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Abstract. Ensemble classification techniques such as bagging, (Breiman, 1996a), boost-
ing (Freund & Schapire, 1997) and arcing algorithms (Breiman, 1997) have received
much attention in recent literature. Such techniques have been shown to lead to re-
duced classification error on unseen cases. Even when the ensemble is trained well
beyond zero training set error, the ensemble continues to exhibit improved classifica-
tion error on unseen cases. Despite many studies and conjectures, the reasons behind
this improved performance and understanding of the underlying probabilistic structures
remain open and challenging problems. More recently, diagnostics such as edge and mar-
gin (Breiman, 1997; Freund & Schapire, 1997; Schapire et al., 1998) have been used to
explain the improvements made when ensemble classifiers are built. This paper presents
some interesting results from an empirical study performed on a set of representative
datasets using the decision tree learner C4.5 (Quinlan, 1993). An exponential-like decay
in the variance of the edge is observed as the number of boosting trials is increased.
i.e. boosting appears to ’homogenise’ the edge. Some initial theory is presented which
indicates that a lack of correlation between the errors of individual classifiers is a key
factor in this variance reduction.
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1. Introduction

This paper is concerned with the classification problem, whereby a model
builder (classifier) is presented with a training set comprising of a series
of n labelled training examples of the form (x, y), . . . , (xn, yn), with yi ∈
(1, . . . , k). The classifier’s task is to use these training examples to produce
an hypothesis, h(x), which is an estimate of the unknown relationship y =
f(x). This ’hypothesis’ then allows future prediction of yi given new input
values of x. A classifier built by combining individual h(x)’s to form a single
classifier is known as an ensemble. Whilst there are many ensemble building
methods in existence, this discussion focusses on the method of boosting
which is based on a weighted subsampling of the training examples.

† Requests for reprints should be sent to Virginia Wheway, School of Mathematics and
Applied Statistics, the University of Wollongong, Australia.
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Introduced by Freund and Schapire in 1997, boosting is recognised as
being one of the most significant recent advances in classification (Freund
& Schapire, 1997). Since its introduction, boosting has been the subject
of many theoretical and empirical studies (Breiman, 1996b; Quinlan, 1996;
Schapire et al., 1998). Empirical studies have shown that ensembles grown
from repeatedly applying a learning algorithm over different randomly cho-
sen subsamples of the data of size n improves generalisation error for un-
stable learners (i.e. methods where a small change in the input data leads
to large changes in the learned classifier).

2. Current Explanations of the Boosting Mechanism

Ensemble classifiers and the reasons for their improved classification accu-
racy have provided a fertile ground for research and significant gains may
still be made if these reasons are addressed. In theory, as the combined
classifier complexity increases, the gap between training and test set error
should increase. However, this is not reflected in empirical studies. There
is strong empirical support for the view that overfitting is less of a prob-
lem (or perhaps a different problem) when boosting and other resampling
methods are used to improve a learner. Some authors have addressed this
issue via bias and variance decompostions in an attempt to understand the
stability of a learner (Breiman, 1997; Breiman, 1996b; Friedman, 1997).

Boosting is an iterative procedure which trains a classifier over the n
weighted observations. Boosting begins with all training examples being
weighted equally. (i.e. 1

n ) At the m + 1-th iteration, examples which were
classified incorrectly at the m-th iteration have their weight increased mul-
tiplicatively so that the total weight on incorrect observations is equal to 0.5
for the m+1-th iteration. Hence, the learning algorithm will be given more
opportunity to explore areas of the training set which are more difficult to
classify. Hypotheses from these parts of the space make fewer mistakes on
these areas and play an important role in prediction when all hypotheses
are combined via weighted voting. Weighted voting takes places by having
each hypothesis assigned a voting weight which is a function of the error
made on that particular hypothesis. Hypotheses which make fewer errors
are given a higher voting weight when the ensemble is formed. Accuracy
of the final hypothesis depends on the accuracy of all the hypotheses re-
turned at each iteration and the method exploits hypotheses that predict
well in more difficult parts of the instance space. An advantage of boosting
is that it does not require any background knowledge of the performance
of the underlying classification algorithm. Refer to Table 1 for details of
the boosting algorithm.
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Input: n training instances xi with labels yi.
Maximum trials, M . Classifier, H.
Initialization:
All training instances begin with selection weight w0

i = 1/n.
Repeat for M trials:

form classifier, hm, using weighted training data and H;
put εm = weighted error for hm on the training data
(εm =

∑n
i=1 wm

i × I(Hm(xi 6= yi) if εm > 1/2,
discard hm and stop boosting;
If εm = 0 then

hm gets infinite weight.
classifier hm voting weight = βm, where

βm = log εm

1−εm

re-weight training instances:
if hm(xi) 6= yi then

wm+1
i = wm

i /(2εm)
else

wm+1
i = wm

i /2(1− εm)
Unseen instances are classified by voting the ensemble of
classifiers hm with weights log( 1

βm
).

The following comments and conclusions on boosting and ensemble clas-
sification have been made to date.

• Boosting is capable of variance and bias reduction (Breiman, 1996b).

• Breiman (1996b) claims the main effect of the adaptive resampling when
building ensembles is to reduce variance, where the reduction comes
from adaptive resampling and not the specific form of the ensemble
forming algorithm.

• A weighted algorithm in which the classifiers are built via weighted ob-
servations performs better than weighted resampling at each iteration,
apparently due to removing the randomisation (Friedman, Hastie &
Tibshirani, 1998).

• Confidence rated predictions outperform boosting algorithms where a
0/1 loss is applied to incorrect classification (Freund & Schapire, 1996;
Schapire & Singer, 1998).
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• Successful ensemble classification is due to the non-overlap of errors
(Dietterich, 1997) i.e. observations which are classified correctly by one
hypothesis are classified incorrectly by others and vice versa.

• Margin and edge analysis are recent explanations for Breiman, 1997
and Schapire et al., 1998. More detail on these measures and related
studies is provided in the next section.

3. Edge and Margin Analysis

Recent explanations as to the success of boosting algorithms have their
foundations in margin and edge analysis. These two measures are defined
for the ith training observation at trial m as follows: Assume we have a
base learner which produces hypothesis hm(x) at the m-th iteration, and
an error indicator function, Im(xi) = I(hm(xi) 6= yi). Let cm represent the
vote for the m-th hypothesis with

∑
m cm = 1. Then,

• edgei(m, c) = total weight assigned to all incorrect classes. The edge
is defined formally in (Breiman, 1997) as

edgei(m, c) =
m∑

j=

cjIj(xi) (1)

• margini(m, c) = total weight assigned to the correct class minus the
maximal weight assigned to any incorrect class.

For the two class case margini(m, c) = 1− 2 edgei(m, c) and in general,
margini(m, c) ≥ 1− 2 edgei(m, c) (Schapire et al. (1998)).

Whilst more difficult to compute, the value of the margin is relatively
simple to interpret. Margin values will always fall in the range [−1, 1], with
high positive margins indicating confidence of correct classification. An
example is classified incorrectly if it has a negative margin. The edge on the
other hand cannot be used as an indicator variable for correct classification
(except in the two-class case). Whilst the margin is a useful measure due to
its interpretability, mathematically it is perhaps not as robust and tractable
as the edge.

Schapire et al. (1998) claim that boosting is successful because it works
to increase low margins for difficult observations, hence increasing the con-
fidence of correct classification. Similarly, Breiman (1997) claims that a
lower average edge (or higher average margin) should lead to higher classi-
fication accuracy on unseen cases.
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This study examines the variance and average of the edge values versus
the number of boosting trials performed. Methodology for the study is
discussed in detail in the next section.

4. Empirical Results and Initial Theory

In all experiments, the decision tree learner C4.5 (Quinlan, 1993) with de-
fault values and pruning was used as the base classifier, with a boosted
ensemble being built from M = 50 iterations. Datasets used are a se-
lection from the UCI1 Machine Learning Repository. The datasets were
chosen to provide a representative mixture of dataset size and boosting
performance previously reported (Quinlan, 1996), Schapire et al., 1998).
10-fold crossvalidation was applied whereby the original training data were
shuffled randomly and split into 10 equal-sized partitions. Each of the ten
partitions was used in turn as a test set for the ensemble generated using
the remaining 90% of the original data as a training set.

At each iteration, the values for edge were calculated for each observation
in the 10 training sets (cross-validation folds). The average and variance
of edgei(m, c) were calculated as follows:

Ê[edgei(m, c)]= 
n

∑n
i= edgei(m, c)

ˆV ar[edgei(m, c)]= 
n

∑n
i=(edgei(m, c)−Ê[edgei(m, c)])

The results of these trials for the colic, glass and letter datasets appear
in graphical form below, - (these results are indicative of the average and
variance trends for all datasets tested).

oNte an apparent exponential decrease in variance perhaps indicating an
asymptote of zero or some small value, ε. These results prompt the question
“does boosting homogenise the edge?”. The most dramatic variance decay
is seen in boosting trials m ≤ 5 i.e. most of the ’hard’ work appears to
be done in the first few trials. This observation is consistent with several
authors noting in earlier published empirical studies that little additional
benefit is gained after 10 boosting trials when a relatively strong learner is
used as the base learner. If the above variance reduction trends are truly
exponential, replotting on a log scale will show a linear trend. This is not
the case, however, and we may conclude that the decrease is not purely
exponential.

It appears that observations with low inital edges are ’sacrificed’ for ob-
servations with high initial edges. i.e observations which were initially
classified correctly are classified incorrectly in later rounds in order to clas-
sify ’harder’ observations correctly. This notion is consistent with margin
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Figure 1. Average edge versus number of boostingtrials.

distribution results presented by Schapire et al. (1998) and with results yet
to be published by Breiman (personal communication with Leo Breiman).

It has been suggested in recent studies that reduction in test set error
may correlate with a reduction in the edge values. With the exception
of the letter dataset, plotting the average edge versus test set error for
all crossvalidated folds showed no relationship with reduction in test set
error. However, the glass and colic datasets are quite small, resulting in
crossvalidated test sets containing 10-20 observations only. It was also
noted that boosting with unweighted votes where the vote for each classifier
was equal to 1

m resulted in a similar ’exponential’ decrease, perhaps alluding
to a voting effect rather than the specific form of the algorithm.

Interestingly, an increase in the average edge is apparent as the number
of boosting trials increases. Refer to Figure 4 below for results on the colic,
glass and letter datasets. Again these trends are indicative of trends for all
other datsets tested.

5. Developing Expressions for Var[edgei(m, c)] and E[edgei(m, c)]

An alternative expression for the variance of the edge is derived below.
Firstly, the definition of edge follows that given in equation (1) (Breiman,
1997). Letting cj = aj/

∑
aj , and defining the unweighted error of the j-th
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hypothesis as ej , this expression may be rewritten as :

edgei(m, c)=
1P
aj

mX
j=1

ajIj(xi).

Now for Adaboost,

• aj = log(
εj

1−εj
) = log( 1

βj
)

• V ar[Ij(xi)]= ej(− ej)

Therefore,

V ar[edgei(m, c)] =

Pm
j=1(log βj)

2ej(1− ej)

(
Pm

j=1 log βj)2

+
2
PPm

j<k log βj log βkCov[Ij(xi), Ik(xi)]

(
Pm

j=1 log βj)2
(2)

The expression derived for V ar[edgei(m, c)] above is dependent only on εj ,
ej and Cov[Ij(xi), Ik(xi)]. Intuitively, this result makes sense, since, at each
iteration, the learner attempts to correctly predict observations that were pre-
dicted incorrectly at the previous iteration. For this to happen, the indica-
tor variables for unweighted error should be negatively correlated or uncorre-
lated for pairwise iterations. If errors were positively correlated, voting could
degrade performance since individual hypotheses may consistently vote incor-
rectly on some observations and never be given the chance to explore differ-
ent areas of the training set. Hence, from the expression derived, negative or
zero covariance terms will result in non-increasing values for V ar[edgei(m, c)].
Now, Cov[Ij(xi), Ik(xi)]= E[Ij(xi), Ik(xi)]− ejek and a loose lower bound for
Cov[Ij(xi), Ik(xi)] is given by min(ej , ek)− ejek.

A simplified expression for the average edge is given by:

E[edgei(m, c)]=

Pm
j= log( 

βj
)ejPm

j= log( 
βj

)
(3)

After algebraic manipulation it can be shown that the condition for average edge
to increase between the mth and m + 1th trials is em+1 ≥ E[edgei(m, c)]. That
is, the average edge will increase between the mth and m + 1th trials if the
unweighted error of the m + 1th trial is greater than or equal to the average
edge on the mth trial. Generally the average edge increases but stays below a
threshold of the maximum unweighted error of the hypotheses. The maximum
unweighted error is an upper bound on the average edge. This may imply the
following:

em+1 ↑ ⇒ E[edgei(m, c)] ↑ ⇒ V ar[edgei(m, c)] ↓ ⇒ TestError ↓, perhaps
indicating that further improvements in test set error may be obtained by actively
minimising the variance of the edge (or margin) values.
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6. Is V ar[edgei(m, c)] a Monotonic Non-Increasing Function?

A theoretical expression for V ar[edgei(m, c)] has been given in Section 4.1 in (2).
To prove that this is monotonic non-increasing function, it must be shown that:

V ar[edgei(m, c)]≥V ar[edgei(m + 1, c)]

Algebraically, it is quite straightforward to show that:

V ar[edgei(m + 1, c)]= CmV ar[edgei(m, c)]+Am

Now, Cm < 1 ∀m and hence Am must be non-negative in the limit as the LHS
variance expression would fall below zero. But Am = Am,1 + Am,2 with Am,1

being negative in the limit and Am,2 being strictly positive. If Am is non-negative

in the limit,
Am,1
Am,2

must be less than -1 in the limit. Refer to Figure 7 below where

it appears that this is the case, implying that Am has a non-negative limit.
Alternatively, define δm as follows:

δm = V ar[edgei(m + 1, c)]−V ar[edgei(m, c)]

If V ar[edgei(m, c)] is monotonic non-increasing, δm ≤ 0. The values of δm are
plotted below.

Again, via algebraic manipulation it can be shown that:

δm = δm,1 + δm,2 + Am

Now, δm,1 < 0 and δm,2 < ‖δm,1‖. It can be shown via mathematical induction
that δm,2 < 0. Hence in both cases above we seek the distribution of Am to
prove the non-increasing property of V ar[edgei(m, c)]. Since Am is essentially a
correlation term with a slightly positive value in the limit, this confirms the notion
that the success of boosting is due to the lack of correlation between errors made
by individual classifiers (or a non-overlap of errors between individual classifiers).

7. Empirical Trials of New Terms

Using the glass, colic and letter datasets, the values of Am, Am,1, Am,2, Cm,
δm, δm,1 and δm,2 were evaluated. As with previous empirical results, 10-fold
crossvalidation was applied to the same shuffled datasets with each plotted point
representing the result from one fold. M=50 boosting trials were employed.

It can be seen in Figure that Am appears to be zero or slightly positive in the
limit with a tighter scatter about the zero line as m increases. Figure shows
Am,1 being negative in the limit but not exhibiting the same scatter decrease as
Am. From Figure it is clear that Am,2 is strictly positive.

It can be seen in Figure that Cm is always negative with an apparent limit of
1. It can be seen in Figures and that δm,1, δm,2 are always negative, both with
an apparent limit of 0.

It can be noted in all the above figures, the variation in each term for the colic
dataset is larger than the variation observed for the other 2 datasets plotted (i.e.
glass, letter )
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Figure 3. δm versus number of boosting trials.
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Figure 4. Am versus number of boosting trials.
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Figure 5. Am,1 versus number of boosting trials.
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Figure 6. Am,2 versus number of boosting trials.
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Figure 7. Cm versus number of boosting trials.
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Figure 8. δm,1 versus number of boosting trials.
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8. Interesting Empirical Observations on E[Ij(xi), Ik(xi)] and
log βj

For the glass,bands, colic and letter datasets, the values of log βj were calculated
for all j and E[Ij(xi), Ik(xi)] for j, k ≤ 5, j 6= k.

• for all but the colic dataset, E[Ij(xi), Ik(xi)]=0 for all j, k ≤ 3.

• the colic dataset had E[Ij(xi), Ik(xi)]¿0 for all j, k ≤ 5. i.e. there are ob-
servations which are predicted incorrectly in one round and also predicted
incorrectly in subsequent rounds. Could this be a factor in the degradation
of performance of a learner on colic data when boosting is applied?

• it appears that E[I(xj), I(xj + )] = 0.

• It has been noted earlier that E[Ij(xi), Ik(xi)] ≤ min(ei, ej). This upper
bound is now seen to be very loose when the exact values of E[Ij(xi), Ik(xi)]
are calculated empirically. i.e. E[Ij(xi), Ik(xi)] << min(ei, ej) in this study.

• log βm shows no trending as m increases for glass and colic but shows variance
reduction and possible cycles for letter. Additionally, the values of βj are
highly variable for the colic datatset. This is an interesting result as boosting
degrades performance on the colic dataset.

• Pm
j=1 log βj is linear in m, suggesting that log βj is constant.

• Since log βj appears to be constant, (
P

log βj)
−2 is strongly a x−2 type curve

and this normalising factor has a strong decaying effect.

9. General Forms of Voting Systems

Mathematical analysis of variance reduction may be simplified by considering
general forms of voting systems. This may also allow us to partition the variance
into components pertaining to the voting mechanism and those pertaining to
the method of formation of a sequence of classifiers. In boosting, consecutive
classifiers are formed via an adaptive procedure but for bagging they are formed
via a sequence of bootstrap replicates. Examples of possible schemes to consider
are :

• all m classifiers make identical predictions at each iteration and hence have
the same individual error rate with corr[Ij(xi), Ik(xi)]= 1. Voting weight of
the mth classifier = 1

m
; in this case V ar[edgei(m, c)]= e(1 − e), which is

constant and independent of m. Therefore, if this type of voting scheme was
employed, no reduction in the variance of the edge would occur.

• the m classifiers do not make identical predictions at each iteration but have
the same individual error rates with corr[Ij(xi), Ik(xi)] = ρ. ( −1

m−1
≤ ρ <

1). Voting weight of the mth classifier = 1
m

; in this case, V ar[edgei(m, c)]

= e(1−e)
m

{1 + ρ(m− 1)}.
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Figure 10. Plot of calculated V ar[edgei(m, c)] for varying ρ versus number of combined
classifiers (e = 0.04).

The first term in the variance expression above may be considered to be the
voting component and the second term involving ρ the component pertaining
to the method of classifier formation. Figure 9 below shows the value of this
variance with e fixed at 0.04 and ρ varying; −1

1−m
≤ ρ ≤ 1. The reason ρ has a

lower limit of −1
m−1

is given by Kendall & Stuart (1963). It may be possible to
apply this lower limit on ρ in future work when trying to prove asymptotic limits
on V ar[edgei(m, c)].

To check the degree of correlation between individual hypotheses for the letter
dataset, the variance values obtained empirically are overlaid onto the variance
trend graph above. The value of e is again 0.04, which is a close match to
the values of ej obtained empirically for the letter data. Refer to Figure 5 below
where we may conclude that corr[Ij(xi), Ik(xi)] for the letter data is in the range
0 ≤ corr[Ij(xi), Ik(xi)] ≤ 0.10. Clearly the assumptions of equal individual error
rates and equal correlation between classifiers is too loose but we can still gain
an appreciation for the type of variance reduction occuring and the degree of
correlation between hypotheses.

10. Conclusion

This study has presented some interesting results on the variance of the edge
when a boosted ensemble is formed. Variance reduction trends are consistent
across all datasets tested. The initial theory and associated empirical results
presented confirm that a key factor in this reduction is lack of correlation between
errors of individual classifiers. Some initial theoretical work presented in Section
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5 on generalised forms of voting systems also suggests low correlation of errors
between individual hypotheses leads to reduction in the variance of the edge (and
margin) values. Analysing the edge and margin distributions as a whole rather
than sample statistics such as average and variance may lead to further insights
into the boosting mechanism with possibilities for improved ensemble classifiers.

Notes

1. http://www.ics.uci.edu/ m̃learn/MLRepository.html
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