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Inequalities Between Hypergeometric Tails
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Abstract. A special inequality between the tail probabilities of certain related hyperge-
ometrics was shown by Seneta and Phipps [19] to suggest useful ‘quasi-exact’ alternatives
to Fisher’s [5] Exact Test. With this result as motivation, two inequalities of Hájek and
Havránek [6] are investigated in this paper and are generalised to produce inequalities in
the form required. A parallel inequality in binomial tail probabilities is also established.
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1. Introduction

The hypergeometric variable U ∼ HG(z,m, n) has probability distribution

P (U = u) =

(

m
u

)(

n
z−u

)

(

m+n
z

)

for integer u satisfying max(0, z − n) ≤ u ≤ min(m, z). We shall denote
the upper tail probability, P (U ≥ a), by

p(a; z,m, n) = P (U ≥ a) =

min(m,z)
∑

u=a

(

m
u

)(

n
z−u

)

(

m+n
z

) .

A standard result for independent binomial variables X and Y , where
X ∼ B(m, p1) and Y ∼ B(n, p2) with p1 = p2 (common success proba-
bility) is that the distribution of X, conditional on Z(= X + Y ) = z, is
hypergeometric, HG(z,m, n). This result is exploited in Fisher’s Exact
Test, the commonly used approach for testing the hypothesis of common
success probability (H0 : p1 = p2 = p) in independent binomials when
the sample sizes, m and n are small. In this context, X and Y represent
the number of successes in the two independent samples, and the observed
success and failure frequencies may be summarized in a 2 × 2 table. The
fixed values are m and n:
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Success Failure Total
Sample 1 a b m
Sample 2 c d n

z v m+ n

Based on these empirically observed values of (X,Y ), the Fisher-exact P-
value for an upper one-sided test (with H1 : p1 > p2) is P (X ≥ a|Z = z) =
p(a; z,m, n), which we shall denote by the generic pF . The corresponding
test procedure at nominal level α ∈ (0, 1) is: “Reject H0 if pF ≤ α”, and
the test is known as Fisher’s Exact Test.
This test is conditional since it treats z as fixed, rather than as an ob-

served value of the variable Z(= X+Y ). The use of pF as P-value cleverly
avoids the theoretical and computational problems involved in calculating
an unconditional P-value, since it is free of the nuisance parameter, p, and
it also avoids the problems of ‘ordering’ the 2 × 2 tables. It is generally
agreed however that pF is conservative. The difference of opinion about
the reason (discreteness or conditioning) for this conservativeness is well
documented, and a comprehensive overview of these opinions is presented
by Sahai and Khurshid [17]. Fisher’s test is obviously α-level in the un-
conditional setting where the variable corresponding to pF is p(X;Z,m, n).
Clearly, PH0

(pF ≤ α) =
∑ ∑

{(x,z):pF≤α}

(

m
x

)(

n
z−x

)

pz(1 − p)m+n−z ≤ α for any

p ∈ (0, 1) and for any nominal level α ∈ (0, 1). Fisher’s test is however
very conservative, and it is not unusual to find that PH0

(pF ≤ α) < 1
2α, as

demonstrated by Boschloo [3].
This excessive conservativeness of pF suggests that a less conservative

measure may be preferable, provided it is also easily calculated. In §2 we
give a brief summary of the findings of Seneta and Phipps [19], concerning
the properties of two measures based on hypergeometric tails. These mea-
sures, p(.), not only have some statistical justification as significance mea-
sures in the two binomial problem, but also satisfy the strict double inequal-
ity (1). This means that they are less conservative than p(a; z,m, n) = pF
and yet not as liberal as p(a+ 1; z,m, n):

p(a+ 1; z,m, n) < p(.) < p(a; z,m, n). (1)

Motivated by this result, we generalise two inequalities due to Hájek and
Havránek [6], and show that there are more related hypergeometric tails,
p(.), satisfying (1). This is followed by a numerical example, comparing
the measures p(.). A parallel inequality in binomial tails is established in
§3 and some implications are discussed.



INEQUALITIES BETWEEN HG TAILS 167

2. Some Alternatives to Fisher’s Exact Test

We begin by discussing two measures which are of historical significance in
the two-binomial context, and which also satisfy (1).

2.1. Lancaster’s mid-P, pM

A measure which has gained acceptance as an alternative to Fisher’s P-
value (see for example Hirji, Tan and Elashoff [7]) is an adjustment for
discrete P-values due to Lancaster [8], [9]. The adjustment is called the
mid-P and will be denoted by pM .
Lancaster’s mid-P adjustment of pF is defined by

pM = 1

2
[P (X ≥ a|Z = z) + P (X > a|Z = z)] = 1

2
[p(a; z, m, n) + p(a + 1; z, m, n)].

Since pM is the average of p(a; z,m, n) and p(a+1; z,m, n) it is clear that
(1) is satisfied by p(.) = pM , and therefore that pM is less conservative
than Fisher’s pF but does not err too far in the other direction. Barnard [1]
suggests that pF and pM should both be quoted when testing equality of
success probability for small samples because of the conservativeness of pF .
Further, Berry and Armitage [2] point out that pM has mean 1

2 and variance
close to 1

12 , in line with the properties of uniformly distributed P-values
(based on continuous test statistics) and that pM has some justification
as a significance measure on these grounds. (We note here that all other
weighted averages of p(a; z,m, n) and p(a+ 1; z,m, n) also satisfy (1), but
that they do not have the stated desirable properties of pM .)
The corresponding mid-P test procedure at arbitrary nominal significance

level α is “Reject H0 when pM ≤ α.” In contrast with Fisher’s Exact
Test, this procedure is not strictly α-level since there is no guarantee that
PH0

(pM ≤ α) ≤ α for arbitrary α ∈ (0, 1). Hirji, Tan and Elashoff [7]
describe the procedure as quasi-exact. Their extensive empirical assessment
reveals the excessive conservativeness of pF when compared with pM . They
also demonstrate that in the unconditional setting pM is occasionally (but
only mildly) anti-conservative, ie PH0

(pM ≤ α) ≈ α even though α is
occasionally exceeded. It is worth mentioning that this is true also of the
Pearson χ2-statistic used for large samples in this context (loc.cit.).
Hirji et al. [7] argue that closeness to nominal levels with only rare ex-

ceedance is an important criterion for assessing a test procedure. They
conclude that although not strictly a P-value, pM can be regarded as an
approximation in the unconditional setting, just as the chi-squared approx-
imation is used in the large-sample case.
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2.2. Liebermeister’s measure, pL

We now turn to a different hypergeometric, HG(z+1,m+1, n+1). The use
of its tail probability, p(a+1; z+1,m+1, n+1), in the two binomial setting
dates back to Liebermeister [10]; Seneta [18] shows the Bayesian derivation
and historical background to this tail probability, which we shall denote by
pL. We note that Overall [11], [12] also recommends the use of pL, purely
on the basis of worked numerical examples.
Seneta and Phipps [19] prove that, in addition to the Bayesian origins of

pL, inequality (1) is satisfied by p(.) = pL, ie

p(a+ 1; z,m, n) < p(a+ 1; z + 1,m+ 1, n+ 1) < p(a; z,m, n) , (2)

From (2), it is seen that Liebermeister’s measure, pL is less conservative
than pF but not too anticonservative and so, like the mid-P, pL is quasi-

exact and can be interpreted as an approximation to the unconditional
P-value in the sense that PH0

(pL ≤ α) ≈ α for arbitrary α ∈ (0, 1). A
comparison of the degree of anti-conservatism and also power comparisons
are carried out by Seneta and Phipps [19] for the measures pF , pM and pL.
The point is also made that the calculations required for pL are no more
complicated than for pF . In fact existing software for pF can be used simply
by adding unity to the diagonals a and d in the 2× 2 table of frequencies,
as the numerical example in §2.4 demonstrates.

2.3. Further inequalities in hypergeometic tails

Other promising related hypergeometrics are HG(z + 1,m + 1, n) and
HG(z,m−1, n). Hájek and Havránek [6] proved two inequalities involving
their tail probabilities. They showed, subject to a > zm

m+n , that (in our
notation):

p(a+ 1; z + 1,m+ 1, n) ≤ pF and also p(a; z,m− 1, n) ≤ pF .
We shall write p(a+1; z+1,m+1, n) as pHa and p(a; z,m−1, n) as pHb.

In the context of an upper tail test, it is only the cases a > zm
m+n which are

of interest since the mean of HG(z,m, n) is zm
m+n . Nevertheless we show

that a > zm
m+n is unnecessarily restrictive and also that the inequalities can

actually extend to double inequalities like (1), which means that pHa and
pHb are both less conservative than pF , but not as liberal as p(a+1; z,m, n).
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2.3.1. The inequality for pHa = p(a+ 1; z + 1,m+ 1, n)

The inequality:

p(a+ 1; z,m, n) < p(a+ 1; z + 1,m+ 1, n) < p(a; z,m, n) (3)

holds for l < a ≤ u, where l = max(0, z − n) and u = min(z,m) are the
lower and upper bounds respectively of HG(z,m, n).
The boundary case a = l is of no interest in significance testing, but we

note here for completeness that (3) does also hold for a = l when z < n.
The right hand inequality ‘<’ needs to be replaced by ‘≤’ only for case a = l
when z ≥ n, and in that case p(a+ 1; z + 1,m+ 1, n) = p(a; z,m, n) = 1.
Since HG(z,m, n) is degenerate when z = 0 or z = m + n, statistical

interest is in the case 0 < z < m + n only. A brief outline of the proof of
(3) for this case now follows. The complete proof, including a discussion of
the degenerate cases z = 0 and z = m+ n, is in Phipps [14].

Outline of the proof The right hand inequality of (3), which is the
strict version of the inequality of Hájek and Havránek [6], is considered
first, namely:

p(a+ 1; z + 1,m+ 1, n) < p(a; z,m, n) . (4)

Clearly the two tails p(a + 1; z + 1,m + 1, n) and p(a; z,m, n) have the
same number of summands. It can easily be seen that all the summands of
p(a+1; z+1,m+1, n) are strictly smaller than the corresponding summands

of p(a; z,m, n) when a > (m+1)(z+1)
(m+n+1) − 1, but not otherwise. Hence (4) is

satisfied for a ≥ l′, where l′ is the integer part of (m+1)(z+1)
(m+n+1) .

To prove that (4) is also satisfied for a < l′, we focus on the summands
of the lower tails: 1− p(a+ 1; z + 1,m+ 1, n) and 1− p(a; z,m, n).
Treating the cases z < n and n ≤ z < m + n separately, Phipps [14]

proves the strict inequality 1− p(a+ 1; z + 1,m+ 1, n) > 1− p(a; z,m, n)
and it follows immediately that p(a + 1; z + 1,m + 1, n) < p(a; z,m, n) as
required.
A parallel argument gives p(a+1; z,m, n) < p(a+1 : z+1,m+1, n) for

all integer a satisfying l ≤ a ≤ u. Taking this inequality together with (4),
the double inequality (3) is proved for l < a ≤ u, with a weaker inequality
at a = l.



170 M. C. PHIPPS

2.3.2. The inequality for pHb = p(a; z,m− 1, n)

For l and u defined as in §2.3.1, the following inequality holds for l < a ≤ u:

p(a+ 1; z,m, n) ≤ p(a; z,m− 1, n) < p(a; z,m, n) . (5)

The proof is not given here, but follows similar arguments to those given
for pHa. Notice that the left hand inequality of (5) is not strict at a = m
since both p(m+1; z,m, n) and p(m; z,m− 1, n) are identically zero. This
means that an outcome with frequencies:

m 0 m

z −m n + m− z n

z n + m− z n + m

has positive probability, and yet pHb = 0. This is an unacceptable approx-
imation to a positive P-value and so pHb

is not suitable as a significance
measure. Nevertheless we include pHb for completeness in the following
numerical example.

2.4. A numerical example

One of the examples discussed in Seneta and Phipps [19] is this 2× 2 table
of observed frequencies which arose from a study by Di Sebastiano et al. [4]
on rumbling appendix pain (success) in independent samples of non-acute
and acute appendix cases. An upper tail test for success probability was
required.

Success Failure Total
Sample 1 5 10 15
Sample 2 1 15 16

6 25 31

• The Fisher-P measure is pF = p(5; 6, 15, 16) =
∑6

x=5
(15x )(

16

6−x)
(316 )

= 0.072.

• The Liebermeister-P is pL = p(6 : 7, 16, 17) =
∑7

x=6
(16x )(

17

7−x)
(337 )

= 0.035

which is equivalent to finding pF for the table below, where unity has
been added to the diagonals of the previous table:

6 10 16

1 16 17

7 26 33
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• Lancaster’s mid-P is pM = 1
2 [p(5; 6, 15, 16) + p(6; 6, 15, 16)] = 0.039

• The final two measures are pHa = 0.0415 and pHb = 0.0590.

• The frequencies are too small for the Pearson χ2-statistic to be appro-
priate, but the approximate P-value calculated from its positive square
root is Chi-P = 0.028. The Yates’ corrected value is 0.073.

Figure 1 shows a plot of the unconditional P-value for this example:

P (p) =
∑

C

(

m

x

)(

n

z − x

)

pz(1− p)m+n−z

as p varies. We have used pF as the criterion for ‘ordering’ the 2×2 tables,
ie the region of summation used was C = {(x, z) : pF (x; z,m, n) ≤ 0.072}.
Other criteria for ordering the tables, such as pL, lead to almost identical
curves. (Pierce and Peters [15] give reasons for such phenomena in a more
general context.)
Superimposed on the plot of P (p) in Figure 1 are horizontal lines cor-

responding to the Fisher-P (pF = 0.072), the mid-P (pM = 0.039), the
Liebermeister-P (pL = 0.035) and the P-value from the chi-squared test
(Chi-P= 0.028). The values for the two measures, pHa = 0.0415 and
pHb = 0.0590 are also superimposed. We observe that the maximum likeli-
hood estimate of p is 6/31 ≈ 0.2 and it is clear from the diagram that the
Liebermeister-P is closer to P (p) for all p ∈ (0.2, 0.8).
This numerical example is typical of 2× 2 tables with small sample sizes.

The two measures pHa and pHb are ‘closer’ than pF to the unconditional
P-value, but typically they are more conservative than either the mid-P or
the Liebermeister-P. As a result, it is only pM and pL which are seriously
considered as useful quasi-exact alternatives to Fisher’s Exact Test. In their
comparison of pM , pL and pF as suitable easily calculated approximations
to the unconditional P-value, Seneta and Phipps [19] include plots of the
Type I error probability at various significance levels and for various combi-
nations ofm and n. With the exception of very unbalanced tables for which
pL behaves erratically (the example used is m = 80, n = 40, α = 0.05) the
comparisons support the computational use of pL, but for very unbalanced
tables, the use of pM is recommended instead.

3. The Binomial Tail Analogue

An inequality corresponding to (1), for tails from the binomial B(z, p), is:

b(a+ 1; z, p) < b(.) < b(a; z, p). (6)
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Figure 1. A plot of P (p), the unconditional P-value as p varies, for the numerical
example of §2.4. Approximations to P (p) for this example are superimposed on the
plot: pF (Fisher-P), pM (Mid-P), pL (Liebm.-P), pHa(Ha-P), pHb (Hb-P) and Chi-P.

where b(a; z, p) =
∑z

x=a

(

z
x

)

px(1− p)z−x for integer a satisfying 0 ≤ a ≤ z.
Inequality (6) is satisfied by b(.) = b(a+ 1; z + 1, p). This can be proved

using elementary combinatorial algebra, since it is not difficult to show that
b(a+ 1; z + 1, p) can be expressed as follows:

b(a+ 1; z + 1, p) = p [b(a+ 1; z, p)] + (1− p) [b(a; z, p)]

This is simply a weighted average of b(a+1; z, p) and b(a; z, p) and there-
fore inequality (6) is satisfied by b(.) = b(a + 1; z + 1, p). The particular
case p = 0.5 is b(.) = b(a + 1, z + 1, 0.5) and is the mid-P in the following
two tests.

3.1. Exact test for Poisson means

It is well known that if X and Y are independent Poisson variables with
common parameter λ, the distribution of X conditional on X + Y = z is
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binomial, B(z, 0.5). The ‘exact’ (upper-tail) test for common mean in the
Poisson is based on this conditional distribution (see for example Robin-
son [16]). For an empirically observed value (a, z−a) for (X,Y ), the P-value
for an upper tail ‘exact’ test is b(a; z, 0.5). The less conservative mid-P,
b(a+ 1; z + 1, 0.5), has some justification as an alternative measure on the
grounds that it more closely resembles the uniform distribution. Seneta and
Phipps [19] show that this measure is also justified on Bayesian grounds.
They use uniform priors to obtain b(a+ 1, z + 1, 0.5), by analogy with the
method used to derive the Liebermeister pL. It is not difficult to show that
the same result is obtained using exponential priors with arbitrary positive,
finite mean. It is curious that the resulting measure, b(a+ 1, z + 1, 0.5), is
identical to the mid-P, in contrast to the two measures pL and pM discussed
in §2.

3.2. The sign test

Suppose we want an upper one-tail test of the hypothesis (H0) of equal
probability of positive and negative counts in a small sample of n counts,
some of which may be zero (or ties in a sample of n pairs). Let X,Y,W
be the number of positive, negative and zero (or tied) counts and write
Z = X + Y . The variable (X,Y,W ) is trinomial, and if H0 is true, condi-
tional on Z(= X+Y ) = z, the distribution of X is binomial B(z, 0.5). The
‘exact’ test is therefore the usual sign test and if (a, z) is the observed value
of (X,Z), the P-value is PH0

(X ≥ a|Z = z) = b(a; z, 0.5). The parallel
with Fisher’s Exact Test is immediate, and the corresponding quasi-exact

test is the test based on the mid-P. Phipps [13], in discussing the sign test,
demonstrates the superiority of the mid-P, b(a+1; z+1, 0.5), over the con-
ditional P-value, b(a; z, 0.5), from the sign test.
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10. C. Liebermeister. Über Wahrscheinlichkeitsrechnung in Anwendung auf thera-
peutische Statistik. Sammlung Klinischer Vorträge, (Innere Medicin No. 31-64)
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