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Abstract. In the most common mathematical model for a moving load on a continuously-

supported exible plate, the plate is assumed thin and elastic. An exception is the inclusion of

viscoelasticity in the theory for the response of a oating ice plate, where the deexion at the

critical load speed corresponding to the minimum phase speed of hybrid exural-gravity waves

consequently approaches a steady state. This is in contrast to the elastic theory, where the

response is predicted to grow continuously at this critical load speed. In the theory for a oating

ice plate, the dominant pressure due to the underlying water is inertial, introduced via a velocity

potential and the Bernoulli equation (assuming non-cavitation at the plate-water interface). On

the other hand, the classical Winkler representation used in early railway engineering analysis

corresponds to retaining a term which is generally negligible in the ice plate context. Critical load

speeds are consequently predicted to be much higher, at wavelengths correspondingly much lower,

for commonly accepted railway engineering parameters. Other models might be considered.

Keywords: Flexible Plate, Foundations, Transport Systems

1. Introduction

Much of the theory published to date on the response of a continuously-supported

exible plate to a moving load assumes the plate is elastic. In several areas of

application, a thin elastic plate model has produced signi�cant results, including

elucidation of the wave forms which may be generated and the character of critical

load speeds at which the response is most pronounced. My introduction to the

�eld occurred in New Zealand, where a paper was written jointly with a Masters

student and Alfred Sneyd at the University of Waikato, inter alia describing for

the �rst time how two-dimensional wave patterns vary with the load speed (Davys

et al. [2]). It is a privilege to contribute this present paper to the symposium in

celebration of the 70th birthday of Alex McNabb, another of my eminent New

Zealand mathematical friends.

An exception to the usual elastic theory is a two-parameter Boltzmann delay

integral approach to incorporate viscoelasticity in the di�erential equation for the

thin plate (Hosking et al. [5], Squire et al. [13]). The validity of this preferred

viscoelastic model, in describing the exural response of ice plates subjected to

moving loads, is discussed in Squire et al. [13] { cf. section 2:5 on relevant me-

chanical properties of ice, and section 5:8 on the question of plate thickness, in

particular. Viscoelastic dissipation produces an asymmetric steady state response

at the critical load speed, namely the minimum phase speed cmin of exural-gravity

waves generated in the oating plate. In addition, by including viscoelasticity the

response is rendered �nite at that critical load speed, the shorter leading waves are



104 R.J.HOSKING

generally more severely damped than the longer trailing waves, the maximum plate

depression lags behind the load, and the wave pattern is \swept back" to some

extent { all phenomena identi�ed in extensive observations (Squire et al. [12], [13];

Takizawa [14], [15]). A summary of this Boltzmann integral approach is the �rst

topic of this paper.

It is also notable that all of the published time-dependent theory assumes the

oating ice plate is elastic. Schulkes & Sneyd [10] reviewed the pioneering anal-

ysis of Kheysin [8], and showed that for the one-dimensional response due to an

impulsively-started steadily moving concentrated line load on a oating plate there

are two load speeds at which the deexion continuously grows with time. Re-

cently, Nugroho et al. [9] developed the analogous time-dependent theory for the

two-dimensional response to either a concentrated point or a distributed (uniform

circular) load, which predicts that there is continuous growth only at the critical

load speed cmin, whether the load is concentrated or not. Physically, in two di-

mensions energy can radiate away in directions other than the line of motion of

the load. Viscoelastic time-dependent theory for the response of a thin oating

exible plate is the subject of a new investigation (Wang [19]), and a few aspects

are mentioned here.

The thorough experimental veri�cation of the theory for a load moving over oat-

ing ice means one can be con�dent about its application to transport systems in

cold regions, from conventional vehicles to landing aircraft and hovercraft used as

ice-breakers (Squire et al. [13]). The underlying foundation in many land-based

transport systems is of course not water, but nevertheless there may be similar

phenomena such as a pronounced response at some particular load speed. Indeed,

a resonant response at the critical speed corresponding to the minimum phase speed

of exural waves is predicted with the simple classical Winkler [20] representation

for a continuous elastic foundation, an early model adopted in railway engineering

(Timoshenko & Langer [17]). The longitudinal ladder sleeper, presently being tri-

alled for use in future railways by engineers in Japan, is briey discussed towards

the end of this paper.

2. The Di�erential Equation for a Thin Viscoelastic Plate

The small vertical deexion �(x; y; t) of a thin viscoelastic plate of thickness h and

density �0, due to a forcing function f(x; y; t) representing a moving load, is

Dr4

�
�(x; y; t)�

Z
1

0

	(�)�(x; y; t � �)d�
�
+ �0h�tt = p� f(x; y; t) (1)

where 	(t) is the viscoelastic memory function, p is the underlying pressure at

z = 0 due to the reaction of the foundation, and constant D is the e�ective exural

rigidity of the plate (Hosking et al. [5]; Squire et al. [13]).
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If 	 satis�es the fading memory hypothesis of Coleman and Noll [1], its general

form is a �nite sum of exponentials (GraÆ [4])

	(t) =

nX
j=0

Aje
��jt

;

where �j > 0 such that 	 tends to 0 monotonically as t!1 and Aj > 0 to ensure

positive energy dissipation (Hosking et al. [5]). The simplest possible memory

function corresponds to n = 0, when there are two viscoelastic parameters A0 and

�0 { which is a suitable descriptor of cyclic viscoelastic behaviour in an ice plate

under dynamic loading (Squire et al. [13]), as mentioned in the Introduction. This

model can be viewed as a spring of modulus E in series with a Voigt unit, consisting

of a second spring of modulus E(�0=A0 � 1) in parallel with a dashpot of viscosity

E=A0 (Flugge [3]). The relation A0 � �0 is required for the modulus of the spring

in the Voigt unit to be positive (Squire et al. [13]).

3. A Floating Viscoelastic Plate

In the case where the underlying medium is water of �nite depth H , so its motion

is described by a velocity potential, on the assumption that there is no cavitation

at the plate-water interface the time-dependent Fourier integral for the deexion

obtained from (1) is (Wang [19])

�(x; y; t) = � 1

(2�)
3

2
�

ZZZ
g(k; !)f̂(k1; k2; !)e

�i(k1x+k2y�!t)

W (k; !)
d!dk1dk2; (2)

where

g(k; !) = (�0 + i!)k tanh(kH) and W (k; !) = !
3 + ip!

2 + q! + ir, with

p = ��0; q = �(Dk4 + �g)k tanh(kH)=�;

and r = [(Dk4 + �g)�0 �Dk4A0]k tanh(kH)=�:

Here the contribution from the plate acceleration term �0h�tt in (1) has been omit-

ted, on the assumption that the horizontal wavelength of the deexion is much

larger than the plate thickness (jkhj << 1).

Both q and r are real functions even in k (and p is constant), so the three roots

! of the equation W (k; !) = 0 are even functions in k. For any given wave number

k 6= 0, two of these are complex roots symmetric about the imaginary axis, and the

third root is pure imaginary.

When the viscoelastic parameter A0 is zero, cancellation of the factor �0 + i!

leaves

g(k; !)

W (k; !)
=
ik tanh(kH)

!
2 + q

(3)
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and the Fourier integral in (2) reduces to the form in the elastic limit, where the

quadratic equation !2 + q = 0 is the familiar dispersion relation for free exural-

gravity waves (Squire et al. [13]). Thus in the elastic limit when A0 = 0, the two

roots !1;2 = �jkjc(k) are real, and the method of stationary phase may be invoked

to evaluate the deexion asymptotically as time t!1 (see Schulkes & Sneyd [10];

Nugroho et al. [9]). With viscoelasticity included (i.e. A0 6= 0) however, as noted

above both of these roots !1;2 are complex (provided k 6= 0), and consequently the

asymptotic analysis for t!1 is di�erent (Wang [19]).

In brief, this time-dependent viscoelastic theory describes both one-dimensional

and two-dimensional responses, for concentrated loads impulsively reaching uniform

speed V from rest. Thus in the one-dimensional case for example, a (y-independent)

line load moving in the positive x-direction is represented by the loading function

f(x; t) = F0Æ(x � V t)H(t), where Æ denotes the Dirac delta function and H(t) is

the Heaviside unit step function. After a contour integration in !, the consequent

deexion obtained from (2) is

�(X; t) =
F0

2��
(I0 + I1 + I2 + I3); (4)

where the coordinate X = x � V t is relative to the moving load, the integrals are

(j = 0; 1; 2; 3)

Ij(X; t) = �i
Z
1

�1

g(k; !j)e
�i[kX�(!j�kV )t]

W
0

L
(!j)

dk; (5)

WL(!) = (!�kV )W (k; !), and the prime denotes di�erentiation with respect to ! {

so the derivatives in the denominator of (5) are evaluated at !0 = kV and the three

roots of the equationW (k; !) = 0, respectively. The time-independent contribution

obtained from I0 is the steady-state viscoelastic result (11) of Hosking et al. [5]),

and the time-dependent behaviour of the deexion resides in the contribution from

the sum of the remaining integrals I1, I2 and I3.

In the elastic limit A0 ! 0, the integral I3 ! 0 and the sum

I1 + I2 !
Z
1

0

tanh(kH)

c(k)

�
cos(kX �  1t)

 1(k)
+

cos(kX +  2t)

 2(k)

�
dk

where  1(t) = k(c � V ) and  2(t) = k(c + V ) are the phase functions, when

the dominant contributions as t ! 1 arise from the neighbourhood of points of

stationary phase (Schulkes & Sneyd [10]).

As previously mentioned however, with viscoelasticity the asymptotic analysis is

di�erent. In particular, it turns out that the time-dependent contributions to the

deexion in (4) are all transient at the critical load speed V = cmin. Thus the

response at this critical speed also approaches a steady state (in the limit t!1),

given by the time-independent Fourier form (11) in Hosking et al. [5], when there is

nevertheless a pronounced peak. The time dependence is quantitatively di�erent in

the two-dimensional analysis, but there is a similar outcome { and indeed, a steady
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state response is predicted at all load speeds. (As in the elastic theory, slow growth

O(t1=3) as t ! 1 remains for a load moving at the gravity wave speed V =
p
gH

in the one-dimensional but not the two-dimensional case, since the viscoelasticity

is ine�ective at very large wavelength.)

4. Elastic Plate or Beam on a Winkler Foundation

The underlying pressure due to a Winkler foundation is p = �� where  is a

constant, so it is quite suitable for the response of a plate oating on water to a

static load, but not its dynamic response due to a moving load { i.e. there is only

an hydrostatic term and no uid inertia contribution, using the hydrodynamic

terminology appropriate in the previous Section. For a Winkler foundation, a

notable consequence is that the contribution from the plate acceleration term �0h�tt

in (1) has traditionally been retained. Thus instead of (2), the Fourier integral for

the deexion of a plate on a Winkler foundation is

�(x; y; t) = � 1

(2�)3=2

Z Z Z
f̂(k1; k2; !)e

�i(k1x+k2y�!t)

�0h!
2 � (Dk4 + )

d!dk1dk2; (6)

if the viscoelastic delay term in (1) is also ignored. The corresponding dispersion

relation for free exural waves in an elastic plate on a Winkler foundation is

!
2 =

Dk
4 + 

�0h
: (7)

Consequently, the phase speed c(k) = !=k is asymptotically in�nite at large wave-

lengths (as k ! 0) dominated by the reaction of the foundation and tends to

increase linearly (with k) at small wavelengths (as k ! 1), with a minimum

cmin = (4D=(�0h)
2)1=4 occurring at the wave number kmin = (=D)1=4.

It is remarkable that the simple Winkler model for the foundation has played such

a major role in railway engineering. A very early paper discussed the theoretical

response of an elastic beam to a moving load in the context of a rail track with

longitudinal sleepers (Schwedler [11]); and following some inuential investigations

(Timoshenko [16]; Timoshenko & Langer [17]), it became accepted that railways

with the now much more common cross-tie transverse sleeper con�guration could

be modelled by a beam on a Winkler foundation. The di�erential equation for an

elastic beam

EI

@
4
�

@x
4
+m

@
2
�

@t
2
+ � = f(x; t); (8)

analysed by Timoshenko and others (cf. Squire et al. [13]), is the one-dimensional

analogy of the plate equation (1) without viscoelasticity. The corresponding dis-

persion relation for free waves in an elastic beam on a Winkler foundation is

!
2 =

EIk
4 + 

m

(9)
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analogous to (7), and the phase speed c(k) has similar behaviour. Timoshenko [16]

calculated the critical load speed where the theoretical steady state deexion of the

elastic beam is in�nite, which is identical with the minimum phase speed cmin =

(4EI=m2)1=4 at wave number kmin = (=(EI))1=4, to be about 2,000 km/hour!

Railway engineers have consequently tended to disregard the critical speed phe-

nomenon, based on this model with the fundamental assumptions that the rail is

elastic and the foundation reaction is directly proportional to its displacement, and

subsequent investigations have not as yet much altered this common perception.

However, one notable model variation which has been considered is the inclusion of

compressive stress in the beam (Timoshenko [16]), a suggestion which has become

more relevant given the increasing use of continuously-welded rails. Thus if the

additional term N @
2
�=@x

2 is included on the left-hand side of (8), the critical

speed reduces to (1 � N=Ncr)
1=2
cmin where Ncr = 2

p
EI is the buckling stress

coeÆcient, for a steadily moving localized load (Kerr [6], [7]).

5. Ladder Sleeper Rail Tracks

Experiments with longitudinal rather than transverse railway sleepers have con-

tinued over the years, although longitudinal sleepers require some mechanism to

maintain the track gauge and the sleeper components may be more expensive to

construct (Wakui et al. [18]). Indeed, rail tracks with so-called ladder sleepers may

well emerge in North America and Japan, for heavy haul and fast rail systems.

Potential advantages are lower rail track maintenance and a smoother ride.

A typical ladder sleeper component consists of two prestressed concrete longitu-

dinal beams from 6 to 12 or 13 metres in length with transverse connecting rods

(steel pipes) acting as gauge ties, inserted every 3 metres between the prestressing

strands which are the main reinforcement for the beams. These components laid

end to end produce a structure which not only provides continuous support to the

rails but also a much more even pressure distribution (with lower peak pressure)

on the foundation, in comparison with conventional transverse sleepers. Rail fas-

teners to the ladder sleepers every 75 centimetres or so, four to every gauge tie

say, means that the rail and longitudinal sleeper tend to act as a composite. Con-

sequently, the rate of ballast and subgrade settlement is usually much lower than

with conventional transverse sleepers, and the composite ladder structure may also

bridge across weak spots where partial subsidence has occurred. Decreased track

irregularity due to lateral loading is also envisaged, given the greater transverse

resistance provided by the continuous longitudinal structure. Continuous rubber

bu�ers can be placed between the rails and the sleepers too, and possibly other

bu�ers underneath the sleepers, with the objective to give a smoother ride.

The exural rigidity EI of the composite rail and longitudinal sleeper may be of

order 106Nm2, and the combined mass per unit length of the rail and longitudinal

sleeper about 300 kg/m, values quite similar to the parameters for a conventional

cross-tie railway. Thus the critical speed cmin predicted by modelling the composite

structure as an elastic beam on a continuous Winkler foundation is more than
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500 km/hour, higher than the maximum speed attained on all but magnetically-

levitated rail systems, for a foundation sti�ness coeÆcient  of order 107Nm2 or

more. The corresponding wavelength is only a few metres however, comparable

with the length of a ladder sleeper component.

6. Summary

Mathematical modelling of the response of a continuously-supported exible plate

or beam to a moving load has been applied to predict and interpret important

transport system features, in parametrically diverse cold region operations and

railway engineering. (There also have been railways built over frozen waterways

however, not discussed here { see for example, Squire et al. [13].)

Developed theory for a oating ice plate has de�ned various signi�cant phenom-

ena, such as the dependence of the wave pattern on the load speed and the pro-

nounced resonant response at the critical load speed coincident with the minimum

phase speed of generated exural-gravity waves, consistent with extensive �eld ob-

servations. Recent time-dependent analysis for an elastic plate predicts an eventual

steady state response except at this critical load speed; and the response is pro-

nounced but also steady state at that load speed, when viscoelasticity is included

in the thin plate equation. An important observation is that the plate acceleration

is negligible relative to the uid inertia contribution from the foundation in this

context, where the horizontal wavelength of the surface deexion is generally much

larger than the plate thickness.

Earlier theory in the railway engineering context assumed a Winkler foundation,

where the plate or beam acceleration term is retained and the horizontal wavelength

of the response is much smaller, for typical parameters. The critical load speed for

an elastic plate or beam on a Winkler foundation comfortably exceeds the highest

operational speed of most fast rail systems, based on sti�ness estimates for typical

ballast and substrate. Other theoretical models have been proposed, and their

further investigation may be warranted. Thus there may be foundation features

which are not represented satisfactorily by any isotropic elastic model, in addition

to any intrinsic remodelling of the plate or beam.
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