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We approximate the integral of a smooth function on [0, 1], where values
are only known at n random points (i.e., a random sample from the uni-
form-(0, 1) distribution), and at 0 and 1. Our approximations are based
on the trapezoidal rule and Simpson’s rule (generalized to the non-
equidistant case), respectively. In the first case, we obtain an n2-rate of
convergence with a degenerate limiting distribution; in the second case, the

rate of con-vergence is as fast as n31/2- whereas the limiting distribution is
Gaussian then.
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1. Introduction and Main Results

Suppose we (can) only observe the values of a smooth function f:[0,1] at the
points Uo, U1,... Un, Un + 1, where U1, U2,..., Un are the order statistics (U _< U2 _<

<_ Un) of n independent uniformly-(0, 1) distributed random variables and U0. 0,
Un + " 1. It is our aim to estimate the integral

I:- J f(x)dx
0

(1)

from these observations, i.e., by only using (Ui, f(Ui)), i-O, 1,...,n + 1. The first
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estimator we will employ is constructed by using the ’trapezoidal rule’ on each sub-
b

interval [Ui_l,Ui] i-1,...,n+ 1. This rule approximates an integral f g(x)dx

simply by 1/2(b-a)(g(a)+ g(b)) and it can easily be shown (see, e.g., Isaacson and
Keller [2], p. 304)that

b

1/2(b- a)(g(a) $ g(b)) / g(x)dx 2(b a)3g"(r/), (2)
a

where z/E (a,b). Writing D Ui-Ui_l, 1,...,n+ 1, for the spacings of the

Ui’s our estimator of I becomes
n+l

In: E 1/2Di(f(Ui- 1) + f(Ui))" (3)
i=1

Using (2), we will prove the following limiting result for the standardized difference of
In and I:

Theorem 1: If If’"[ is bounded, then

n2(In- I) P---, 1/2(f’(1)- f’(0)), as (4)

A much better and probabilistically more interesting estimator is obtained by
b

applying a 3-points formula, i.e., for a given c e (a,b), we approximate f g(x)dx by
a

wlg(a + w2g(c + w3g(b in such a way that the approximation error is zero in the
case g is a polynomial of second degree. If the 3 points are equidistant, this approxi-
mation is known as Simpson’s rule. It is not hard to show that

(b-a)3
W (b- a)(2- b

c ), W2 (C- a)(b- c)’ w3 (b- a)(2--ca), (5)

and it follows (see again Isaacson and Keller [2], p. 304) that

b b

wlg(a)+w2g(c)+w3g(b ]" g(x)dx- -/ (x-a)(x-c)(x-b)g(3)(rl)dx, (6)
a a

where r/- r/(x) (a,b). Hence, our estimator of I in (1), again denoted by In, be-
comes

2 O2i )f(U2i-2)In E (D2i-1 + D2i){(2 D2i 1i--1

(7)
1 + D2i)2f(U2i_ 1) + (2 D2i- 1+ D2i_ 1D2i D2 )f(U2i))’

where, for convenience, n is taken to be odd. Formula (6) will be used to prove our
main result:

Theorem 2- Let n be odd. If If(5) is bounded, then

n 2,(In I) - (f(3)(x))2dx Z, as n---cx),

0

(8)
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where Z is a standard normal random variable.
Remark 1: The present techniques can be easily adapted to cover the situation

where the Ui’s are the order statistics of n independent random variables with com-
mon distribution function G (on (0, 1)) having a smooth density g. The adaptation is
based on the quantile transform, transforming a uniform random variable V into a

random variable G-I(V) with distribution function G. In this case, under regularity
conditions on g, we obtain that the weak limit in Theorem 1 becomes

1 1

lf2 (f"(x)/g2(x))dx instead of 1/2f f"(x)dx --}(if(l)- f’(0)). In Theorem 2, the
0 0

limiting random variable is again centered normal but now the standard deviation
becomes

/1(f(3)(x))2
0

On the other hand, the uniform distribution seems very relevant because of the
1

following. Since f f(x)dx can be considered as the mean ’output’, given that the x-
0 1

values are ’equally important’, it seems desirable to estimate f f(x)g(x)dx-
1 0

f f(G-l(y))dy in the case the random variables are distributed according to G. But
0
if G is known, we can replace the pairs (Ui, f(Ui) (just below (1)), with Ui’s being
the order statistics from G, by (G(Ui),f(Ui))-(G(Ui),f(G-i(G(Ui)))). This
brings us back to the ’uniform distribution setup’ with f replaced by f o G-, but
that is just the function whose integral we wanted to estimate as argued above!

This idea leads to possible ways of applying the results. Suppose U represents
some uncontrollable physical random quantity, like temperature, humidity or light
intensity with a known distribution function G having density g. Suppose also that
we can measure f (the output or yield) only at the U and that we are interested in

1
the mean output Ig- f f(z)g(z)dx. Then one can use our theorems to obtain rapid-

0
ly converging estimators of Ig. In particular, when measuring the f-values is hard or

expensive, one can get good estimators based on a few observations.
Also note that for the trapezoidal rule in Theorem 1 and f" being constant, the

1 1
uniform distribution is optimal, since f g-2(x)dx >_ f ldx- 1. (This can be easily
seen by using Jensen’s inequality" 0 0

1 1

J / ( 1 )
3

,1, ,dx 1 (x)dx : 1 > Eg(X),
o o

o

where X is a random variable with density g.) A similar remark applies to Theorem
2 with f(3) being constant.

Remark 2: There are various other ways to extend our results, which we will not
pursue here, e.g., applying m-points formulas for m > 3 (Simpson’s rule is ’by far the
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most frequently used in obtaining approximate integrals’, Davis and Rabinowitz [1],
p. 45), combining trapezoidal rules to eliminate the bias (fl’(1)-f’(0)), proving a
’second order’ limit result for n2(In I) 1-(f (1)-if(0))in Theorem 1, or treating
the case n ’even’ in Theorem 2. We are not pursuing these extensions because we
believe they are not very interesting and/or they do not give good results.

Remark 3: We briefly compare our results with the deterministic, equidistant
i-0,1 n/l. It is well-known that the limit in Theorem 1case, i.e., U n - 1’

is 1(f (1)- f’(0)) in that case, which means that we loose a factor of 6 by having
random Ui’s. (Essentially, this 6 is coming from the third moment of a standard ex-

ponential random variable.) From Theorem 2, it is well-known that in the equidis-
tant case (Simpson’s rule), the rate is n4. So, there our loss is of order n1/. Never-

1

theless, from statistical point of view, n3 is a remarkably fast rate of convergence.

2. Proofs

The following well-known lemma will be used frequently; it can be found in, e.g.,
Shorack and Wellner [3], p. 721.

Lemma 1: Let E1,...,En+ 1 be independent exponential random variables with
mean 1 and Sn + 1 be their sum. With Di, i- 1,...,n + 1, as before, we have

(DI," nn+i)d( E1 En+i)" Sn + 1 Sn-t- 1

Proof of Theorem 1" Using (3), (1)and (2) we see that

_rt2 n-bl

i--1
for some U (Ui_ 1,Ui), and hence,

n "+
( ) n2 n-bl

n2(In- I) -l DT" n + l + D(yi )T’"(Ui), (9)nl
i--1 i--1

From the boundedness of f’" (by M, say) and thewith U between U and
n + 1"

weak convergence (to a Brownian bridge) of the uniform quantile process (see, e.g.,
Shorack and Wellner [3]), it is readily seen that

n2 nT1

q_
i=1

< M sup Ui D Op(n 2) D,3..
ie{1 n+l} nl

i=1 i=

But

(10)

by Lemma 1, and by two applications of the weak law of large numbers, this last ex-
pression is Op(n-2). Combining this with (10) and (11) yields that the second term
on the right in (9) converges to zero in probability. Hence, it remains to consider the
first term

n-t-1 n-l-1

D d l E,3. (11)
i=1 S3n+l i=1
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n2
nq-1

i=1

or since (n/Sn + 1 1,
nq-1

12n1 f"(n 1)E"
By Chebysev’s inequality, it follows that

n+l n+l
1 ()E E f"( )12n f,, 1 Z 0n+ 1 2n

i=1
n+l

The proof is complete by noting that
n-bl 1

1 El"( ) if"---+(x)dx-i f,(f (1)- (0)).
0

The proof of Theorem 2 is heavily based on the following two lemmas.
Lemma 2: Let E1,...,En+I, n odd, be independent exponential random

variables with mean 1. Write

Xi (E2i 1 / E2i)3(E2i- E2i 1)’ 1 2, n + 1

2i-2

Y, Xi (Ej- I), i-2,3, n+l

3--1

EX O, Var X 120960, EY O, Var Yi 120960(2i 2),
Cov (Yi, Yk) 0, for -)/: k.

Proof: By symmetry, we see that FX 0; a straightforward computation yields
Vat X -EX 120960. For the Yi’s we have

2i-2

Eri- EXiEE (Ej- 11- o,

Var Y EY EXE E (Ej 1)
j--1

Var XiVar Ej 120960(2i 2),
j--1

and for < k,
Cov (Yi, Yk) EYiYk

EXk E (Ej-1) X E (Ej-1)
j=l j=l

EXk E (Wj-1) X (Ej-1)
\j=l \j=l

=0.
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Lemma 3: Under the conditions of Theorem 2, we have, as

31
n+l

1

72 f(3) 2i-2 (D2 +D2i)3(n2in + 1 1 D2i- 1
i=1

--Op(1).

Proof: By (7), (1)and (6)we have

31
n 2(In I)

31
n+l

n 2 2 2i6 E (x V2i_ 2)(X V2i_ 1)(X U2i)f(3)(f2i)dx,
1

U2i- 2

for somme U2i- g2i(x 6_ (U2i_2, g2i) and hence for some

(U2i- 2, U2i), the right-hand side of (12) is equal to

31
n + 1 U2i

n 2

i=1
(x U2i 2)(x U2i l)(X

2i-2

x (f(a)(g2i_ 2) + (2i- U2i- 2)f(4)(2i))dx

(12)

U2i- U2i(x) E

n+l

n 2 f(a)(u2i )(D2 + D2i)3(D2 D27"-- --2 -1 i-- --1
i=1

n + 1 U2i

1
U2 2

Let M be a bound on f(5) and all lower order derivatives of f. Then the abso-
lute value of this last term is bounded from above by

31
n+l

2
U2i

i=l
U2i- 2

n+l n+l
2

i 31/2 2

)5 d __Mrz31/2 .1 E (E2i -1 + E2i)5 Op(1),_< --ff-n i=IE (D2i- 1 + D2i 6 Sn + 1 1

due to Lemma 1 and two applications of the weak law of large numbers.
So, it suffices to show the convergence to zero in probability of

n+l

n 2

i=1

n+l
31 2

U2i72
2i-2 (4
n +1 )f ’(2ni-77)(O2i-1 + O2i)3(O2i- O2i-1)
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n+l

r 2

+i-4-4 Ui
_2 22i i) f(5

n + )(2i- 2)(D2i- 1 + D2i)3(D2i- D2i- 1)

T1, n -}- T2, n’

for some 2i 2 between U2i 2 and 2i-,,,2 By the weak convergence of the uniformn4-1"
quantile process,

n + 1

n2 ( 2i--2)
22

T2,nl <-4--Mie{23,sup n+l}
U2i-2 n+l i=2E(D2i-l+D2i)4

n+l
2

E (D2i- 1 + D2i)4"
i=2

By Lemma 1 and twice the weak law of large numbers, this last expression is easily
seen to be Op(1). Hence, the proof of Lemma 3 is complete if we show T1, n Op(1).

From Lemma 1 we obtain

31
dn 2

Tl,n 72

n+l /2i-2j=l
Sni=2

n+l
31 2 (2i- 2 )n 2. 5 (4)[2i- 2(
79 n +1 E E (Ej 1) --,)k2i-1 + E2i)3(E2i- E2i- 1)

i=2 j=l

3:(q-
72 ,n+l

n+l

)Sn + 1 E (2i- 2)f(4) (E2i- 1 -Jr E2i)3(E2i- E2i_ 1)n+l /=2

"T3, n -}- T4, n.

It is immediate from the central limit theorem for Sn + 1/(n - 1) that
nh-1

2

T4, n- OP(rt- 2) E (2i--2)f(4)(i21)Xi,
i=2

where the Xi’s are as in Lemma 2. Now using that lemma in conjunction with
Chebysev’s inequality, it readily follows that T4, n -op(1). Finally, in the notation
of Lemma 2, n-I-1 n-l-1

T3, n n2q-572’n + 1Ef2(4)[2i_?.)Yi\n+ OP(rt 11/2) f(4)(2ni-?)Yi"
/=2 i=2

From Lemma 2, we have
n+l

2

i--2

n+l n+l
2 2( "-2 Var Yi- O(n2)Var E f(4)(2n/- 21)Yi- f(4)(2nZ+ 1 ))2

i--2
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Now, Chebysev’s inequality yields T3, n Op(1) and hence T1, n Op(1). I-3

Proof of Theorem 2: Given the lemmas, especially Lemma 3, the proof of Theo-
1

rem 2 is rather easy. If f(f(a)(x))d- 0, then f(a)()_ 0 for all e [0,1] and
0

hence trivially In -I, because f is a polynomial of second degree. Therefore, we
1

assume now f (f(3)(x))2dx > 0. Using Lemma 1 we have
0

n+l

rt 27- f(3)(2i--’) 1 - n2i)3(n2i n2i- 1)
i=1

n+l

1
72 Sn + 1 (n/2)1/2 i=1

f(31 _1_-- (S2i -1 A- E2i)3(E2i E2i-1)

By the weak law of large numbers and Lemma 3, it now remains to show Theorem 2
31

with n 2 (in I) replaced by Wn. By Lemma 2, we see that EWn -0 and

n4-1 1

1 2 ( (3)(2i,.12..))2 /( )2VarWn 2(72)2 n f \n + 120960 ---, f(3)(x) dx.
i--’l 0

Now, the Lindeberg central limit theorem applies, because of the boundedness of
f(3) and it yields the result. I-1
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