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Abstract. In this review paper we summarise several nonparametric methods recently
applied to the pricing of financial options. After a short introduction to martingale-based
option pricing theory, we focus on two possible fields of application for nonparametric
methods: the estimation of risk-neutral probabilities and the estimation of the dynamics
of the underlying instruments in order to construct an internally consistent model.
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1. Introduction

The pricing and hedging of derivative securities is one of the key areas of
stochastic finance and has attracted extensive attention and efforts from
academic researchers (and clearly from financial practitioners as well) over
the last decades. The key insights were gained in the early seventies by
the Nobel-prize laureates Myron Scholes and Robert Merton, as well as the
late Fischer Black, in their celebrated papers [8] and [34] (see also [35])
on pricing and hedging European call options (nowadays commonly called
plain vanilla option, see §2 for formal definitions). However, ever since the
introduction of the Black-Scholes-Merton (BSM) framework various short-
comings of their approach have been pointed out (see e.g. Fisher Black’s
account in ‘The Holes in Black-Scholes’, [7]) and various generalisations
have been proposed, a recent overview of which is given in [44].

The advent of exotic options (sometimes called second- and third gen-
eration instruments, in contrast to the plain vanilla first generation op-
tions) has introduced a whole new dimension to pricing and hedging the-
ory. While the BSM theory models certain underlying assets and produces
prices of derivative securities based on these underlyings (nested in the
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given stochastic model), the impact of the original assumptions on the un-
derlying becomes more and more crucial as the complexity of the derivative
asset increases. Indeed, the whole concept of an underlying has to be trans-
formed. Traders will often price and hedge complex instruments using not
the ‘old’ underlying but portfolios of the first generation options. Partly
motivated by this change in practical attitude, we will focus on the so-
called empirical option pricing approach, which uses information on plain
vanilla options in order to generate a consistent pricing theory for exotic
options.

Our aim is to supply the non-specialist reader with the necessary back-
ground knowledge in stochastic finance (texts on an introductory level are
[5], [6]) and then to review and outline some of the statistical techniques re-
cently employed to tackle questions arising from derivative security pricing.
In particular we will concentrate on nonparametric estimation techniques
to retrieve the relevant structure of the underlying without imposing re-
strictive parametric assumptions. We hope that this review will serve as
an introduction to the range of existing problems arising from questions
of valuation of financial derivatives and will motivate readers to explore
the subject further (a systematic coverage of nonparametric and semipara-
metric methods in econometrics applied to various economically motivated
questions is given in [37], while [12] is a comprehensive treatment of finan-
cial econometrics).

The paper is organised as follows: in §2 we give a brief introduction to
the relevant concepts of stochastic finance, which we shall use later on. In
particular we discuss the no-arbitrage pricing technique, the key concept
in derivative pricing theory, the BSM-model for pricing options on stocks
and the modelling of fixed-income securities. In §3 we outline the use of
nonparametric methods for estimating risk-neutral probabilities from plain
vanilla option prices and how these probabilities can be used to price exotic
options, such as binary options. §4 is devoted to nonparametric estimation
of drift and diffusion coefficients in diffusion models of the short rate. We
conclude with a brief discussion of further developments.

2. Background on Modelling Financial Markets

2.1. Arbitrage Pricing and Equivalent Martingale Measures

The general underlying idea that we will follow is a relative pricing ap-
proach, i.e. we try to explain the prices of some assets in terms of other
given and observable assets. This approach is based on the concept of ar-
bitrage (or rather no arbitrage). Arbitrage pricing is independent of beliefs
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and tastes (preferences) of the actors in the financial markets, with the only
assumption being that all participants in the market simply prefer more to
less. Therefore all investors constantly check whether they can restructure
their current portfolios in such a way that they have to pay less for their re-
structured portfolios and still have the same (or even higher) return in the
future. A situation like that is an arbitrage possibility – simply restructure
the portfolio and pocket a riskless profit now – and should not be possible
in an efficient market.

We model our financial market on a filtered probability space (Ω,F , IP, IF )
(the filtration IF = {Ft, 0 ≤ t ≤ T},FT = F is used to model the flow of in-
formation in the market model) and assume a (finite) time horizon T . Tak-
ing the price processes, modelled as stochastic processes, of certain basic
assets as given we can consider contingent claims modelled as F−random
variables (so we look at European claims with payoff at time T ). We try to
find the price processes for these claims based on the no-arbitrage princi-
ple. The link between no-arbitrage pricing and martingale theory has been
developed in two fundamental papers by Harrison and Kreps in 1979 [23]
and Harrison and Pliska in 1981 [24]. For standard stochastic models of fi-
nancial markets (see [5] for details) the fundamental Harrison-Kreps-Pliska
theorems are:

Theorem 1 (First Fundamental Asset Pricing Theorem) Call a
probability measure IP ∗ equivalent to the actual probability measure IP an
equivalent martingale measure if, under IP ∗, the discounted (with respect to
a suitable numéraire) price processes are (local) martingales. Then absence
of arbitrage for the stochastic market model is equivalent to existence of an
equivalent martingale measure IP ∗.

Theorem 2 (Second Fundamental Asset Pricing Theorem) Call a
market complete if every contingent claim can be replicated by a suitable
portfolio of basic assets. Assuming that the model is arbitrage-free, then
completeness is equivalent to uniqueness of the equivalent martingale mea-
sure.

Theorem 3 (Risk-neutral valuation) Let X be a contingent claim in
an arbitrage-free, complete market model. Then its price process ΠX(t) is
given by

ΠX(t) = B(t)IE∗
(

X

B(T )

∣∣∣∣Ft

)
, (1)

where IP ∗ is the unique equivalent martingale measure, IE∗ the expectation
operator with respect to IP ∗ and B is the discount factor (numéraire).
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In incomplete market situations we have several (infinitely many) equiva-
lent martingale measures. For attainable contingent claims, i.e. contingent
claims which can be replicated by a suitable portfolio of basic assets, the
risk-neutral valuation formula (1) gives the same value whichever of the
equivalent martingale measures is used. The question is which measure
one has to choose to price the non-attainable claims. Usually some kind of
utility-maximisation or ‘risk’-minimisation argument is given to motivate
a particular choice (see [5], Chapter 7 for an introduction).

The above theorems are central to stochastic finance and have triggered
various extensions and ramifications. Let us just mention a few sources for
further study: [5], [16], [31], [36].

As we see from the above theorems the risk-neutral martingale measure
plays the central role for pricing contingent claims. We will now consider
two specific financial market models to explore it in more detail.

2.2. The Black-Scholes-Merton Model

We consider a financial market in which 2 assets are traded continuously
up to a finite time horizon T . The first of these is called the bond, with
price process defined by

dB(t) = B(t)r(t)dt, B(0) = 1. (2)

The remaining asset (usually referred to as stock) is subject to systematic
risk. The price process S(t), 0 ≤ t ≤ T of the stock is modelled by the
linear stochastic differential equation

dS(t) = S(t) (b(t)dt + σ(t)dW (t)) , S(0) = p ∈ (0,∞), (3)

where W (t), 0 ≤ t ≤ T is a standard one-dimensional Brownian motion.
We assume that the underlying filtration IF is the Brownian filtration (ba-
sically Ft = σ(W (s), 0 ≤ s ≤ t) slightly enlarged to satisfy the usual
conditions, compare [5], §5.8).

We interpret the process r(t) as the interest-rate process - the short rate
or the spot rate - i.e. r(t) is the (instantaneously riskless) instantaneous
interest rate. The process b(t) is the appreciation rate for the stock, mea-
suring the instantaneous rate of change of S at time t. Finally the volatility
process σ(t) models the instantaneous intensity with which the source of
uncertainty influences the price of the stock at time t. The (stochastic)
processes r(t), b(t), σ(t) are referred to as the coefficients of the model. We
assume that these coefficients satisfy certain measurability and integrability
conditions (see e.g. [5], §6.2).
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Our task is to price contingent claims on the stock within our model
framework. Let us as before consider the example of a European call option
on the stock S with strike K and expiry T . We can write the time T value
of the option as

max{S(T )−K, 0} = (S(T )−K)+,

which is now a F-measurable random variable, in fact a functional of S(T ).
Black and Scholes in [8] and Merton [34] (see also [35], Chapter 9) con-
structed replicating portfolios to deduce the price of the call using arbitrage
arguments.

Using the Harrison-Kreps-Pliska theory, i.e. Theorems 1 and 2, we see
that (under regularity conditions on the coefficients) we have an arbitrage-
free and complete model of a financial market (details can be found in [5]
§6.2). Thus, by the risk-neutral valuation Theorem 3, the price process of
any contingent claim X is given by

Proposition 1 In a a standard BSM-model the arbitrage price process of
a contingent claim X is given by the risk-neutral valuation formula

ΠX(t) = B(t)IE∗
[

X

B(T )

∣∣∣∣Ft

]
= IE∗

[
Xe{−

∫ T
t

r(u)du}
∣∣∣Ft

]
. (4)

In the special case of the classical Black-Scholes model with constant co-
efficients r, b, σ we recover the famous Black-Scholes formula of a European
call with strike K and maturity T on the stock S,

Proposition 2 (Black-Scholes Formula) The Black-Scholes price
process of a European call is given by

C(t) = S(t)N(d1(S(t), T − t))−Ke−r(T−t)N(d2(S(t), T − t)). (5)

The functions d1(s, t) and d2(s, t) are given by

d1(s, t) =
log(s/K) + (r + σ2

2 )t
σ
√

t
,

d2(s, t) = d1(s, t)− σ
√

t =
log(s/K) + (r − σ2

2 )t
σ
√

t

The statistical problems in using this formula are the estimation of the
parameters, in particular the volatility σ, from historical time series of S.
However, the particular assumptions on the dynamics of the underlying
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process S have been questioned by several empirical investigations – see
[12], §9.3 for an overview, [18] for an interesting recent study – and led
to various extensions of the model, see e.g. stochastic volatility models,
Lévy-type models, jump-diffusion models [20], [27], [35].

We will discuss in §3 nonparametric approaches to deducing information
about the underlying process and indeed the risk-neutral martingale mea-
sure from market prices of options via the risk-neutral valuation formula
(4).

2.3. Diffusion Models of the Term Structure of Interest rates

Let us now apply the ideas of §2.1 to the fixed-income securities market.
As we want to develop a relative pricing theory, based on the no-arbitrage
assumption, we will assume prices of some underlying objects as given. In
the present context we take zero-coupon bonds as the building blocks of
our theory. In doing so we face the additional modelling restriction that the
value of a zero-coupon bond at time of maturity is predetermined (= 1).
Furthermore, since the entirety of fixed-income securities gives rise to the
term-structure of interest rates (sometimes called the yield curve), which
describes the relationship between the yield-to-maturity and the maturity
of a given fixed-income security, we face the further task of calibrating
our model to a whole continuum of initial values (and not just to a vector
of prices). A first attempt to explain the behaviour of the yield curve
is in terms of a discrete set of spot rates of maturities between τ and
T , where τ is the shortest (instantaneous) lending/borrowing period, and
T the longest maturity of interest. We model these rates as correlated
stochastic variables with the degree of correlation decreasing in terms of
the difference in maturity. Empirical investigations show a very high degree
of correlation of these rates. In fact using principal component analysis
one can show that the first principal component often explains 80−90%
of the total variance, and that the first three components taken together
describe up to 90−95% of the total variance. Therefore, especially in early
approaches, it has been tempting to choose one specific rate, usually the
short rate, r(t), as a proxy for the single variable that principal component
analysis indicates can best describe the movements of the yield curve. The
standard model is then of the form

dr(t) = a(r(t))dt + b(r(t))dW (t) (6)

with functions a, b sufficiently regular (for instance, satisfying the condi-
tions in [5] §5.7) and W a real-valued Brownian motion. Standard examples
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are e.g. the Vasicek model dr = (α− βr)dt + γdW and the Cox-Ingersoll-
Ross (CIR) model dr = (α− βr)dt + δ

√
rdW .

Following the usual approach we fix an equivalent martingale measure
IP ∗ (which we assume to exist), and model the short rate dynamics directly
under IP ∗. Thus we assume that r has IP ∗-dynamics (6) with W a (real-
valued) IP ∗-Wiener process.

We can immediately apply the risk-neutral valuation technique to obtain
the price process ΠX(t) of any sufficiently integrable T -contingent claim X
by computing the IP ∗-expectation, i.e.

ΠX(t) = IE∗
[
e−

∫ T
t

r(u)duX|Ft

]
, (7)

in particular the price of a zero-coupon bond with maturity T should be
given by

p(t, T ) = IE∗
[
e−

∫ T
t

r(u)du1|Ft

]
, (8)

Due to the incompleteness of the market implied by only specifying the
short rate we now need to use (current) price information from the market
in order to specify IP ∗. This is done by calibrating the model to data or
fitting the yield curve.

For practical purposes we would of course like to have an exact fit over the
whole maturity spectrum. This involves an infinite-dimensional system of
equations. So if we work with a model containing only a finite-dimensional
parameter vector (such as the Vasicek model) there is no hope of obtaining
a complete fit between observed and theoretical prices. This means that we
are not able even to price the simplest contingent claims in this model (those
with final payoff 1), let alone more complicated derivative structures. So for
practical purposes one needs to introduce parameter functions of infinite
dimensions to make calibration possible. For instance Hull and White [26]
propose the extended Vasicek model dr = (α(t)−β(t)r)dt+γ(t)dW and the
extended CIR model dr = (α(t)−β(t)r)dt+δ(t)

√
rdW . (with deterministic

functions). Another natural approach, which stays in the above diffusion
setting, is the nonparametric estimation of the coefficient functions a, b in
(6), and we will discuss this approach in §4.

For further development and discussion of interest rate models we refer
the reader to [5], [6], [36].

3. Options on Stocks

We now return to the setting in §2.2, i.e. we assume that a riskfree bond
(now with constant interest rate r(t) ≡ r) and a risky stock are available for
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trading. Assuming the existence of an equivalent martingale measure IP ∗

we know that the date−t prices of derivative securities with a single liqui-
dation date−T payoff X = Φ(S(T )) are given by the risk-neutral valuation
formula (1), that is

ΠX(t) = IE∗
(

e−
∫ T

t
r(u)duΦ(S(T ))

∣∣∣Ft

)
(9)

= e−r(T−t)

∫ ∞

0

Φ(x)ft(x)dx,

where ft(x) is the date−t density of the equivalent martingale measure (of-
ten called state-price density, in short: SPD) and r is the constant riskfree
rate of interest between t and T . (Readers familiar with the subject will
recognize that we performed a change of measure to the so-called T -forward
measure.) In practice this corresponds to considering a European call op-
tion with a futures contract written on the asset as underlying. At maturity
of the futures, the futures price equals the asset’s spot price. Thus a Euro-
pean call option on the asset has the same value as a European call option
on the futures contract with the same maturity. The effect of switching to
the futures contract is that we are able to allow stochastic interest rates
in our pricing approach. We refer the reader for further discussion of the
T -forward measure and its applications to [5], §6.1 and [36] §13.2.2.

From a pricing perspective SPDs are ‘sufficient statistics’ in the sense
that they summarize all relevant information about preferences and busi-
ness conditions for the purposes of pricing financial derivatives. So it is
very natural to try to infer SPDs from known and very liquid derivative
prices and use them to price more sophisticated derivatives. Indeed, re-
turning to our European call example Breeden and Litzenberger [10] have
shown that it is possible to retrieve SPDs from call prices (see also Huang
and Litzenberger [25] for a thorough discussion) and obtain the following
formula:

erτ ∂2C

∂K2

∣∣∣∣
K=x

= f∗t (x). (10)

The intuitive argument for obtaining formula (10) is as follows: Consider
the portfolio obtained by selling two call options struck at K and buying
one call struck at K−ε and one at K +ε. Because of the shape of its payoff
function Φ(S(T )) (see figure) this portfolio is often called a butterfly spread:

(The fact that we have to invest to set up the portfolio is due to the
convexity of call option prices in the strike, a property which follows from
simple arbitrage considerations, see [5] §1.3 for details.) Consider now 1/ε2

shares of the butterfly portfolio. Letting ε → 0 the payoff function of the
butterfly tends to the Dirac delta function with unit mass at K, i.e. the
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Butterfly Spread
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payoff of the butterfly is 1£ if S(T ) = K and nothing otherwise. Such a
security is called an elementary Arrow-Debreu security and describes the
relevant SPD (see [25]). Therefore the limit of 1/ε2 shares of the butterfly
portfolio should as ε tends to zero be equal to erτft(X). So if we denote
by C(S(T ),K, τ) the market price of a call option at t with strike price X,
time to maturity τ = T − t and underlying asset price S(t), then

[2C(S(t),K, τ)− C(S(t),K−ε, τ)− C(S(t),K+ε, τ)]
ε2

→ ∂2C(S(t),K, τ)
∂K2

.

Of course we can verify the above by just formally differentiating the risk-
neutral valuation formula for the European call. Indeed, in this case (1) is
just

C(S(t),K, τ) = e−rτ

∫ ∞

0

max{x−K, 0}ft(x)dx

= e−rτ

∫ ∞

K

(x−K)ft(x)dx (11)

and differentiating with respect to K leads to (10).
Given (10) it is a straightforward idea to use European call option prices

to estimate SPDs. Considering the well-documented shortcomings of para-
metric specification of stochastic asset price movements (which lead to
parametric option pricing formulas) and the vast amount of available data
one is quite naturally tempted to use nonparametric methods to estimate
SPDs. The approach can be outlined in the following way (compare Aı̈t-
Sahalia and Lo [3]): use market prices to estimate the option pricing for-
mula Ĉ(.) nonparametrically, then differentiate this estimator twice with
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respect to the strike price K to obtain ∂2Ĉ/∂K2. Under suitable reg-
ularity assumptions the convergence in probability of Ĉ to the true op-
tion pricing formula C implies that ∂2Ĉ/∂K2 will converge to ∂2C/∂K2

which is proportional to the SPD. So we face the problem that given
a set of historical option prices {Ci} and accompanying characteristics
{Zi} = (S(ti),Ki, τi, ri)′} (ri is the constant interest rate from ti to T )
we seek a function C(.) that comes as close to Ci as possible. As a method
of measuring closeness we use the quadratic distance, i.e. we solve

min
C∈ Γ

n∑
i=1

[Ci − C(Zi)]2

with Γ the class of all twice differentiable functions.
It is well-known that the best estimator is given by the conditional ex-

pectation of C with respect to Z. This leads to the use of nonparametric
kernel regression methods.

The general problem of nonparametric estimation is to estimate relations
such as

Ci = C(Zi) + εi, i = 1, . . . n (12)

where C(.) is an unknown but fixed nonlinear function and {εi}n
i=1 is white

noise (IE(ε|Z) = 0, εi independent). The idea of kernel smoothers is to
produce an estimate of C at Z = z by giving more weight to observations
(Ci, Zi) with Zi ‘close’ to Z. Therefore we must define what we mean by
‘close’ and ‘far’. If we give too much weight to values in too large a neigh-
borhood of z we will not be able to discover the genuine nonlinearities of
C(.). On the other hand if we choose too small a neighborhood our esti-
mate will not be able to differentiate noise from nonlinearities. To strike a
careful balance between these two considerations we use a kernel function
K, which acts as a weighting scheme (typically a probability density func-
tion, see [47], p. 12) and a smoothing parameter h which defines the degree
of ‘closeness’ or neighborhood. The most widely used kernel estimator of
a function C(.) as in (12) is the Nadaraya-Watson kernel estimator

Ĉh(Z) = IE(C|Z) =

n∑
i=1

k

(
Z − Zi

h

)
Ci

n∑
i=1

k

(
Z − Zi

h

) . (13)

The main issue now is to choose the kernel function k(.) and the bandwidth
h in order to obtain the best possible fit. Although both k(.) and h have
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an effect on the fit it is generally found in the literature that the choice of
the smoothing parameter h is more important (see [22], [42], [47]). For the
European option setting Aı̈t-Sahalia and Lo [3] determine the bandwidth h
using cross-validation techniques (see [22], chap. 3 for a discussion of this
technique) to optimally balance the kernel estimator and to address the
practical problems discussed below (see also [21] for a discussion and more
references on the choice of the smoothing parameter and [11] for a related
approach to American option pricing).

In the option pricing setting the kernel approach allows the following
intuition: The price of an European call option with characteristics Z is
given as a weighted average of observed prices Ci with more weight given
to the options whose characteristics Zis are closer to the characteristics Z
of the option to be priced. For practical applications involving option price
data we can’t maintain the independence assumption on the error term,
since we have to deal with nonstationary correlated data. However, it is
found that the variable S/K is stationary as the exercise prices bracket
the underlying price process. The issue of correlation of the data is more
involved. Under general conditions the kernel estimator remains convergent
and asymptotically normal and only the asymptotic variance is affected by
the correlation of the error terms (see [1]), but there is no general result on
how to avoid over- or undersmoothing (see [15] for an overview and [?] for
some simulation results on special methods). In our context the complexity
of the problem is even increased by the fact that at each time t several
option contracts are listed simultaneously and trading may take place in
only a subset of these contracts. Additionally we face the so-called ‘curse
of dimensionality’ problem, i.e. the precision of the estimates deteriorate
as the dimension of Z increases, unless the sample size increases drastically
(see [42] chap. 7). This is particular important for our approach since we
need to differentiate the call pricing function twice with respect to K to
obtain the state price density. (Observe that we also can find estimators for
the Delta of the option, needed for hedging purposes, by differentiating the
call price function with respect to S). To reduce the number of regressors
we could

(i) impose regularity condition on the option pricing formula to assume
that it is homogeneous of degree one in S and K (as is the Black-
Scholes formula);

(ii) assume that the option pricing formula is not a function of the asset
price S and the riskfree rate r separately, but only depends on these
variables through the futures price Fτ = Serτ (by the martingale prop-
erty the mean of the SPD is Fτ and the assumption would be the whole
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distribution depends only on the futures price – as is the case in the
BMS-model);

(iii) use a semiparametric-approach, i.e. suppose that the option pricing
formula is given by a certain parametric structure except that some
parameters are given as nonparametric functions, which we need to
estimate.

We will only consider the semiparametric approach using the Black-Scholes
formula in more detail. We suppose that the call price function is given
by the parametric Black-Scholes formula except that the implied volatility
parameter for that option is a nonparametric function σ(S(t),K, τ), so:

C(S(t),K, τ, r) = CBS(S(t),K, τ ;σ(S(t),K, τ)) (14)

In this semiparametric model we only need to compute the three-dimensional
regression of implied volatilities on asset price, strike and time-to-expiration
to estimate IE(σ|S(t),K, τ).

We now describe the full-dimensional and the Black-Scholes induced semi-
parametric model. Given the data {Ci, S(ti),Ki, ri, τi} the full-dimensional
nonparametric SPD estimator is formed using a multivariate kernel in (13)
formed as a product of d = 4 univariate kernels

Ĉ(S(t),K, τ, rτ )

=

n∑
i=1

kS

(
S(t)− S(ti)

hS

)
kK

(
K −Ki

hK

)
kτ

(
τ − τi

hτ

)
kr

(
rτ − ri

hr

)
Ci

n∑
i=1

kS

(
S(t)− S(ti)

hS

)
kK

(
K −Ki

hK

)
kτ

(
τ − τi

hτ

)
kr

(
rτ − ri

hr

)
In the semiparametric model we have to form the three-dimensional kernel
estimator of IE(σ|S(t),K, τ) as

σ̂(S(t),K, τ) =

n∑
i=1

kS

(
S(t)− S(ti)

hS

)
kK

(
K −Ki

hK

)
kτ

(
τ − τi

hτ

)
σi

n∑
i=1

kS

(
S(t)− S(ti)

hS

)
kK

(
K −Ki

hK

)
kτ

(
τ − τi

hτ

)
where σi is the implied volatility corresponding to the option price Ci.
Then the call pricing function is estimated as

Ĉ(S(t),K, τ, rτ ) = CBS(S(t),K, τ, rτ ; σ̂(S(t),K, τ)). (15)
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In both cases the univariate kernel functions k. and the bandwidth param-
eters h. are chosen to optimize the asymptotic properties of the second
derivative of Ĉ. We obtain then the SPD estimator by taking the second
partial derivative of Ĉ(.) with respect to K and setting

ft(x) = erτ

[
∂2Ĉ(S(t),K, τ, rτ )

∂K2

]
K=x

.

Let us mention again that we also obtain an estimator for the option’s delta
via

∆(t) =
∂Ĉ(S(t),K, τ, rτ )

∂S(t)
. (16)

Aı̈t-Sahalia and Lo [3] conduct a Monte-Carlo study of the performance of
their nonparametric approach to estimate the call option pricing function
and the state-price density. They simulate 5000 replication of a trading
year (with on average 80 call options per trading day) based on a Black-
Scholes model (i.e. geometric Brownian motion for the underlying and
option prices computed according to the BMS-formula). Their findings are
that their nonparametrically estimated quantities are within one percent
of their theoretical counterparts, and thus virtually free of any bias.

Any practical implications of option pricing models must be concerned
with matters such as illiquidity, dividend corrections, bid-ask spreads, tim-
ing issues and other market microstructure issues.

The dataset used in [3] are S&P500 index option prices. The S&P500
index option is among the most actively traded financial derivatives in the
world and using an index ensures the highest likelihood that the Black-
Scholes assumptions are actually satisfied. Furthermore, since all option
prices are recorded at the same time on each day, only the index price has
to temporally matched. To correct for dividends they infer futures prices
for each maturity (which removes the unobservable dividend rate) by put-
call parity. However, since in-the-money derivatives are very illiquid they
only use at-the-money calls/puts (that is they only have a limited range
of strike prices available). Finally, given the futures prices all illiquid call
prices can be replaced via put-call parity (for illiquid calls puts must be
out-of-the money and hence liquid).

Let us now mention a few related approaches:
Jackwerth and Rubinstein in a series of papers [29], [30], [41] construct

implied binomial trees, in which risk-neutral probabilities {p∗i } associated
with the binomial terminal stock price S(T ) are estimated by minimizing
the sum of squared deviations between {p∗i } and a set of prior risk-neutral
probabilities {p̃∗i } subject to the restriction that {p∗i } correctly price an ex-
isting set of options and the underlying stock. Since any state price density
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(SPD) can be approximated to any degree of accuracy by a binomial tree
this approach can be viewed as nonparametric. The main difference from
kernel estimation is that one set of risk-neutral probabilities {p∗i } is fitted
for each cross-section of options (so a n-step implied binomial tree at t1 will
be different from a n-step tree at t2), whereas kernel SPDs aggregate option
data over time to get a single SPD (n-step SPDs are the same for t1 and t2).
Therefore while implied binomial trees are completely consistent with all
option prices at each date, they are not necessarily consistent over time. In
contrast the nonparametric kernel SPD is consistent across time, but there
may be dates for which the SPD fits the cross section of option data poorly.
Which method to prefer is therefore a question of the modelling strategy
and purpose. Methods similar to Rubinstein’s approach, i.e. fitting risk-
neutral density functions using some general family of distributions, are
discussed in [?], [19], [33], [40]. Rady [39] considers the underlying problem
in a general framework: given a valuation formula u(S(t), t) for a derivative
asset, what can be inferred about the underlying asset price process? Such
a result has applications to nonparametric approaches to derivative asset
pricing via learning networks, see [28]. Once a pricing formula has been
learnt by the network, the risk-neutral law of the underlying process can
be identified.

Stutzer [46] develops an option pricing framework entirely based on the
empirical distribution of the historical time series of the returns of the
underlying and uses the maximum entropy principle to choose the risk-
neutral probability measure needed for pricing purposes. Such an approach
does not require the use of derivative security prices and thus the various
complications implied by such data are avoided. Furthermore it might
provide a more accurate assessment of the likely pricing impact caused by
investors’ data-based beliefs about the future value distribution.

One of the first semiparametric approaches has been proposed by Shimko
[43]. He applies equation (14) with the (implied) volatility function only
depending on the parameters ‘strike’ and time to maturity, that is he uses
σ(S(t),K, τ) ≡ σ(K, τ), where the volatility function is assumed to be
a parabolic function σ(K) = a0(τ) + a1(τ)K + a2(τ)K2 (the choice being
motivated by the ‘smile-effect’ observable in the profile of implied volatility
across strike values). After obtaining a least-squares fit for the volatility
function it can be plugged into the Black-Scholes formula and the state-
price density is obtained by straight-forward differentiation.

Finally, Broadie et al. [11] apply nonparametric techniques to the pricing
of American-type options. Recall that for American-type options early
exercise is possible, i.e. it is possible to exercise the option before the
maturity date T . The optimal strategy leads to an early exercise boundary
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which triggers exercise of the option. Broadie et al. develop nonparametric
estimators for the early exercise boundary and option prices and compare
them with their parametric analogues. They find that there exist significant
discrepancies between the two methods.

We close with an application to the pricing of a particular type of exotic
options, the so-called binary options (see [5], §6.3.5). A binary (or digital)
option is a contract whose payoff depends in a discontinuous way on the
terminal price of the underlying asset. The most popular variant is the
Cash-or-nothing option. Here the payoffs at expiry of the European call
resp. put are given by

BCC(T ) = C1{S(T )>K} resp. BCP (T ) = C1{S(T )<K}.

By the risk-neutral valuation principle (1) we can price these derivatives
by calculating the conditional expectation over the final payoff. For the
cash-or-nothing option we get

BCC(T ) = e−rτIE∗(C1{S(T )>K}|Ft)

= e−rτC

∫ ∞

K

ft(x)dx = e−rτC(1− Ft(K)),

where Ft(.) is just the cumulative distribution function related to the SPD.
Aı̈t-Sahalia and Lo [3] compare cash-or-nothing calls priced nonparametri-
cally with the corresponding BSM prices. Not surprisingly they find higher
out-of- and in-the-money and lower at-the-money nonparametrically esti-
mated prices, a fact that can be explained by the ability of the nonparamet-
ric estimator to accommodate for skewness and kurtosis found in financial
time series.

4. The Term-Structure of Interest Rates

We consider estimation of the relevant parameters under the assumption
that the short rate is given as a time-homogeneous diffusion

dr(t) = a(r(t))dt + b(r(t))dW (t). (6)

We want to estimate the functions a and b without specifying any para-
metric assumptions about either the drift or the diffusion. For the purpose
of option pricing we furthermore need to specify an equivalent martingale
measure. In practical applications this is usually done by specifying or esti-
mating the so-called market price of risk λ, which quantifies the additional
expected rate of return on a bond over the riskfree rate per additional unit
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of risk (expressed in terms of the volatility) that an investor requires (see
[5], §8.2). Since it is hard to form an a priori idea of the functional form
of the diffusion function and long time series of daily data on spot interest
rates are typically available, a nonparametric approach is appropriate. We
will now discuss three specific nonparametric procedures, which have been
proposed recently.

4.1. A Density-Matching Approach

In [1] Aı̈t-Sahalia uses a density-matching approach to derive the instan-
taneous drift and diffusion functions of the short rate process so as to be
consistent with the observed distribution of the discrete data. Since the
process defined by the stochastic differential equation (6) is fully charac-
terised by the first two moments, i.e. the drift and diffusion function, the
form of these functions fully specify the marginal and transitional density
of the spot rate process r(t) and vice versa.

The idea of the drift matching approach is to estimate nonparametrically
the transitional densities of the short rate process and then find drift and
diffusion processes matching these densities. The mathematical motivation
is as follows:

Use the Kolmogorov forward equation for the transition densities p(s, y|t, x)
from value x at time t to value y at time s

∂p(s, y|t, x)
∂s

= − ∂

∂y
(a(y)p(s, y|t, x)) +

1
2

∂2

∂y2
(b2(y)p(s, y|t, x)). (17)

Letting t → −∞ in (17) we obtain

2
d

dx
(a(x)π(x)) =

d2

dx2
(b2(x)π(x)), (18)

with π the stationary density. Integration yields

a(x) =
2

π(x)
d

dx
(b2(x)π(x)) (19)

and we can use (19) to find the remaining function given any two.
Aı̈t-Sahalia [1] assumes that the drift coefficient a(x) has the parametric

form a(x) = k(θ − x) and estimates the drift by ordinary least squares.
Observe that IE(r(t + ∆)|Ft) = θ(1 − e−k∆) + e−k∆r(t) independent of
the diffusion coefficient σ (compare [5], §5.7 and Exercise 5.9 for a related
computation). Then b can be estimated nonparametrically by integrating
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(19) once more to obtain

b2(x) =
2

π(x)

∫ x

0

a(u)π(u)du. (20)

Technically the procedure is as follows: Start with interest rate data {ri, i =
1, . . . n} and form a smooth density estimator

π̂(r) =

(
1

nhn

n∑
i=1

K((r − ri)/hn)

)
(21)

based on a kernel function K(.) and bandwidth hn (compare §3 for the
technical details of kernel smoothing). Estimate the parameters of the
drift function a(., θ) by ordinary least squares (OLS); call the estimator
â. Now use the kernel estimator π̂ for the transition densities π and the
drift estimator â in (20) to get an estimator b̂ for the diffusion function
b. Use b̂ to correct for heteroskedasticity in the regression and construct
the weighting matrix for the second step feasible generalized least squares
(FGLS).

To compute prices of interest-rate-derivative securities the market price of
risk λ has to specified (in order to find the relevant risk-neutral martingale
measure in (1). Aı̈t-Sahalia assumes the market price of risk is constant
and estimates it by minimising the squared deviation between a given yield
curve and that implied by the model (in effect minimising differences of
bond prices).

4.2. Direct Nonparametric Estimation of the Diffusion Coeffi-
cient

Bianchi et al. [4] assume (like Aı̈t-Sahalia [1]) a parametric model of the
drift and try to estimate the diffusion function nonparametrically. In con-
trast to Aı̈t-Sahalia they applied direct nonparametric regressions to the
instantaneous variance rather than calculating the integral of a mean func-
tion with respect to a nonparametrically estimated density. Therefore the
approach needs to discretise the model first in order to estimate the dif-
fusion function, which leads to the implicit assumption that more data
means more frequent data on a fixed period of observation. This condition
is hardly matched in practice, so one has to be careful with arguments
based on asymptotic properties of the estimator.

Technically the approach [4] proceeds as follows: assuming an affine struc-
ture of the drift term, i.e.

a(r) = α + βr (22)



18 R. KIESEL

(so the usual parametrisation in the mean-reverting approach is a(r) =
κ(r∗ − r) with r∗ = −α/β, κ = −β/∆t), one can use a first-order discreti-
sation (see e.g. [32] for a discussion of discretisation methods)

∆rt+∆t = (α + βrt)∆t + ut+∆t

√
∆t. (23)

From the OLS estimates of α and β, α̂ and β̂, one can derive κ̂ and r̂∗,
then

ût+∆t

√
∆t = ∆rt+∆t − κ̂(r̂∗ − rt) (24)

and a proxy for actual volatility at time t + ∆t is given by

ε̂t+∆t =
1

∆t
ût+∆t t = 1, . . . T − 1. (25)

From the ε̂’s the diffusion function b(r) can be estimated nonparametrically
by smoothing the scatterplot of ε̂2t+∆t against rt, that is, using

IE(ε̂2j ) = g(rj), (26)

where the ε̂2j are the residuals ε̂2t+∆t sorted according to the sorting (in
ascending order) of rt.

The unknown smooth function g(r) = b2(r) can be estimated by any
nonparametric smoothers (see [22], [42], [47]) such as smoothing splines,
kernel regressors or local polynomial estimators. After obtaining the drift
and diffusion function the pricing of interest-rate derivatives is done by the
PDE equivalent to risk-neutral valuation formula (1) (see [5], chapter 8),
with the market price of risk λ = 0, i.e. it is assumed that the data are
observed under an equivalent martingale measure.

4.3. A Fully Nonparametric Approach

Stanton [45] proposes a fully nonparametric approach by inverting a nu-
merical approximation scheme. Considering a diffusion process X(t), which
satisfies the stochastic differential equation (6), that is dX(t) = a(X(t))dt+
b(X(t))dW (t), he proceeds as follows:
Step 1: Under suitable restriction on a, b and a further function f we have
the following Taylor Series approximation (compare [32]):

IEt(f(Xt+∆, t + ∆)) = f(Xt, t) + Lf(Xt, t)∆ +
1
2
L2f(Xt, t)∆2+

+ . . . +
1
n!
Lnf(Xt, t)∆n + O (∆n) ,
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where L is the infinitesimal generator of the diffusion X(t).
Step 2: Now use suitable functions f in order to construct approximations

of a and b.
For instance using f(x, t) = x gives Lf(x, t) = a(x) hence the above leads

to an approximation for the drift, or using g(x, t) = (x − X(t))2 we find
Lg(x, t) = 2(x−X(t))a(x) + b2(x) and so Lg(X(t), t) = b2(X(t)).

The first-order estimates following this approach are

a(X(t)) =
1
∆

IE(X(t + ∆)−X(t)|Ft) + O (∆) (27)

and
b2(X(t)) =

1
∆

IE((X(t + ∆)−X(t))2|Ft) + O (∆) . (28)

The market price of risk λ is estimated similarly using two risky assets
(i.e. bonds with different maturities, compare §2.3) with the first-order
approximation being

λ(r(t)) =
b(r(t))

∆(b(1)(r(t))− b(2)(r(t))
IE(R(1)

t,t+∆ −R
(2)
t,t+∆|Ft) + O (∆) , (29)

where b(i) and R
(i)
t,t+∆ are the instantaneous volatility and holding period

return of asset i = 1, 2 respectively.
Finally, Stanton applies the Nadaraya-Watson kernel regression estimator

(13) with a Gaussian kernel to estimate the conditional expectations in
equations (27), (28) and (29).

4.4. Related Topics

Chan et al. [13] present an empirical discussion of alternative (paramet-
ric) models of the short-term interest rate, which might be extended to
include the nonparametrically estimated models above. A first step in this
direction was done by Pritsker [38]. There the Vasicek-model is used as
an example for a persistent time series, which highlights some problematic
aspects of nonparametric approaches to spot-rate modelling. In particular
it is shown that persistence has an important impact on optimal bandwidth
selection and finite sample performance (usual nonparametric approaches
do not account for that). Results in [2] (rejection of most major spot-rate
models) are shown to be very sensitive to these features. Further critical
aspects of the finite sample performance of the Aı̈t-Sahalia and Stanton
results are in Chapman and Pearson [14]. Chapman and Pearson conduct
a Monte Carlo study based on a Cox-Ingersoll-Ross model and find that
both nonparametric estimators suggest a nonlinear drift term.
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Downing [17] contains a further discussion of the nonparametric ap-
proach. He applies the nonparametric estimation techniques proposed in
[9] to simulated data from a two-factor interest rate model. He found that
the proposed nonparametric estimator exhibits a significant bias and a high
sampling variance. Based on these result his conclusion is that nonpara-
metric estimators are most useful as diagnostic tools rather than for actual
estimation of drift and diffusion functions.

5. Conclusion

The rapidly increasing degree of sophistication of financial products (espe-
cially derivative products) has emphasised the need for accurate stochastic
modelling of the price processes of various financial assets. Since para-
metrically restricted models have often been found violated by empirical
studies there has been an intense interest in nonparametric modelling ap-
proaches. Although highly data-intensive, generally requiring several thou-
sand data-points for a reasonable level of accuracy, the very structure of
financial markets producing a massive amount of data invites the applica-
tion of these methods. Furthermore, nonparametric methods are adaptive,
responding to structural shifts in the data-generating process, and are thus
more reliable when used for risk-management. Their flexibility allows for
modelling a wide range of derivative securities and underlying asset dy-
namics, of which we presented the two most important examples. Finally
the implementation of nonparametric methods is comparably simple and
allows for computationally efficient implementation.

A similar discussion to ours with more emphasis on the statistical side is
given in [21].
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