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ABSTRACT

In this paper, the central limit theorems for the density estimator and for the
integrated square error are proved for the case when the underlying sequence of
random variables is nonstationary. Applications to Markov processes and ARMA
processes are provided.
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1. Introduction

Let {X; = (XSI), cen Xgp)),i > 1} be a sequence of random variables with continuous d.f.’s (dis-
tribution functions) F,(x), i > 1, x € RP.

Assume that the processes satisfies the absolute regularity condition

maxFE{ sup | P(A|o(X;,1<i<j))—P(A)|} = p(m)l0 as m—oo.  (1.1)
J21 Aco(X;>j+m)

Here o(X;,1<i<j) and o(X;,i>j+m) are the o-fields generated by (X,..,X;) and
(X 4 my X 4 m 4 10---) Tespectively. Also recall that the sequence {X,} satisfies the strong mixing
condition if

max[sup{ | P(ANB) ~ P(A)P(B) |;A € o(X; 1 <i<j), Beo(X;iz i+ m)}]
= a(m)|0 as m—oo
and it satisfies the p-mixing condition if
;ngg[sup{ | P(A| B)—-P(A)|;Bea(X;,1<i<j),A€o(X;i>j+m)}]
= p(m)]0 as m—oo.

Since a(m) < B(m) < p(m), it follows that if {X;} is absolutely regular, then it is also strong
mixing and if {X;} is ¢-mixing, it is also absolutely regular.

Suppose that the distribution function F, has a density f,, and F converges to a distribu-
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tion function F which admits a density f, and let f) be an estimator of f based on X;,...,X
defined below in (2.2).

n

In this paper, we establish the central limit theorems for the estimator f) and for the
integrated mean square error (.M.S.E.) I, defined by

L= [{fa0- f(0)dx (12)
/

An additional asymptotic property of the I.M.S.E. is also studied in (2.5).

Several authors have proved central limit theorems for f) and I,, when {X ,n>1} is a se-
quence of independent and identically distributed random variables (see, e.g., Csérgo and Révész
(2], Rosenblatt [11] and Hall [8]). Later Takahata and Yoshihara [15] proved the central limit
theorem for I, when {X,,n > 1} is an absolutely regular strictly stationary sequence. See also
Tran [16, 17] and Roussas and Tran [13], and for a general theory, we refer to an excellent mono-
graph of Devroyes and Gyorfi [5]. We may also mention the results of Roussas [12] for stationary
Markov processes which are Doeblin recurrent and also the results of Doukhan and Ghindés [6] on
the estimation in a Markov chain.

In this paper using some of the ideas of Takahata and Yoshihara [15], we prove the central
limit theorem for f) and I, when the sequence is not stationary.

In section 5, we give applications of our results to Markov processes and ARMA processes for
which the initial measure is not necessary to be the invariant measure. Under suitable conditions,
any initial measure converges to the invariant measure. We estimate the density of this invariant
measure by the estimator f defined below in (2.2).

2. Asymptotically Unbiased Estimation of the Invariant Density

Let K(x) be a bounded, non-negative function on R? such that
/K(xdx =1, /x(i)K(x)dx =0 and /x(i)x(j)K(x)dx =276, 1<4,j<p, (2.1)
and | lim | K(x)=0.
X | —00
Here x = (:c(l),...,z(p)), dx = dx(l)...d:c(p), | x| =sup lx(j) |, 7 is a constant which does not
1<5<p
depend on 7 and j, and 6ij =1if:=j, and =0, otherwise.
We define the estimator f of f by
n —X.
Fr®) = (nh?)=1>" K(x . ) (2.2)
1=1

where h =h(n) is a sequence of positive constants such that n7/2hp——>oo, 0<vy<1 and
hP(log n)?—0 as n—oo and h—0.

Let FI,J be the d.f. of (Xi,xj).

Theorem 2.1:  Suppose the sequence {X,} is absolutely regular with rates satisfying
B(m) = O(p™) for some 0 < p < 1. (2.3)

Furthermore, assume that for any j—i > 1, there exists a continuous d.f. F;_ .

2p :
; on R°P with mar-
ginals F' such that
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NF; ;- ]_l||_0(p0), 1<i<j<n, n>1 for some 0 < py<1 (2.4)
where || || denotes the norm of total variation. Then we have
/E(f;';(x) — f(%))2dx—0 as n—oo. (2.5)

Proof: We have
[ B30 - £y

< |/(/(mll—pz::11{(x y,) (x)) (dyl,...,dyn))dx
n 2
_ / ( / (#_;K(x;zi)- f(x)> Q;(dzl,...,dzn))dx|

+2 / ( / (#(22( K(X2%)- / K(%)f(vi)dvi)))2()2(dzl,...,dzn))dx
o f (sl 55 (52 s s

:II+I2+13 (2.6)

where Q,, is the d.f. of (X;,...,X,,) and Q}, is the d.f. of (X],...,X}) where (X}, > 1) is a strictly
stationary sequence of random variables which is absolutely regular with a rate satisfying (2.3),
for which the d.f. function of X} is F and the d.f. function of (X],X})is F;_,.

J [ k() wrnsoegix
a2 3 ///K(xzyi)K(x_hyj)(dFi,j(yi,yj)—dF’iJ-_il(yi,yj))dx

1<iZj<n

We can write
I, <2

n X—v. 2
/ (nh?)~? ( > K(-—,%)) (dFi(y;) - dF(y;))dx
1=1
n~1 K (u; huy)du;)(dF; dF
3 [([ wwast mganyar 5= ar6s))
+(nhP)-2Zn:

19.#,.5"/// SEEC

+(nhp)—2z": / / K(’_‘;_yi)z(dpi(yi)«dF(yi))dx. @2.7)
1=1

From the decompositions

) (dF; J(Y,ayj) dF’ [5—d] (Y,,YJ))dX

and
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d.o= 2 4D

1<i#j<n m<|j—i| <n |]—z|<'m
1<i#j<n Telzin

where m = [nl ~ 7/2] ([a] is the integer part of a), we have by using (2.4)
I, <0~ "2 4 O(nt +7/2pp)—1 (2.8)

and I, converges to zero as n—oo by using (2.4).

Next
I,< ‘/ ‘1h"2p/K2 ~Yh- ”/K(x;l'z)f(z)dz)2dx

+ 2(nhP) 2 / ( ‘Z‘ ncov(K<x —hx;‘ > K(X_hX; )))dx: I3+ 12 (2.9)

1<i<35<
From Lemma 6.8%, we deduce

h~ p/I@(%)f(z)dz—»f(x) / K?(z)dz as n—oo
and
h~ p/K(z—;—Z)f(z)dz—éf(x) as n—oo.
As (nhP)—oo when n—oo we deduce that I% converges to zero as n—oo.

From the condition of absolute regularity and Lemma 6.3, we can write

—X* —X* -
Cov(lff(x hx’ ),K(x 5 ’))52(Jﬂ5/(2+5)(j_i)[g(|K<x hxl>|2+6)]2/(2+6)

where C' is some constant > 0.

Thus * *
5y — (x-XF\ (x—X}
(n (hp)2/(2+ )) 1 Z <nCOV(A( . ),R( - J))

1<i1<y

n

S( "'1h_2p/ 2+6) Xj: 2 TI.—] 20[35/ 2+6)( Z-)[E(|K<x_hxl)|2+5)]2/(2+5)

o= 6/(248) 0\ 1p, - (X=XT) 2462/ +8) _ 7=

<20( 3 7@+ 90) | th-rer| k(25211249 =13
1=1

From Lemma 6.8, the above expression converges (as n—oo) as

(2+8) 2/(2+96)
+ oo
2C(Zﬁ“<2+”<i>)( F(x) / K(z)dz)

i=1
Thus
12 < an=1(hP)8/ 2+ 8> (2.10)
It follows that I2 converges to zero and from (2.8)-(2.10) that I,, converges to zero.
Finally, again from Lemma 6.8, we deduce that I3—0 as n—oo.

Thus I + I, 4 I3—0 as n—oo and Theorem 2.1 is proved.

2The proofs of Lemmas 6.1-6.9 are discussed in the Appendix.
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Theorem 2.2: Suppose the sequence {X;} satisfies the conditions of Theorem 2.1. Then, at
every continuity point © of f, we have

E(fr(x))—f(x) as n—oo (2.11)
E(f%(x) — f(x))*=0 as n—oo. (2.12)
Proof: Since the proof of (2.12) is similar to that of (2.5), we only prove (2.11).
We have

P~ 1600 = ) 13 [ (i

:(nhp)—lzn: / x y' (f (v)dy, — f(y)dy,)+(nh”)*‘z / (y,)dY, f(x).
i=1

The first term converges to zero from condition (2.4) and the second term converges to zero from
Lemma 6.8.

3. Asymptotic Normality of the Estimator f},(x)

Denote

o3(x) = f(x) / K?%(z)da. (3.1)

Theorem 3.1: Suppose the sequence {X,} satisfies the conditions of Theorem 2.1, then at

every continuity point x of f, (nhP)2[f%(x) — E(f%(x))] converges in law to the normal distribu-
tion with mean 0 and variance o2(x).

Proof: First we prove that
1
E[(nhP)2[f%(x) — E(f(x)]]* converges to o2(x). (3.2)
We have 1
E[(nhP)2(f3,(x) = E(F(x))]I*

:nhP(nhP)—2/[zzlﬁ<x y,) (/K(X;zi)fi(zi)dzi)]zqn(dyl,...,dyn)
("hp)_ljzz_zl[ x y, /K(x—;ﬁ)fi(zi)dzirfi(yi)dyi
thp)-l/x sk;j5n<K<XZYi)_ /I{<x;Zi)fi(zi)dzi>

(XYi (X%
x | K{ — _/I‘ i iilde ) By (dyidyy) =Ty +

It follows from (2.4) that

J1—>f(x)/K2(z)dz as n—oo. (3.3)
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Now, define 4, ; by
A= /[K(X.I;Yi)”‘ /K(x;zi>fi(zi)dzi] [K(X;zyj>_ /K(%)fj(zj)dzj]

Letting k = k,, = (logn)?], where [a] denotes the integer part of a, we have

stmhprl( St Y w)
1<i#j<n 1<i#j<
i—j<k j—i>k

<h~ PEM2R2P 4 b~ pz [ﬁ(z+1)]5/(2+5)(M 2/(2+5)
i=k+1

where M =sup | K(z)| and M2+6_sup lgla)é E|K( )|2+6 As hP(logn)’—0 as
>1 1

n—0o0, we deduce hPk—0 as n—oo. From (2.3), we deduce also that A~ P[B(k + 1)]6/(2 +9) 0 as
n—oo. Consequently,

J5—0 as n—oo. (3.4)
From (3.3) and (3.4) we have (3.2).

Now let ¢, be a sufficient large number such that

B(m) = o(n~?)
where m =m,_ =[cjlogn]. Further, let £=2¢,=[n'~7 and ¢=gq,=[n/t+m]. Define a
sequence {(a},a}),i =1,...,q} of pairs of integers inductively as follows:

ag=0,a;=a)_;+m,a =a,+l-1, (i=12,...9).

Define A; by r—X. z—X.
— Kl J ) J
A= R( h > E((K< h >)>

Using Lemma 6.1 (in Appendix), and Lemma 4 of Takahata and Yoshihara [15], we have

E(exp{itwjz::IAj}> H E(exp{zt 7 p/2 Z A })-{-C‘Iﬁ(m)

a=1

2
lc 3

_ t2 [ ]

- 1—2nhPE(ZAJ') +O( 3/2h3p/2E
j=1 n

Thus by (3.2) . ¢ J X
nll»nc}th—P E Z Aj = oy(x).

The results follows.
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4. Asymptotic Normality of the Integrated Square Error I,,

We assume that
() J |:c( D)z (k) | K(x)dx < M < oo for each 4,j and k (1 <14, j,k < p),
(¢¢)  the density functions f ‘(x,y) of F*(x,y) exist for each j,
(#i7) second partial derlvatlves of f(xg and f}(x,y) exist, are uniformly bounded and
satisfy the Lipschitz condition of order one Furthermore all the second order par-

tial derivatives of f(x) and of f7(x,y) belong to the ball in L'(RP), and in
L'(RP x RP) respectively.

Denote
= [UAI@PHx-] [{A7}(ax?
25 ([ [asarmariiasdy) - [ (ase) i) -
+ X ;k X, — X xX)ax|”),
2 y y
where A = ‘}—:1 2. is Laplacian,
202 ::{/f2(x)dx}/{/K(u)K(u+v)du}2dv, (4.2)
and let .
nZh~? if nh? 4500
d(n) = nhP/? if nh? T 450 (4.3)
n(P+8)/2p+4) if nhP T 45X (0 < A < o0).

(Note that 7 in (4.2) is the same as in (2.1)).
Then our main result is the following;:

Theorem 4.1: Suppose that the conditions of Theorem 2.1 hold. Then oy >0 and o3>0
exist, and

271'02 7z if nhP 4500
d(n){I, - E(I,)}= 225, 7 ) if nh? 450 (4.4)
(rr2o23(P+4) L 92y =P/(P+ 402 yrppp 4y (0 < X < o0).

in distribution where Z has the standard normal distribution.

Proof: For brevity, we use the following notations

IRy ) NS P

H; (X, X)) =H,; (X,X;)—E(H,; i(X;,X,)) (4.5)

K;= / {K(x «hx]- )-—E(K(x ﬁhxf’ ))}{E( FrE) - f(®))x, 1<j<n (4.6)

First, we decompose I, — E(I,) as follows:

1,-E( )—2(n2h2p Z Ffl.’](x,,x])
1<)
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2
n n x— X x— X
-1 - 212py—1 | J - J
+ 2(nhP) lej+(nh”) Z /{B( - )—E(A( h ))}dx
j=1 7=1
{(22) - (52}
—/EB — |- B\ K\ —; dx

=1, +1,+1, (4.7)

The main part of the proof of the theorem is broken into proofs of the following four

propositions. The first proposition uses Dvoretzsky’s theorem [7] and Proposition 3.1 of Takahata
and Yoshihara [15].

Let ¢, be a sufficiently large number such that

B(m) =0(n"")

where m = m,, = [c, logn].

Further, let 7 =r_=[n4] and k = k,_, = [n/(r + m)]. Define a sequence {(a,,b,),i = 1,...,i} of
pairs of integers inductively as follows:

b():O, ai:bi——l+m’ bi:ai'f"f'—l (121,2,,]6')

Let ¥, =o(X;,;1 <i<a,—m), (a=1,2,..,k).

Put b, a,—m
T,=Tpo= > H; (XX, a=1,...k (4.7
1= a, 7=1
and k ~
Up=Y, (Toa—E(T,) Sp=Y, H; (X,X,).
a=1 1<i<j<n

Proposition 4.1: If the conditions of Theorem 4.1 are satisfied, then (nh3p/2) "1Sn converges
in law to the normal distribution with mean 0 and variance o3 defined in (4.2).

Proof: Let s, = VarU,. If we prove

k
sp 1> E{T,|%,}—0 in probability as n—oo, (4.8)
a=1
k
(s2)~1 Z [E{T?| Fot— (E{T,| ?Fa})2]-—>1 in probability as n—oo, (4.9)
a=1

and k

(s2) ™1 E(T,)*—0 as n—oo, (4.10)
a=1

then, it will follow from Dvoretzsky’s theorem [7] that s, U, converges in law to a N(0,1)
random variable.

The proofs of (4.8) and (4.9) are given in Lemma 6.4 and that of (4.10) in Lemma 6.7 in the
Appendix.

Proposition 4.1 will now follow if we show that

2s2(n?R3P) =1 = 63(1 + o(1)) (4.11)
and

s, 2E(S, —U,)?—0 in probability as n—oo. (4.12)

(4.11) and (4.12) are proved in Lemmas 6.4 and 6.6, respectively (see Appendix).
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1 Proposition 4.2: If conditions of Theorem 4.1 are satisfied and if nhP t 400 as n—oo, then

nzh_zI2 converges in law to the normal distribution with mean 0 and variance 21'20% defined in
(4.1).

Proof: We first prove that

E(nh~*I2) converges to 27%02 as n—oo. (4.13)
We have 2
E(nh~*1%) = 4(nh?P + 1)~ 1E( > K, ) (4.14)
=1
First, we prove that =
Jimon =t 30 (WP TIE(KK ) -C )| =0 (4.15)
where 1<i<j<n

2
Co=7 [ [{af@arm)}Fyaxdy) —[ / {Af(x)}f(x)dx] , e

We can write

E(KK;)= //[/{ X %) E(x X)}{E(f (x)) - f(x)}dx}
[/ (52)- oo "hx"))} (B30 - f(z)}dz},-,jwyi, iy

Since
B £) = (uh?) 713 [ K52V ar ) - dP(u)
i=1
+ (nhP)~ IZ/KX “dF(u) f(x)

=1
= O(n~ ") 4 h2rAf(z) 4+ O(h®) (from conditions (2.4) and (i)-(44i)), we obtains

S TS .
[ / {K(Z ) o k(5 ))} {(Wr A1 () + O(K®) + O(n - 7)}dz}dF,-, S5,
e LA o]
{2 (5)) pueraswnan pray.aw

which implies that

Put

nTH(R?PH 7T E(KK ;)= ) (n=i)C]|
1<i<j<n 1=1
m
<n-ty ety B(KK,) - 3 (n—i)C] |
1<j—i<m 1

+nT | p2P Ay -1 Z E(K K )~
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ot 5 ] [ o2
X [ / {K(Z _hy" ) - E(K(i—_;&))} h2rA f(z)dzilFiy i(dy;,dy;)— f: (n—i)C7 |

i=1

+mO(h) + O((n"h?) = 1) + O(h?) + O((n"h) =) + O(n~ 27|

+n—1l(h2p+4)—l Z E(Kin)_ Z (n—z)C*

m<j—i<n i=m+1

=1,+J,+L,, say.
From condition (2.4), we deduce
I, =mO(n™1).
Also
J, = m[O(h) + O((n"h*) ~1)].

From condition (2.3), we have

L, =0(p"™)
For € > 0, let m be fixed such that
L, <¢/3. (4.16)
We can find n sufficiently large such that for any n > n
J,<¢/3and I, <¢/3. (4.17)
From (4.16) and (4.17) we deduce that
lim | > E(KK)-C5_;| =0. (4.18)
1<i1<3<n
From Remark 2 in Takahata and Yoshihara [15], we deduce
dml Y (C3ii=C)] =0 (4.19)
1<i<jy<n

(4.18) and (4.19) entail (4.15).

Following the arguments similar to deriving (4.18) and (4.19), we obtain

n
Jim, | (k2P +4) =13 B(K)2 - Co| =0 (4.20)
i=1

Co = / NS f(x)dx—[ / (Af(x)) f(x)dxr.

where

Finally we have

n
E(nh=4I1%) —2r%02 <on1| > (WPPEFHTIEEK )= (n—i)Cy|
1<i#j<n
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From (4.15) and (4.20), A,,—0 as n—oo and from Lemma 6.3 in the Appendix and condition
(2.3) we easily deduce that B,—0 and C,—0 as n—co.

This proves (4.13).
Now using Lemma 6.9 (in Appendix) and Lemma 4 of Takahata and Yoshihara [15]

n 3 n 3/2
E( 3 Kj> < C( > E(Kf;)l/?’) < Ccn®/?p3(P+2)

j=1 1=1
where C is some constant > 0.

Hence, using Lemma 6.1 (in Appendix) we have

n ba
E(exp{itw J'Z=:1Kj}) H E (exp{lt 57 ; Kj})+C'k';8(m)

t2 o\ | ] A\ -1
=41 = G| 2K ) Y S ran to(n™7)
J:
2
:eXP{_% hz(p+2) (ZI‘> +O(k n)3/2|t]3)}+0("_1)

Thus by (4.13)
§ - 2.2
nh—r»go hh2(p+2) ( K; ) =21’

> K;
1=1

The result follows.
Proposition 4.3: If nhPt45) (0 <)X <o0) as n—oo, then n(p+8)/2(p+4)12 and
n(p+8)/2(p+4)n_2h_2p5n are asymptotically uncorrelated as n—oo.

Proof: By Lemma 6.1, Schwarz’s inequality and (6.3), we have

| E(nhP1,S,,)| < Z Z | B(KH (X, %) |
1=1 1<k<n
< { - > } | B(KH (X5 %) |
max(|t—j|,|i—=k]|, |k=i])<m max(|i—7|,|j—k|,|k—i])>m

< Clmnsup || K; || jmax || 7 1(Xj, Xp) ]+ n° ()]
:1<n

< C[nm?*hP T 2hP 4 o(n = 9)] (4.21)
1
since sup || K|, < ChP*2 where || K, ||, = (E(K?))? and C is a constant > 0.
1<i<n
From (4.21), we deduce
E(n(P+8)/2(p+ 4)12n(” +8)/2(p +4),, -2, - 2pg )

4
<C'nl-l-p""‘n_2h_2”11_1h_’[’nh’9+2h”m2

2,2
—_ Ch'm” (4.22)
(nh? + 4)P/P +4

From nhP ¥4\ as n—oo and m = O(logn), we deduce that
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h2m?
(nhP * 4)p/(p +14)

— 0 as n—oo (4.23)

which proves Proposition 4.3.

Proposition 4.4: If the conditions of Theorem 4.1 are satisfied, then

Var (I3) = O(n~3h~%P),

i [ {255 e

From Lemma 2 in Hall [8], it follows that

sup E((M,;)’) = O(h7P).
1<:<n

By Lemma 4 of Takahata and Yoshihara [15], we have

Proof: Let

n 2
n*hiPVar(Iy) = E| Y {M,;—E(M;)}| <Cnsup || M;—EM,)|}
j=1 1<j<n

<Cnsup || M;|| 2 < Cnh®P where C is a constant > 0
1<5<

n

and Proposition 4.4 is proved.

5. Applications

5.1

Consider a sequence {X;,i > 1} of RP-valued random variables which is a Markov process
with transition probability P(x; A) where A € B, B is the Borel o-field of R? and x € RP.

Recall that the Markov process is geometrically ergodic if it is ergodic and if there exists
0 < p < 1 such that

|| P*(x;-)—p(-) || =O(p™) for all a.s. x € RP (5.1)

where u is the invariant measure and P™ the n-step transition probability.

We say that the process {X;},5; has v for initial probability measure if the law of

probability of X; is defined by v and for any 7 > 1, the law of probability P; of X, is defined by
vpt— 1

For any probability measure v and any transition probability Q we denote by Q® v the
probability measure defined on R?P by

Q®Vv(AxB)= /Q(x;A)u(dx) for any Ax B € BxB.
B

The Markov process is called strongly aperiodic if for any x € RP, the transition probability
P(x; - ) is equivalent to the Lebesgue measure.

The Markov process is called Harris recurrent if there exists a o-finite measure v on RP with
v(RP) > 0 such that v(A) > 0 implies (P(x;X; € A i.0.) =1 for all x € RP.

Theorem 5.1: Let {X;},5, be a Markov process which is strongly aperiodic, Harris
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recurrent, and geometrically ergodic. Suppose that

€)) the invariant measure p has a density f which admits bounded second partial deri-
vatives which are integrable, and furthermore

[ 1291 ryix < oo,

(1) _0__ ;
/ |z l@:c(j)f(X)dx< 00,1 <5< p.
(§3) the transition probability P(;) has a transition density p(x;y) which admits bounded

third partial derivatives. Moreover, the first and second derivatives are bounded
and integrable with respect to y for each x; they also satisfy

/ 199 | p(x;y)dy) < oo

/ Iy(j)laya(j)p(X;Y)dY) < oo

ap [ 10 1p ity <4150, 1< <p, xeRe
ne€

where A is some constant >0 and p(") is the transition density of P". Then, for
any initial measure v, the conclusions of Theorems 2.1, 2.2, 3.1 and 4.1 hold for the
nonparametric estimator f defined in (2.2).

Proof: From Theorems 2.1, 2.2 and 3.1, we have only to prove (2.3) and (2.4).

First we prove (2.3). From Davydov [4] and the condition of strong aperiodicty, we have

Bm) = sup [ P (@) | P75 )= Py o) |

Ssglp/Pn(dX) P70 ) = () I+ 1 Py () = () -
As the process is geometrically ergodic, we can find 0 < p < 1 such that
|| P™(x; - )= p(-) || = O(p™) for all a.s. x € RP. (5.2)

From Theorem 2.1 of Nummelin and Touminen [10], we deduce

B(m) = O(p™) (5.3)

which is the same as (2.3).

Now, we prove (2.4). We have from (5.2)
|PP®P, —Pm@u|| =2 sup | / P™(x; AP, (dx) - / P™(x; A)p(dx) |
AxBeBxB /4 B
<2  sup P™(x; A) | /Pn(dx) — p(dx) |
AxBeBxB B

<2 P —pll = O(s")
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that is

| P"@P,—P"®pu| =0(p"). (5.4)
Thus the conclusions of Theorems 2.1, 2.3 and 3.1 hold.

To prove Theorem 4.1, we have only to verify the conditions (i)-(ziz) of Section 4, but they
are easy consequences of conditions (i) and (i) of Theorem 5.1.

Example 5.2: We consider an ARMA process
X;=aX;_;+be+e_y,1€N (5.5)

where X, admits a strictly positive density, {¢;,7 € N} is a sequence of independent and identically
distribution (i.i.d.) RP-valued random variables with strictly positive density such that E(¢;) =0,
and a and b are real numbers such that |a| < 1.

If the density function g of ¢, has three bounded first partial derivatives such that the first
and second derivatives are integrable and satisfy

[ 189 o)ty < o0 and | 199 |y <co. 1< 5 <0
)

and if moreover, the density of the invariant measure satisfies condition () in Theorem 5.1, then
the conditions of Theorem 5.1 are satisfied for the process defined in (5.5), because we have here a
particular case of Markov process satisfying our conditions. The law of the process on which
observations are taken is defined by the initial measure (i.e., the measure which defines the law of
X,) and the transitional measures (defined from the formula (5.5)). From the fact that regardless
of which is the initial measure, the density function of the measure of X converges to the density
function of the invariant measure, it is clear that if the process defined by (5.5) satisfies the above
conditions of derivability, we can estimate the density f of the invariant measure by the
estimator f; defined in (2.2) for any initial measure of X, which admits a strictly positive
density. Moreover, we can also apply the central limit theorem to f} and I, to study the
confidence regions based on these statistics. For example, if the initial measure is Gaussian, then
X, admits strictly positive density.

5.2 Applications to ¢-mixing Markov processes

Theorem 5.2: Let {X;},5, be a Markov process which is aperiodic and Doeblin recurrent.
Suppose that conditions () and (jj) of Theorem 5.1 are satisfied. T hen, for any initial measure,
the conclusions of Theorems 2.1, 2.2, 3.1 and 4.1 hold for the nonparametric estimator f.

Proof: From Theorem 4.1 of Davydov [4] the process {X;} is geometrically ¢-mixing which
implies geometrically absolute regularity. The proof is now similar to Theorem 5.1.

Example 5.2: We consider the process
X, =f(X;_1)+e€_q, €N (5.6)

where X, admits some strictly positive density and {¢;,i € N} is a sequence of i.i.d. RP-valued ran-

dom variables with strictly positive density such that E(¢;) =0 and f is a bounded continuous
function.

If the density function g of ¢, and the function f admit the three bounded first partial deriva-
tives and if the density of the invariant measure has bounded second derivatives which are integra-
ble and the first derivatives are also integrable, then we are in the same situation as Theorem 5.2.
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We can also under these conditions, estimate the density f by f for any initial measure which
admits a strictly positive density.

6. Appendix

The Lemmas (6.1 to 6.3) are well known results and their proofs are not given.

Lemma 6.1: Let Y,,...,Y,, be random RP wvectors satisfying an absolutely regular condition
with mizing rate f(m).

Let h(x,,...,x;) be a bounded Borel measurable function, i.e., | h(x,...,%x;)| < Cy, then
1 2 . .
| B(W(Y; oY) - /.../h(xl,...,xk)dF( ke x)AF O 4 1yx) | < 201805 41— 1))
where‘ FO and FP) gre respectively d.f.’s of (Yil""’Yi]‘) and (Yij+1""’Yik) for iy <iy <
< 'lk.

This Lemma is an extension of Lemma 2.1 of Yoshihara [18] and is proved in Harel and Puri

[9].

Lemma 6.2: (Takahata and Yoshihara [14]). Let Yy,...,Y, be a random wvector as in
Lemma 6.1. Let h(y,z) be a Borel measurable function such that | h(y,z) < C, for all'y and z.
Let Z, be a 0(X;;1 <i < k)-measurable random variable, and Z, be a o(X;;i > k + m)-measurable
random variable. Further let H(y) = E(h(y,Z,)) then

E | E{h(Zy,Z,) | o(X;;1 <i< k)} — H(Z,)| <2C,8(m).

Lemma 6.3: (Davydov [3]). Let Yy,...,Y, be RP-valued random vectors satisfying a strong
mizing condition with rate a(m). If || Y, ||, exists for alli and s > 2 and E(Y;) =0, i > 1, then

1 1
1-5—5,. . . .
E|YY;| <Cyo' T tG=0) 1Y, 1Y 1| i < dys>2,t>2 (6.1)

where C, is a constant >0, and of course, if the sequence {Y;}; 5, is absolutely regular with
1 _1_1 - 1 _1_1
rate B(m), the inequality (6.1) holds when we replace « ° t(j—1)by B ° ¥(j—1i).

In what follows, we always assume that the conditions of Theorem 4.1 are satisfied and C
denotes a universal constant.

Let {ii}i s> 1 be independent random vectors each having the same d.f. as that of X,.
Put .
Gy = [, 0, 0dF )
where H; ; is defined in (4.5), and
aa - m
Y, (0 =Y H (X)), a=1,...,k
i=1
Let Q,, be the distribution of (X, ,...,X} ).
o o
From Hall [8] and Lemma 6.1, the following are easily obtained:

~ ~ ~
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2k 3 — 2kp +1
1< P EH(X, X)) = O(h )

H. . = O(hP
L P, s Hi j(oy) = O(AT)

2 2
| Jnax nE(Hi,j(xivXj)) < Ch?P,

=9

| E(H; ;(X;,X;))| <ChPB([i—j]|) for all i and j.

BEGY(X,, %) =0, B(GW(X,, X)) = O(h™P)

1
2

| BGYL(X ;X)) | < CA2(| k=] P2,

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

The proofs of Lemmas 6.4-6.7 are in general similar to the proofs of Lemmas 5-8 in Takahata
and Yoshihara [15]. For reasons of brevity and to avoid repetitious arguments, we give brief

outlines of the proofs.

Lemma 6.4: As n—oo
32 ~ 2nzh3pa3

where ~ means that the ration of the two sides —1 as n—oo.

Proof: We have
k 2 k 2
a=1 a=1

where T', is defined in (4.7'). By (6.5) we note that
b
[¢3

a —m
e

k k
|E< > Ta)l <> S 1B, (X, X)) | < Cr2B(m) = o(n ™

a=1 i=a j=1

2
k k
E( > Ta) =Y BT ) +2 Y. E(TT.)=1Iy+1,
a=1

By Lemma 6.1,

E(T,T )< Crin?p(m)

which implies

I, =o(n™h).
By Lemma 6.1, we have

l—(l z_a

(6.9)

(6.10)

(6.11)

2 2
I, =EB(T%) = ( Z Y, ) Z Y, ) (xaa,...,xba) + Cr?n?B(m)

b

Il MQ

=3 B0 ar x) +2 [ B )Y,y

a, <z<]<b

-5
Xq ) ..,xba)-%—o(n )
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= Jla + J2oz + O(n - 5)'
y (6.8) we have

b
0= [ 21 /E(H (x5 X)) (x;)
i=a, 9=

+2 Z / X X)H, (%, X ))dF (x;)
1<5<y <a —-m
ba a,—m
< PIRECHEC S SIETIND SR (N )
i=a, 7=1 1<73<y Saa—m
b

- > B (X X)) + O™/,
1=1

1=

Q

o]

From Lemma 3 of Hall [8], we obtain
EH? (X, X)) ~ th{ / Fix)f j(x)dx} [ / {K(u)K(u—i—v)du}?dv].
Thus

~h3p2 Z {/f (0)f (%) dx}[{/h(u) (u-l—v)du} dV:|+ O(h"P/?)

z—a 1=1

a —m

—-h3pz Z D; ;+O(h™?/?).

1= =a, 7=1
On the other hand, by Lemma 6.1, (6.2), (6.5) and (6.7) we get

[ Joo | < o(nth”).
Thus

a —m

I= 30 Ura+ 7)< 1973 Z S D+ O 4 o(nr °7)

a=1 a=1 z_a 7=1

and from condition (2.4) and Lemma 6.8, we can obtain

2
Iy = 5h°Poi(1+o(1)). (6.12)

Now (6.9) follows from (6.11) and (6.12) and the proof is complete.

Lemma 6.5:
k
s Z E{T | %, }—0 in probability as n—oo. (6.13)
a=1
k
5, 2 Z E{Ti | Fo) — (E{T | ‘ZFO}Z——& in probability as n—oo. (6.14)
a=1

Proof: By Lemma 6.2 and (6.2), we obtain
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k
E|Y E{T,|%,}

a=1

(6.13) follows.
To prove (6.14), it suffices to show that

and

MICHEL HAREL and MADAN L. PURI

k
<>
a=1

=l

Q

i

a
o

a —
a

j=

{1 EH; ;(X;; X)) | +CB(m)}
1

< Cn?B(m) =o(n~ 1Sn).

k
Iy =572 E|E{T%|%,}|?—(ET,)*-0 as n—oo,

a=1

k
Iy =572 [E|E{T,|F,}|?~(ET,)*| -0 as n—oo.

a=1

(6.15) follows since by Lemmas 6.1 and 6.2, we obtain after some computations that

I, <Cn3rf(m) = o(n~1s2).

On the other hand, by Lemma 1 (after some computations) we get

|E[E{H; ;(X;,X;) | FIE{H, (XpXp) | F}) | <CB(m)

which implies

k

> E(E(T,|%,))* < Cn®rf(m)+o(n~'s2)

a=1

(6.16) follows from (6.10) and (6.17).

Lemma 6.6:

Proof: Since

5,7 2E(S, —U,)?—0 as n—oo.

The proof follows by showing that

{H; (X, X;) -

E(H; (X;,X;))}-

| E(H, (X, X)) | < en®*(logn)*h*P/?

ba d(il
=a, j=a,-m+1
aa—l

J=a,-m+

) as n—oo.

H i,j(xi,xj)) < 2k%e[mr + r’m?fm) + m*] = o(s},).
1

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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Proof: Since from (4.7'), |Ti | < Cntr?, it follows from Lemma 6.1 that

b, 4
E(T,)*<E > Yayi(xi)) dQ,, ¢ + Cn*rig(m)

1=
aa

_Z E(Y? (x:))dQ, + / Z / E(Yg, i(x,)Y, #(%;))dQ,

t—a a, <zz<b

+2 Z / E(YZ, i(x,)Yo o(x)dQq
a, < i,i' < b
1 £

/E(Ya 11 ll a,z2(xi2)Ya,i3(xi3))an

a <11, 2,13<b

i F 1 g(s¢2)
! 1
+3  [B Yo, )00 +on ™
aa<11, o 3,14<b d=1
1 F#i g(s?ée)

= Ia,l+Ia,Z+Ia,3+la,4+la,5+o(n_1)'

Using Lemmas 6.1 and 6.4, Holder’s inequality and Schwartz’s inequality, we get after some com-
putations

k
D I j=o(sp) 1<i<p
a=1
which implies (6.21).
Lemma 6.8: (Cacoullos [1]). Suppose M(y) is a Borel scalar function on RP such that

sup | M(y)| < oo (6.22)
y e RP
[ 19 1dy <0 (6.23)
lim |y|PM(y)=0. (6.24)
|y|—o0

Let g(y) be another scalar function on RP such that

/ l9(y) | dy < oo. (6.25)
and define

5,(8) = (b=?) [ M()o(z- vy
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Then at every point x of continuity of g
Jim g, = 9(x) [ M(y)ay. (6.26)

Proof: Choose § > 0 and split the region of integration in two regions |y| <é and |y| >é.
Then we have

0,00 =9 [ My | = (877 [ [ox—y) = gGomm(})ay |

< max |g(x—y)—g(®)]| / | M(z) | dz
ly| <6
|z| <&/h

o [ ARl LT w(Fay 1500 [ 8o ()

[yl >6 ly| >6

max | o(x=3)—g)| [ ()] ds

<
[yl <8

6~ Psu z|P| M(z d x M(z)dz
ot (5l MG)| [ 190 y+|g(),|z!5/h| (0

=1, +1,+1,

From the continuity of g at z and (6.23), I, tends to 0 if we let first n—oco and then 6—0. From
(6.24) and (6.25), I, tends to 0 and from (6.23), I tends to 0 as n—oo. The proof follows.

Lemma 6.9: We have
E(KS) = o(r®P+2)y, j>1 (6.27)

where K ; is defined in (4.6).
Proof: Define

5= [ {2 i - st

Then, we have for any k > 1

k . . k i
| E(B5)| < | /{H | Ef(e)) = £y /[H K(ﬂﬂ( )h‘Zﬂfj(z)dz}dm(l)...dx(’“)|
Rk 1 =1

=1

_ ko (),
= | / {(O(n U 4+ R2rAf(z) + o(h®))F /Ll;]:lh( - ):ifj(z)dz}dx(l)...dz(k)l

Rk
k i
< Ch?k| /{{ K(x( )h_Z)}fj(z)dz}dx(l)...dx(k)
1=1
Rk
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< Ch¥(P+2) where C is some constant > 0.

The desired results follow immediately on noting that

E(K$) = E(B}) - 6E(B})E(B,) + 15E(B})E*(B,) — 20E(B3)E%(B))

+15E(B%)EY(B,) - 5E°(B)).
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