vectors j: (Tro, j, Trl,j,...,rN + K,j) of length N + K + 1.
Note that j is associated with the states in which j low priority customers are

present. This partition enables us to write the equilibrium vector as

(T0, 1, 2," ")" The corresponding infinitesimal generator is given by"

Q00 T(+) 0

T(-) T() T(+) 0

0 T(-) T() T(+) (4)

(+)The matrices T T(-), T() and .Q0o are of dimension N+K+I. T(+),
T and the off-diagonal elements of T() (and Qoo) are respectively associated with
an arriving low priority customer, a departing low priority customer, g.nd a change in
the number of high priority customers. The diagonal entries of T() and Q00 are

such that each row of O sums up to zero. The matrices are given by:

T + ,XLI
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T diag[(NL + N)#L, (NL + N 1)#L,...,NL#L,NL#L,...,NL#L]

T() QH- T( + )- T( 1,

Qoo QH- T( + ),

with QH being the infinitesimal generator of the M/M/N/(N + K) queue of the high
priority traffic"

( --H H
PH #H-- )H AH

2#H 2#H-- AH AH

NPH N#H- AH AH

N#H N#H-- AH AH

\ N#H -N#H

Neuts [17] has given an extensive treatment of the so-called GI/M/1 type of Markov
chains, of which our present model is a special case. For our model, however, we can
take the analysis further than possible for the general case. The general ergodicity
condition given in Neuts [17, Theorem 1.7.1, p. 32] states that: (i) if the matrix R is
the minimal nonnegative solution to the equation

T + + RT() + R2T(-) O, (6)
then all eigenvalues of R should lie inside the complex unit disc; and (ii) Qoo /
RT(-) should have a positive vector in its left null space. The same theorem also
gives us that the first statement is equivalent with (2). As for the second statement,
it can be seen that if the first statement holds, then Q00 + RT( is a generator, and
considering Q00 we see that it is an irreducible generator. Therefore the second
requirement is immediately satisfied. We will not go further into the details of this,
but refer the interested reader to Neuts [17]. In the sequel, we assume that (2)
holds.

3. Preliminaries

From the final results in Section 2, it is clear that the unique probability vector
(N0, 1, 2," ") satisfying O 0 has the matrix-geometric form:

j+l --jR, (7)
where the matrix R is the minimal nonnegative solution to (6). Equation (7) can
also be argued using basic results on irreducible Markov chains.

In our analysis we shall use a different, but highly related representation based on
the spectral expansion approach, see for example Mitrani and Chakka [14] and
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Mitrani and Mitra [16]. The essence of this approach is that we can rewrite Relation
(7) to the "spectral expansion" form:

NTK
j ak(rk)Jk, j >_ O, (8)

k=0

whenever the matrix R has N + K / 1 different eigenvalues r0,..., rN + K, with corres-

ponding left eigenvectors 0,"’,N + K; i.e., -kR rkk, k 0, 1,...,N + K. The
coefficients ak are to be chosen such that the "ground level" equations:

0Q00 + 1T(-) , (9)
are satisfied. We come back to this in Section 5.

Even if the matrix R has multiple eigenvalues, Relation (8) still holds, as long as
the set of all eigenvectors spans the (N + K + 1)-dimensional Euclidean space. When
this is not the case (the matrix R is defective), the coefficients ak become functions

ak(J) which are polynomials in j, and follow from the Jordan canonical form of R
(see for instance Gantmacher [10]).
We now define the quadratic matrix polynomial T(z) by

T(z). T( + + zT() + zT(- ). (10)
Note that if is an eigenvector of the matrix R corresponding to the eigenvalue r,

then is in the left null-space of the matrix T(r), and det[T(r)] = 0. It follows im-
mediately that R is nonsingular, since T(0) T(+) ALI is nonsingular. Therefore
we may write"

T(z) (R z)(-T + I_ zT- ), ()
again using (6). This is a very useful factorization, since det[R-zI] is precisely the
characteristic polynomial of R, and det[R-1T( +)-zT -)] is also a polynomial in
z. Both these polynomials are of degree N + g / 1; therefore, det[T(z)] is of degree
2(N / g / 1). Note that if N T..----- 0 (which we assumed not to be the case), then the
degree of det[R-1T(+)- zT(’-)] is N, but the analysis can still proceed along the
same lines. We come back to this in Remark 4.1.

In Section 4, we show that the zeros of det[T(z)] inside the unit circle coincide
with the zeros of det[R-zI] (i.e., the eigenvalues of R), and that all the zeros of
det[R-1T( +)- zT(-)] lie outside the unit circle, except for the zero z--1 on the
unit circle.

4. Spectral Analysis

In this section we investigate the eigenvalues of R. In the ergodic case, all these
eigenvalues lie inside the complex unit disc (see Neuts [17]). We shall show that
there are N + K + 1 of them, and that they are all real and positive.

The starting point of the analysis is (11). We investigate the zeros of det[T(z)],
showing that there are 2(g+g+l) zeros: N+K+I zeros in (0,1), one at z=l,
and N + g in (1,cx). The zeros in (0, 1) are then identified with the eigenvalues of
R.

Theorem 4.1: For real z O, he matrix T(z) has N + Ix" -t- 1 differen real ellen-
values.

Proof: Note that T(z) is a tri-diagonal matrix with off-diagonal elements:
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T(z)i_I,i-AHz,

T(z)i, i- 1 min(i, N)#HZ
(12)

where 1,2,..., N + K. We denote the ith diagonal element T(z)i,i by ti(z)"

ti(z) AL {AH + min(i,N)#H + AL + (NL + max(N- i,O))#L}Z

+ (NL + max(N- i, 0))#Lz2,

tN + K(z) L (N#H + L -[- NL#L)z + NL#Lz2"
(13)

The Pi are given in (1). The entries of S(z) are:

S(z)i 1, S(z)i, i- 1 zv/min(i, N)#HAH,
and are zero in all other positions. For the matrix S(z), it is easy to see that it has
N + K + 1 different real eigenvalues (see Parlett [19]). First, since S(z) is symmetric,
all its eigenvalues are real, and it is non-defective (the geometric multiplicity of each
eigenvalue is equal to the algebraic multiplicity). Second, since S(z) is tri-diagonal,
with non-zero elements directly above and below the diagonal, each eigenvalue has a

unique eigenvector (up to multiplication by a scalar), i.e., the geometric multiplicity
of each eigenvalue is 1. Combining these two facts, we are done.

Since the eigenvalues of T(z) and S(z) coincide, the same holds for T(z).
The fact that the eigenvalues of T(z) are real for real z simplifies the analysis con-

siderably. In the sequel, we only consider the eigenvalues as real functions of the real
variable z. Therefore, for real z, denote the eigenvalues of T(z) by:

T0(Z

_
Vl(Z

_ _
TN zt. K(Z),

the inequalities being strict if z :/: 0, and

(14)

7"0(0)- 7"1(0) --"’" 7"N q-K(0) AL" (15)
We state that the eigenvalues 7"k(z) are continuous functions of z for real z. An

indication of the proof is as follows: For z’:/: 0, we use the strict ordering of the
eigenvalues, and the continuity of det[T(z)] as a function of z to show that for a fixed
k O, 1,...,N + It’, limz_.z,7"k(z 7"k(z’). For z 0, the same can be proved using
Ger’gorin’s theorem (see for instance Marcus and Minc [13]).

Theorem 4.2: 7"N + K(1) O, and for k O, 1,...,N + K- 1, the equation
7"k(z) 0 has a solution for z E (0,1) and a solution for z

Proof: It is clear that det[T(1)] 0, since the rows of T(1) sum to 0. Further-
more, note that T(1)is diagonally dominant (see Marcus and Minc [13]) with nega-
tive diagonal elements; therefore all the eigenvalues of T(1) are nonpositive. This
gives:

Here, i=0,1,...,N+K-1.
We now observe that the matrix T(z) is similar to a real symmetric matrix (i.e.,

there exists a nonsingular matrix D such that the matrix S(z):- DT(z)D- is a
real symmetric matrix). In our case we can take D to be the diagonal matrix with
diagonal elements

Di, i- O, 1,...,N + K.
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70(1) < rl(1 < < rN+K(1) 0. (16)
Since the ’k(z) are continuous functions of z, together with (15) this immediately
gives us that all the :’k(z) for k 0, 1,..., N / K- 1 cross the horizontal axis (at least
once) somewhere in (0, 1).

If z increases to infinity, the matrix T(z) becomes strictly diagonally dominant
with positive diagonal elements (the diagonal elements are convex quadratic functions
in z and the off-diagonal elements are linear in z), and so for z large enough, all the
eigenvalues of T(z)are positive. Therefore, all the r/c(z)for k O, 1,...,N + K-1
must cross the horizontal axis again somewhere in (1, c). V!

Theorem 4.3: Under the ergodicity condition in (2), 7g+ K(Z)= 0 for some
z e (0,1).

Proof: Because of the continuity of 7"N + K(Z)and the fact that ’N+ K(0)
AL > 0, it is sufficient to show that rN +//(1 < 0. First we write:

det[T(z)] (1 z)g(z), (17)
where g(z) is the determinant of the matrix obtained by replacing the last column of
T(z) by the sum of all columns and then dividing that column by 1- z"

to() AHZ
1(/ AHZ

NHZ tN(z)

AL-(NL + N)ttLZ

AL-(NL + N-1)tLZ

"Hz "L NLLz

NH tN + K() AL- NLL

We want to evaluate g(1). Therefore, we manipulate the above matrix evaluated in
z- 1. First divide the last column by #L, and all the other columns by #H" Then
add to each column (except for the first and the last one) all columns to the left of it.
We now have:

g(1) L(#H)N + K

PH

--PH

N --PH 0

N

PL--(NL+N)
pL--(NL+N--1)

PL--NL

--PH PL--NL
N PL--NL
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+ E (--1)k +N+K[pL_NL](_pH)kNN+K-k
k=N

The last equality follows by expanding the determinant in its last column. Rearrang-
ing some terms, we rewrite this to:

{ N-1 )k NI (pH)k
g(1)--#L(--#H)N + KN!NK (PL-- NL)E (P (N-k) .

k=0 k=0

N+K N.
PH PH

#L(- #H)N + KN! NK-o (PL- NL)E Pk (N- k)pk
k=0 k=0

IlL(- IlH)N + KN!NK-o{pL NL E[max(N- XH, 0)]}.

Under the ergdodicity conditions in (2), sign[g(1)]- (- 1)N + K + 1.
(17) gives us --;dzet[T(z)]lz g(1). Together this gives us

Differentiating

sign[det[T(1 )]]- -sign[zet[T(z)]lz 1]- sign[g(1)]- (- 1)N + K +1 (18)

On the other hand, det[T(1-)]- IIkN__0rk(1--) and we know that rk(1-)<O
(because of continuity and rk(1 < O) for k O, 1,...,N-1. Thus, we have proved
that rN + K(1 < 0, and hence that vN + K(Z) has a zero in (0, 1). [:]

Theorem4.4: det[T(z)] has g + g + l roots in (0,1), one at z l, and g / g in
(1, ). The roots inside (0,1) are precisely the eigenvalues of R.

Proof: By Theorems 4.2 and 4.3, we have found 2(N + K + 1) roots of det[T(z)]
with the required positions. Since the degree of det[T(z)] is 2(N + K + 1) these are
all the roots, proving the first assertion. Using (11), we see that the roots of the
characteristic polynomial of R appear with at least the same multiplicity in
det[T(z)]. Since all the roots of det[T(z)] have multiplicity one, the second assertion
follows. D

Remark 4.1: In Section 2, we assumed that NL >0. When NL =0,
det[R-1T(+) -zT(-)] becomes of degree N, and consequently the degree of
det[T(z)] is 2N+ K+ 1. In this case, Theorems 4.1 and 4.3 remain valid, but
Theorems 4.2 and 4.4 need to be modified.

It is no longer true that, for k=N, N+I,...,N+K, rk(z)=0 for some zE
(1,c). Apart from this, Theorem 4.2 still holds. In Theorem 4.4, only the number
of roots in (1, cx) must be changed from N + K to N- 1. The proof of the zeros in
(0,1] can remain unchanged, but to prove the N-1 zeros in (1,cx), we need an
additional argument since T(z) no longer becomes diagonally dominant for z--<.

However, we can show for the matrix (w): w2T +)+wT()+T(-), that
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det[T(w)] has N-1 roots for w e (0,1):T(0) has N positive eigenvalues and T(1)
only has nonnegative eigenvalues. Using the fact that T(w) has N + K + 1 different
eigenvalues for all w e (0, x)), and that these are continuous in w E [0, cx), it follows
that (at least) N- 1 of them must cross the horizontal axis somewhere in w E (0, 1).
Since, for z O, T(z) z2(), det[T(z)] must have N- 1 roots in (1, oc).

5. The Equilibrium Distribution

In Section 4, we have shown that R has N + K + 1 different eigenvalues in the inter-
val (0, 1); therefore, the equilibrium distribution can be written as in (8). We order
the eigenvalues of R as 0 < r0 < r < < rN + K ( 1 (note that rk is the root of
Vk(Z in the unit interval), and construct the diagonal matrix A
diag[ro, rl,’",rN + g]" The corresponding (normalized) eigenvectors 0,I,...,VN + K
compose the matrix V, k being the k+ 1st row of V. Remember that k can be
found as the left null-vector (unique up to multiplication by a scalar) of the matrix
T(rk). We have the (obvious) Jordan decomposition R- V-lay.

The equilibrium distribution is fully determined as soon as we have T0, which
must satisfy:

0[Q00 + RT( -)] " (19)
We already mentioned at the end of Section 2 that Q00 + RT( )is an irreducible

generator, and therefore (19) has a positive solution, which is unique up to multiplica-
tion by a scalar. Obviously, if we let e be the (N + K + 1)-dimensional vector with
all elements equal to 1, it must be that:

o(I R)- le ToE Rje E ./e 1.
j=0 3=0

Together, (19) and (20) completely determine T0, and therefore
have the k as in (8), or equivalently in matrix form"

j AJv,
we rewrite (19) and (20) to:

[VQ00+ AVT(-)] ,
(I A) Ve 1.

(20)

Since we want to

(21)

(22)

This determines (aO, al,...,aN + K)"
An alternative way of finding the coefficients ak in the present model is by using

(1). Denoting by the vector (Po, Pl,’",PN + K), with Pi- P{XH- i} (which are
known quantities, see (1)), it must hold that:

(I A)- iv E j " (23)

In particular, the low priority queue length distribution is given by:
N+K

P{XL j) AJVe- ak(rk)JVke. (24)
k=0

If we had used the normalization ke --1 for the eigenvectors, this would have be-
come"



350 R. NDEZ-QUEIJA and O.J. BOXMA

N+K
P{XL- J} E ak(rk)J" (25)

k=0

However, note that it remains to be verified whether the elements of some k sum up
to 0. If that is the case, the corresponding term in (25) vanishes.

Remark 5.1: From (25), the mean length E[XL] and variance var[XL] of the low
priority queue are easily determined. Using Little’s formula we also obtain the mean
processing time (or sojourn time) of the low priority customers.

Remark 5.2: When NL- O, the case N-1 results in an M/M/1 queue with
server breakdown and repair (or vacation), which is a known model. Generalizations
were analyzed by Neuts [17] and Takagi [24].

6. Numerical Results

In this section, we present some numerical results to illustrate the influence of vary-
ing server availability on the performance of low priority traffic. For normalization
purposes we choose #L 1, and in all cases we take N 17 (in accordance with data
supplied by KPN Research for The Netherlands). Further, we choose the extreme
cases where there is no waiting room for high priority customers (K 0), and no re-
served capacity for low priority customers (NL 0).

Before discussing the numerical experiments, we first make some intuitive remarks
about the cases when AH and #H are very large- or very small- compared to ’L and

#L" These intuitions can be proved formally. First, we fix AL, #L, and PH and let

#H (or equivalently ’H) go to infinity. Note that with fixed PH, the mean number
of servers available to the low priority customers, N- E[XH] is also fixed. As #H--+
c, low priority customers are (with respect to the service times of high priority cus-

tomers) in the system so long, that the mean number of available servers during the
sojourn time of a low priority customer will be close to the mean number of available
servers in steady state (i.e., close to N- E[XH]). Therefore, it is to be expected that
the low priority traffic in the limit (as #HCX3) experiences the system as if it were
an M/M/1 processor-sharing queue with server capacity c N-E[XH]. For the
queue length distribution, this model coincides with that of the regular M/M/1 queue

with traffic load _b_.
On the other hand, if we let #H0 (again for fixed $L, #L, and PH), the opposite

happens: the number of servers available to low priority customers changes very slow-
ly compared to their sojourn times. An arrivinglow priority customer finding no
available server (there are N high priority customers present) must wait until one be-
comes available before receiving any service. The mean of this waiting time is 1

NpH
and tends to infinity as #H--O. Since the probability of finding all servers occupied
is positive (and completely determined by PH), the expected sojourn time of the low
priority customers also goes to infinity, and by Little’s law, so does E[XL].

In our experiments, we are interested in the behavior of the mean and variance of
the number of low priority customers in the system, at some fixed system load p:

PL + E[XH]" Therefore, for different values of/H and with /L normalized to 1, we
vary "L and $H, keeping p constant.

In Figures 1 and 2, we have chosen p- 0N. We consider three values for #H"
#H- ’ 1, and 5. Further, we also plot the results for the M/M/1 queue with server
capacity c N- E[XH]. We have already argued that this model corresponds to the
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case #H oc. Therefore, in this case:

P{XL--j}--\I----_ ( j--0,1,2, (26)

7Since L 1, in the experiments we vary L from 0 to y6N. At the same time, H
decreases such that at all times p-PL+E[XH]- 60N" In Figures 1 and 2, the
mean E[XL] and variance var[XL] of the number of low priority customers are

plotted, respectively. On the horizontal axis L is normalized to PL/P"

E[XL]

2.0

1.5

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

Pc/P

Figure 1

var[X]

8

6

4

2

0

0.0 0.2 0.4 0.6 0.8 l.O

pL/p

Figure 2



352 R. NIEZ-QUEIJA and O.J. BOXMA

In both figures, the top curve belongs to the case #H- , the second to #H- 1,
the third to PH- 5, and the bottom curve to #H- c. We see that E[XL] and
var[XL] are particularly sensitive to #H when PL and E[XH] are of the same order.

In Figures 3 and 4, the same procedure is repeated for a system load of p- 1-26N.
We see this in this case E[XL] and var[XL] are more sensitive to #H"

E[XL]15

10

5

0

0.0 0.2 0.4 0.6 0.8 1.0

PL/p

Figure 3

var[X]

500

400

300

200

I00

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4

Note that from (26), it follows that in the case #H
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PL/c PL PLE[XL] 1 PL/C N- E[XH]- PL N--’

(var[XL]- 1-PL/C
1 + PL/C -- PL (1+ PL )1----L/C] N- p N- p

Therefore in Figures 1 and 3, the bottom curve is a straight line; in Figures 2 and 4
the bottom curve is a quadratic curve.

Remark 6.1: We have presented only a small portion of our numerical experi-
ments. The numerical evaluation of this model proved to be fast and stable in many
experiments over a wide range of parameter values. No serious problems were en-

countered in finding the roots of det[T(z)] inside (0, 1). Even when the traffic load is
close to the system capacity (say 95%), this problem turned out of be numerically
stable. All the roots but the one closest to 1 can be found using a grid method; the
last one can then be determined using a bisection method between the second largest
root and 1. Also, finding the vectors k and gives no rise to serious problems, even

when the dimension of T(z) is of the order of several hundreds. This numerical stabi-
lity is partly due to the tridiagonal structure of T(z).

Remark 6.2: Based on the experiments presented in this section, we conclude that
approximating the variable server availability by its mean leads to a serious underesti-
mation of: (i) E[XL] and the mean processing time (by Little’s law); and (ii)
var[XL] when #H and AH are relatively small compared to #L and "L" This sensitivi-
ty is larger when PL and E[XH] are of the same order, and when the total system
load is larger.
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