
JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 8(3), 191–200
Copyright c© 2004, Lawrence Erlbaum Associates, Inc.

Duals for Classical Inventory Models via
Generalized Geometric Programming

CARLTON H. SCOTT†
University of California Irvine, Graduate School of Management, Irvine, California
92697 USA

THOMAS R. JEFFERSON

University of Florida, Gainesville, Warrington College of Business, Decision and In-
formation Sciences Department, Gainesville, Florida 32611 USA

SOHEILA JORJANI

California State University San Marcos, College of Business, High Technology Man-
agement Department, San Marcos, CA 92096 USA

Abstract. Inventory problems generally have a structure that can be exploited for
computational purposes. Here, we look at the duals of two seemingly unrelated inventory
models that suggest an interesting duality between discrete time optimal control and
optimization over an ordered sequence of variables. Concepts from conjugate duality
and generalized geometric programming are used to establish the duality.
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1. Introduction

Geometric Programming is now a well-established branch of optimization
theory and has been instrumental in the solution of many nonlinear opti-
mization problems occurring in such diverse areas as marketing, Balachan-
dran and Gensch [1], water pollution management, Ecker and McNamara
[4] production engineering, Petropoulos [8], transportation planning, Jef-
ferson and Scott [9], and machine maintenance, Cheng [2]. Initially, geo-
metric programming concerned itself with finite dimensional optimization
problems where both the objectives and the constraints were in posynomial
form (i.e. polynomial with positive coefficients). Subsequently the theory
was extended by Peterson [7] to any finite dimensional convex program-
ming problem. This latter development is termed generalized geometric
programming and it is with the so called “unconstrained” version of gen-
eralized geometric programming that we will be concerned with in this
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paper. Various other extensions are possible such as to composite geomet-
ric programming, Jefferson and Scott and Wang [10] which have particular
application in tool replacement strategies, Scott, Jefferson and Lee [13].

Generalized geometric programming is novel in its approach to mathe-
matical programming in that it identifies and utilizes the following proper-
ties: (i) convexity, (ii) linearity, (iii) separability, and (iv) duality. Convex-
ity and linearity are two very important functional forms in mathematical
programming and they provide powerful results regarding optima. In ad-
dition, powerful computational techniques are associated with these forms.
Separability, even if only partial, provides insight into the solution of a
mathematical program and often contains the key to a successful decom-
position. The dual problem, taken in the geometric programming sense
often provides a much simpler problem to work with for the following two
reasons:

(i) the dual problem is optimized over the polar to the cone constraints
in the primal. This means that if the primal cone is of high dimension,
the polar cone is of low dimension – a computational bonus!

(ii) the constraints in the primal problem are absorbed into the dual ob-
jective function. In this way, while the primal program may have non-
linear constraints, the dual may be simply an optimization over a poly-
hedral set.

Joint utilization of the primal and dual objectives yields a powerful algo-
rithmic stopping criteria; i.e. the sum of both objectives is less than some
specified tolerance. Finally, the dual often gives a different perspective to
the problem which has useful interpretational insights. Many examples are
given in Peterson [7] and focused applications on location theory may be
found in Scott, Jefferson and Jorjani [12].

As stated earlier, we will be concerned with the so called “unconstrained”
version of generalized geometric programming which in conventional terms
means a finite dimensional convex programming problem with the con-
straint set being a cone. Reason (ii) above refers to the constrained theory
[7]. In this paper, we present the theory pertaining to this particular prob-
lem type and then we look at the application to two problems of inventory
control, Clark and Scarf [3], Modigliani and Hohn [5]. These seemingly
unrelated models are in fact, related in the sense of duality.
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2. Generalized Geometric Programming

We consider an optimization problem of the form:

Minimize f(x) over x ∈ C ∩ χ (1)

where χ is a cone in En and f is a closed convex function with domain C.
This problem is termed the primal problem. We associate with the primal
problem, another problem, called the dual problem, which is of the form:

Minimize g(y) over y ∈ D ∩ χ∗ (2)

where χ∗denotes the polar cone of χ in En and [g: D] is the conjugate
transform of [f : C] with value

g(y) = sup
x∈C

(xT y − f(x)), (3)

D = {y ∈ En|xT y − f(x) < ∞} (4)

and
χ∗ = {y |xT y ≥ 0 ∀x ∈ χ} (5)

We note that the primal and dual problems are essentially of the same form
and hence are termed symmetric. At optimality, the following relationships
hold between the primal the primal and dual optimal points, x0 and y0

respectively.

f(x0) + g(y0) = 0 (6)
y0 ∈ ∂ f(x0) , x0 ∈ ∂ g (y0) (7)
xT

0 y0 = 0 (8)

These optimality conditions allow an optimal point for one program to be
calculated from an optimal point of the other. Here ∂ f(x0) denotes the
subgradient set of f at x0. That is,

∂ f(x0) = {y |f(x0 )+ < y, x− x0 >≤ f(x),∀x ∈ C} (9)

For full details of the theory given in this section the reader is referred to
Peterson [7].
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3. A Multi-Echelon Inventory Model

For a storage network, with n facilities in series, uncertain demand D,
occurs at facility n only. Shortages are passed up the line to n − 1, then
n− 2 if n− 1 is out of stock, etc. Facility n may be a retail store, whereas
facility 1 may be a distant warehouse where storage costs are much lower.

Let ui be the sum of stock on hand at facilities i, i = 1, . . ., n. Hence

u1 ≥ u2 ≥ ... ≥ un (10)

At the beginning of a planning period, each facility places an order with
immediate delivery. Let ci denote the amount by which the unit capital
charge on ordering at facility i exceeds that at i−1 and c0 = 0. Similarly
let hi denote that amount by which the unit storage cost at facility i exceeds
that at facility i− 1 and h0 = 0. We note that ci ≥ 0, hi ≥ 0 is reasonable
since distant warehouses may have smaller holding and ordering costs than
retail stores within a city. Let pi denote the unit shortage cost at facility
i. Hence the total costs incurred are∑

i

ciui +
n∑

i=1

(pi E [D − ui]+ + hi E [ui −D]+) (11)

which represent the ordering cost, expected shortage cost and expected
holding cost respectively and ζ+ = max[ζ, 0]. Hence we obtain the following
optimization problem: minimize the convex function∑

i

(ci − pi)ui +
∑

i

(pi + hi)E[ui −D]+ +
∑

i

piE[D] (12)

subject to equation (10),

ui ≥ ui+1 i = 1, 2, ...., n-1 (13)

In the generalized geometric programming form, we have to minimize

∑
i

aiui + bi

D=ui∫
D=0

(ui −D)f(D)dD (14)

subject to the cone condition

Pu ≥ 0 (15)
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where
ai = (ci−pi), bi = (pi+hi), u = (u1, ...., un)T and P is an (n−1)×n matrix
with elements pij = +1 for i = j and pij = −1 for j = i + 1. f denotes the
probability density function of demand. For the dual problem, we require
the conjugate transform of the objective function, equation (14), and polar
of equation (15). Taking the conjugate transform defined by equations (3),
of (14) results in the supremum being attained when

vi − ai − biF (ui) = 0 (16)

where vi is the dual variable corresponding to ui and F is the cumulative
distribution function of demand. Hence, solving equation (16) for ui we
have that

ui = F−1((vi − ai)/bi)

Hence the dual objective function is

∑
i

(vi − ai)F−1((vi − ai)/bi)− bi

D̂∫
D=0

(F−1((vi − ai)/bi)−D)f(D)dD

−
∑

i

piE[D] (17)

where D̂ = F−1((vi − ai)/bi).

The polar cone is given by

{v |v T
u ≥ 0 ∀ u s.t. Pu ≥ 0} (18)

Equation (18) readily implies that

v = PT z, z ≥ 0 (19)

where z is an n− 1 dimensional vector.

Expanding equation (19), we have that

v1 = z1

vi = zi − zi−1 i = 2, ..., n− 1
vn = −zn−1

(20)

We note that the dual problem, i.e. the minimum of equation (16) subject
to equations (20) and z≥ 0 is a discrete time optimal control problem,
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where zi, i = 1, ..., n− 1 are the state variables and vi, i = 1, ..., n are the
control variables.

Several other models which fit into this framework may be found in Muck-
stadt and Roundy [6] and a specialized algorithm has been given by Scott
and Tang [11].

A numerical example follows:

Suppose the demand D follows an exponential distribution with mean λ.
Hence

f(D) = 1/λ exp(−D/λ), F (u) = 1− e−D/λ

and F−1(α) = −λ ln(1− α)

It follows that the primal objective given by equation (16) is∑
i

((ai + bi)ui + biλe−ui/λ − hiλ)

The corresponding dual objective is from equation (19)∑
i

(λ(ai + bi − νi) ln(
ai + bi + νi

bi
)− ciλ + νiλ)

where the primal and dual variables are related by

ui = −λ ln(
ai + bi − νi

bi
) i = 1,..,n

We now particularize to the following data set.
n = 3, λ = 100, c = (25, 60, 40), h = (10, 20, 30, ), p = (50, 100, 80). In

this case, the minimal cost is 20798.15 with optimal dual variables ν =
(0, 1.739,−1.739) and corresponding primal variables u = (53.9, 42.7, 42.7).This
implies that it is optimal to hold 42.7 units of inventory at facility 3 and
the remaining 11.2 at facility 1.

4. An Inventory-Production Control Model

A well-known problem in inventory control is to select a set {xt ≥ 0 t =
1, ..., T} of production levels to minimize, over a planning horizon of length
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T, the sum of production and holding costs, while meeting demand. For-
mally the problem may be posed as:

Minimize
T∑

t=1
(c(xt) + htyt) (21)

subject to the inventory balance dynamics

y1 = x1 − d1

yt − yt−1 = xt − dt t = 2, ..., T − 1
−yT−1 = xT − dT

(22)

and the non-negativity constraints

yt ≥ 0 t = 1,..., T
xt ≥ 0 t = 1, ..., T

(23)

Here yt denotes the inventory level in period t, dt is the demand in period
t, c(xt) is the production cost (assumed convex and strictly monotonically
increasing) and ht is the holding cost per unit in period t.

To invoke the theory of generalized geometric programming, we need to
put the constraint equations (22) and (23) into a cone. Hence we intro-
duce a new variable αt, t = 1, ..., T and restrict it to a one point domain
{dt}, t = 1, ..., T . This variable is then associated with an additive com-
ponent of the objective function which is identically zero. Hence we obtain
a cone condition

y1 - x1 + α1 = 0
yt − yt−1 − xt + αt = 0 t = 2, ..., T − 1
−yT−1 − xT + αT = 0
yt ≥ 0 t = 1, ..., T

(24)

It is convenient to treat the other non-negativity constraint xt ≥ 0, t =
1, ..., T as an implicit one.

Our problem is now in a form which is directly suitable for application
of the theory. The dual objective is given by

sup
xt, yt, αt

xt ≥ 0

∑
t

(xtut + ytvt + αtβt − c(xt)− htyt)

= sup
xt≥0

∑
t

(xtut − c(xt)) + sup
αt

∑
t

αtβt + sup
yt

∑
t

(ytvt − htyt)

=
∑

t

c∗(ut) + dtβt (25)
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where c∗(ut) = sup
xt≥0

(xtut − c(xt))

ut ∈ ∂ c(xt) and vt = ht (26)

Usually c(xt) is a quadratic function and c∗(ut) is readily calculated. Fur-
ther we require the polar to the cone defined by equations (24) i.e.

{(ut , vt, βt)|
∑

t

(utxt+vtyt+βtαt) ≥ 0 ∀ xt, yt, αt satisfying equations (26)}

A straightforward calculation shows that

vt = pt − pt+1 + qt t = 1, ..., T − 1
ut = −pt t = 1, ..., T
βt = pt t = 1, ..., T
qt ≥ 0 t = 1, ..., T

Hence the dual problem is to minimize

T∑
t=1

(c∗(−pt) + dtpt)

subject to
pt − pt+1 + ht ≤ 0 t = 1,...,T-1

For constant ht, we have a minimization over a monotonically increasing
set of decision variables.

A numerical example follows:

Suppose c(xt) = 4x2
t for T = 3 and h = (10, 5), d = (100, 200, 300). In

this case, c∗(pt) = p2
t /16 with pt = 8xt.

The primal program is

Minimize
3∑

t=1
4x2

t + 10y1 + 5y2

subject to:
y1 = x1 − 100
y2 − y1 = x2 − 200
− y2 = x3 − 300
and x ≥ 0, y ≥ 0
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The corresponding dual program is:

Minimize
3∑

t=1

1
16p2

t + 100p1 + 200p2 + 300p3

subject to :
p1 − p2 − 10 ≤ 0
p2 − p3 − 5 ≤ 0

Solving the dual program yields the optimal value of –481,492.7 with opti-
mal solutions p = (−1591.67,−1601.67,−1606.67). The corresponding pri-
mal program has minimal cost 481,492.7 with optimal solution (rounded)
x = (199, 200, 201) and y=(99, 99).

5. Conclusions

The two inventory problems considered suggest an interesting duality be-
tween certain problems of discrete time optimal control and static opti-
mization over monotonic sequences. The multi-echelon inventory model
considered in Section 3 is a static optimization over monotonic sequences
and the geometric dual is a discrete time optimal control problem. The
reverse is the case for the production planning problem treated in Section
3. Problems of both type arise naturally in inventory control. Further,
with a dual problem we are in a far better position to develop efficient
computational algorithms that if only the primal is considered.
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