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Abstract. Bian and Dickey (1996) developed a robust Bayesian estimator for the vector of
regression coefficients using a Cauchy-type g-prior. This estimator is an adaptive weighted average
of the least squares estimator and the prior location, and is of great robustness with respect to
flat-tailed sample distribution. In this paper, we introduce the robust Bayesian estimator to the
estimation of the Capital Asset Pricing Model (CAPM) in which the distribution of the error
component is well-known to be flat-tailed. To support our proposal, we apply both the robust
Bayesian estimator and the least squares estimator in the simulation of the CAPM and in the
analysis of the CAPM for US annual and monthly stock returns. Our simulation results show that
the Bayesian estimator is robust and superior to the least squares estimator when the CAPM is
contaminated by large normal and/or non-normal disturbances, especially by Cauchy disturbances.
In our empirical study, we find that the robust Bayesian estimate is uniformly more efficient than
the least squares estimate in terms of the relative efficiency of one-step ahead forecast mean square
error, especially for small samples.
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1. Introduction

Both financial economists and statisticians have been concerned with the distri-
butions of stock market returns. Fama (1963, 1965a, 1965b) and many others
analyzed the empirical data and concluded that the normality assumption in the
distribution of a security or portfolio return is violated such that the distribution
is ‘flat-tailed’. They suggested the family of stable Paretian distributions between
normal and Cauchy distributions for the stock returns.

On the other hand, Blattberg and Gonedes (1974) examined the return to security
and suggested student-t as an alternative ‘flat-tail’ distribution for the return. Clark
(1973), Christie (1983), Kon (1984) and Tse (1991) suggested a mixture of normal
distributions for the stock return while Fielitz and Rozelle (1983) suggested that a
mixture of non-normal stable distributions would be a better representation of the
distribution of the return.

The distributional structure of the return may carry over into the structure of the
disturbance in the Capital Asset Pricing Model (CAPM). In this situation, the dis-
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tribution of the disturbance is ‘flat-tailed’ and the mixture of normal distributions
or mixture of normal and Cauchy distributions may give a better description of the
distribution of the disturbance in the CAPM. Harvey and Zhou (1993) supported
this idea and pointed out that the non-normality in the return may carry over into
non-normality of the disturbance in the CAPM. They examined the residuals of
the world market portfolios in the CAPM and found that the distributions of the
disturbances departed from normality in many cases. They then tested the sen-
sitivity of the benchmark in the CAPM by specifying error structures that follow
t-distributions or mixtures of normal distributions.

Bian and Dickey (1996) developed the robust Bayesian estimator for the vector of
regression coefficients using a Cauchy-type g-prior. They showed that this robust
Bayesian estimator is adaptive and markedly robust with respect to a flat-tailed
sample distribution as compared to both the least squares estimator (LSE) and the
usual Bayesian estimator.

Based on the ‘flat-tail’ characteristic on the distributions of the security or portfo-
lio returns and their corresponding disturbances in the CAPM, we recommend the
robust Bayesian estimator for the estimation of the parameters of the CAPM for
the stock returns. The findings by Bian and Dickey (1996) lead us to hypothesize
that the robust Bayesian estimator is more appropriate in the estimation of the
CAPM in the sense that it is more efficient than the LSE.

To illustrate the superiority of the proposed Bayesian estimator, we simulate the
LSE and the proposed estimator for a CAPM model. Based on the simulation
results, we find that the proposed Bayesian estimator is superior to LSE when the
CAPM model is contaminated by large normal and/or non-normal disturbances,
especially by Cauchy disturbances.

To test our hypothesis, we also apply the one-step ahead forecasting technique to
compare the robust Bayesian estimator with the traditional least squares estimator,
LSE, in the estimation of the parameters in the CAPM for the US annual and
monthly stock returns. The one-step ahead forecasting technique is commonly used
to compare the performance of different models, see Clements and Hendry (1997).
In our empirical study, we find that the robust Bayesian estimate is uniformly
more efficient than the LSE in terms of relative efficiency of one-step ahead forecast
mean square error, especially for small samples. Hence we recommend the robust
Bayesian estimator for the estimation of the CAPM.

Many applications in finance involve prior beliefs about the behavior of the data.
However, almost all empirical analyses have been carried out in the classical frame-
work. There have been relatively few studies done, which applied the Bayesian ap-
proach in finance. Among them are Shanken (1987), Gibbons, Ross, and Shanken
(1989), McCulloch and Rossi (1991) and Harvey and Zhou (1990). Two practi-
cal difficulties in implementing the approach have resulted in the slow adoption of
Bayesian econometrics. The first is how to choose a prior and how to specify prior
parameters. The other difficulty lies in evaluating the posterior distribution.

To overcome these difficulties, Harvey and Zhou (1990) imposed a prior on all the
parameters of the multivariate regression model and used Monte Carlo numerical
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integration to accurately evaluate 90-dimensional integrals to estimate the parame-
ters in the posterior distribution. They developed a Bayesian framework to test the
mean-variance efficiency of a given portfolio. The test is more direct than Shanken’s
(1987).

In recent studies, MacKinlay and Richardson (1991) developed the tests of un-
conditional mean-variance efficiency under weak distributional assumptions using
a Generalized Method of Moments framework and concluded that the efficiency
indexes can be sensitive to the test considered. Kandel, McCulloch and Stambaugh
(1995) used a Bayesian approach to investigate a sample’s information about a
portfolio’s degree of inefficiency and found that the NYSE-AMEX market portfolio
is rather inefficient in the presence of a riskless asset.

There are two main issues on CAPM. One is testing the efficiency hypothesis,
another is the estimation of the CAPM model, refer to Chapter 5 in Campbell, Lo
and MacKinlay, 1997. In our paper, we address the latter issue by proposing an
efficient method to overcome the difficulties in both getting the prior information
and evaluating the posterior distribution. The proposed prior is an independent
Cauchy and improper g-prior which is a robust prior. As such, the resulting esti-
mator is adaptive and robust. We may acquire the information from the previous
corresponding sample to specify the values of the prior parameters in practice.
This approach makes the computation of the Bayesian estimate as easy as that of
the LSE. It overcomes the need for computing integrals of any dimension for the
estimation.

In Section 2, we review the least squares estimator, LSE, the usual Bayesian es-
timator and the robust Bayesian estimators. Section 3 reviews the theory of the
standard CAPM, the non-stationarity of Beta parameter, the ‘flat-tail’ distribu-
tion of the security return and discusses applying the robust Bayesian estimator
for the estimation of the CAPM. Section 4 reveals the results of the simulation for
the Bayesian estimator and the least squares estimator when the CAPM is con-
taminated by normal and/or non-normal disturbances. We apply both the robust
Bayesian estimator and the least squares estimator, LSE,in the estimation of the
CAPM for the US annual and monthly stock returns and compare their efficiency
in Section 5. The conclusion is in the last section.

2. A review of the least squares estimator and the Bayesian estimators
of regression coefficients

The model considered is the normal linear multiple regression model (NLR) with
the standard form:

y = Xβ + e (1)

where y is an n× 1 vector of observations on the dependent variable, X is an n× p
design matrix with rank p, β is a p×1 vector of regression parameters with unknown
value, and e is the n × 1 vector of disturbances. It is assumed that the elements
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of e are independently drawn from a normal distribution with mean 0 and finite
variance σ2. The likelihood function for the NLR is

l(β, σ|y,X) ∝ σ−nexp[−(y −Xβ)′(y −Xβ)/2σ2]

In this model, the traditional estimator is the LSE which is also the maximum
likelihood estimator for β. It is given by

β̂ = (X ′X)−1X ′y (2)

So far in the literature of Bayesian estimation of regression coefficients, only the
conjugate prior and the non-informative prior have been employed extensively in
statistical estimation. The conjugate prior for the regression model (1) is a normal-
reciprocal gamma distribution given by:

pN (β, σ−2) = fN (β|σ) h(σ−2)

fN (β|σ) ∝ σ−pexp[−(β − β0)′A(β − β0)/2σ2] (3)

and
h(σ−2) ∝ (σ−2)ν0/2−1exp[−(ν0s

2
0)/2σ2]

The usual non-informative prior is:

p(β, σ) ∝ 1
σ

The posterior density of β and σ−2 associated with the conjugate prior (3) is:

f(β, σ−2|y) ∝ (σ−2)(n+ν0+p)/2−1 ×

exp{−σ
−2

2
[ν0s

2
0 + ||y −Xβ̂||2 + ||X(β − β̂)||2 + (β − β0)′A(β − β0)]}

The Bayesian estimator of β, under quadratic loss, is the posterior mean of β. It
is given by

EN (β|y) = (X ′X +A)−1(X ′Xβ̂ +Aβ0) (4)

where β̂ is the LSE of β specified by (2). Zellner (1986) modified the above approach
by considering the normal g-prior specified by the following forms:

p(β, σ−2) ∝ f(β|σ, g)h(σ−2)

f(β|σ, g) ∝ σ−pexp[−g(β − β0)′X ′X(β − β0)/2σ2]

and
h(σ−2) ∝ (σ−2)ν0/2−1exp[−(ν0s

2
0)/2σ2]
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This is a special case of the conjugate prior with the covariance matrix A−1 pro-
portional to (X ′X)−1, the covariance matrix of the LSE. From (4), the Bayesian
estimator, β̂N , of β becomes

β̂N = EN (β|y, g) =
β̂ + gβ0

1 + g
(5)

The prior that has been extensively employed is the conjugate prior. Mathemati-
cal simplicity of making analytical evaluation for inference is the most important
advantage of the conjugate prior. Unfortunately, the resulting estimator is not
robust. When the robustness is of concern, an attractive way to develop robust
Bayesian inference is to use robust priors which possess flat but not too flat tails to
form Bayesian estimators, see Bian (1995), Bian and Tiku (1997), Dickey (1974),
Ramsay and Novick (1980), Berger (1980, 1984) and Press (1989). However, it is
difficult to make analytical evaluation for inference because of the ugly forms of the
resulting posterior densities. Bian and Dickey (1996) overcame this difficulty by in-
troducing a prior in which the prior knowledge regarding β and σ2 is assumed to be
independently distributed as a Cauchy g-prior and a reciprocal gamma distribution
such that

p(β, σ−2) ∝ f(β|g)h(σ−2)

where
f(β|g) ∝ [1 + g(β − β0)′X ′X(β − β0)]−(p+1)/2

and
h(σ−2) ∝ (σ−2)ν0/2−1exp[−(ν0s

2
0)/2σ2]

This prior distribution has the same marginal density as the conjugate prior spec-
ified in (3) when ν0 = 1. Combining this prior with the likehood function, the
posterior density of β and σ−2 is:

f(β, σ−2|y) ∝ (σ−2)(n+ν0)/2−1[1 + g||(X ′X)1/2(β − β0)||2]−(p+1)/2

× exp{−[||y −Xβ̂||2 + ||(X ′X)1/2(β − β0)||2 + ν0s
2
0]/2σ2}

Integrating out σ−2 yields the posterior density of β,

f(β|y;β0, g2) ∝ [1 + g2||(X ′X)1/2(β − β0)||2]−(p+1)/2

× [||y −Xβ̂||2 + ||(X ′X)1/2(β − β̂)||2 + ν0s
2
0]−(n+ν0)/2 . (6)

When ν0 = p + 1 − n, and s0 = 0, the marginal posterior density of β is a poly-
Cauchy density

f(β|y) ∝ [1 + g||(X ′X)1/2(β − β0)||2]−(p+1)/2

× [||y −Xβ̂||2 + ||(X ′X)1/2(β − β0)||2]−(p+1)/2 .

The robust Bayesian estimator, β̂C of β, under quadratic loss, is the posterior mean:

β̂C = E(β|y, g) = wβ̂ + (1− w)β0 (7)
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with mean
E(β̂C) = E(w)β + [1− E(w)]β0

and the variance-covariance matrix

V ar(β̂C) = E(w2)V ar(β̂) + V ar(w)(β − β0)(β − β0)′

where w = (1 + g1/2||y −Xβ̂||)−1.
The new estimator β̂C is a non-linear function of β̂. The weight w in (7) is a

decreasing function of the prior parameter g and the residual ||y −Xβ̂||. When g
goes to zero, the prior of β diffuses to the non-informative prior and the weight w
increases to 1. In this situation, β̂C approaches to the LSE β̂ which is the Bayes
estimator arising from the usual non-informative prior.

The main attraction of β̂C is its weight w depending reasonably on the residual
||y−Xβ̂||. When wild or extreme observations occur, the value of residual ||y−Xβ̂||
rises. Hence, there is higher uncertainty for the LSE β̂ and consequently the weight
w becomes smaller. In this sense, the estimator β̂C is an adaptive weighted average
and tends to be considerably more robust.

To compare the robust Bayesian Estimator β̂C in (7) with the least squares esti-
mator β̂ in (2) and the usual Bayesian Estimator β̂N in (5), Bian and Dickey (1996)
simulated the simple regression model

y = a+ bx+ e

in which the random term e is distributed as the ε-contaminated normal distribution
such that

e ∼ (1− ε)N(0, 1) + εN(0, k2) , k = 5 (8)

or the ε-contaminated Cauchy distribution such that

e ∼ (1− ε)N(0, 1) + ε Standard Cauchy (9)

for small samples.
In their simulation results, they found that the efficiency of β̂C relative to both

β̂N and β̂ grows rapidly as ε grows in value. The higher the proportion of the
observations contaminated by large fluctuations, the more efficient is β̂C relative to
both β̂N and β̂ in the simulation with the random terms in (8) and (9).

When the error terms are distributed as the ε-contaminated Cauchy distribution,
the means and variances of β̂ and β̂N do not exist theoretically while the means and
variances of β̂C do exist and β̂C is unbiased if the prior center β0 hits the true value
of β perfectly. In the simulation of this situation, they found that the efficiency of
β̂C relative to both β̂N and β̂ is extremely large even if the value of ε is as small as
0.01. This shows that β̂C is considerably robust relative to both β̂N and β̂.



ROBUST ESTIMATION IN CAPITAL ASSET PRICING MODEL 71

3. The application of the robust Bayesian estimator in CAPM

The Capital Asset Pricing Model is a parsimonious general equilibrium model devel-
oped by Sharpe (1963, 1964), Treynor (1961) and Lintner (1965). They suggested
that the excess return R on a security is formulated by:

R = a+ bRm + e (10)

where Rm is the excess return on market portfolio, and e is the random error. From
Equations (1) and (10), we have β = (a, b)′. In this paper, we do not consider the
Black version of CAPM which treats the zero-beta portfolio return as an unobserved
quantity, making the analysis more complicated than that of the Sharpe-Lintner
version.

Blume (1975), Brenner (1974), Pettit and Westerfield (1974), Leavy (1971), Hamada
(1972) and many others found that the measure of security risk is empirically non-
stationary over time. To handle the non-stationarity of β, Bodurtha and Nelson
(1991) applied the conditional heteroskedastic error using autoregressive conditional
heteroskedastic model (ARCH) for the estimation of the CAPM.

In order to capture the stationary Beta parameter, one may estimate the model
from a reasonably short subperiod. In this situation, the Bayesian approach is a
good choice. Vasicek (1973) is one of the earliest papers that discusses the appli-
cation of Bayesian estimation to the CAPM. However, Vasicek’s approach is not
robust.

Many papers such as Fama (1963, 1965a, 1965b) analyzed the empirical data and
concluded that the distribution of the security or portfolio return is ‘flat-tail’ and
the normality assumption is violated. They suggested the family of stable Paretian
distributions between normal and Cauchy distributions for the stock returns.

Blattberg and Gonedes (1974) examined the security returns and suggested student-
t as an alternative ‘flat-tail’ distribution. Clark (1973), Christie (1983), Kon (1984),
and Tse (1991) suggested a mixture of normal distributions for the stock return
while Fielitz and Rozelle (1983) suggested that a mixture of non-normal stable
distributions would be a better representation of the distribution of security and
portfolio return.

The structure of the distribution for the return may carry over into the struc-
ture of the disturbance. As such, the disturbance’s distribution is ‘flat-tailed’ and
the mixture of normal distributions or the mixture of normal and Cauchy distri-
butions may give a better description of the distribution of the disturbance in the
CAPM. This is supported by Harvey and Zhou (1993) who pointed out that the
non-normality in the return may carry over into non-normality of the disturbance in
the CAPM. Harvey and Zhou examined the residuals of the world market portfolios
in the CAPM and found that in many cases the distributions of the disturbances
departed from normality. They then tested the sensitivity of the benchmark in the
CAPM by specifying error structures that were t-distributed or follow the mixtures
of normal distributions.
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Based on the findings by Bian and Dickey (1996), we hypothesize that the robust
Bayesian estimator is more appropriate in the estimation of the parameters of the
CAPM in the sense that it is more efficient than the LSE in the estimation of the
parameters.

To support our hypothesis, the first consideration pertains to the robustness of the
estimator. Mandelbrot (1963) and others show empirically that the distribution of
the return is intermediate between normal and Cauchy distributions and therefore
the tails of the distribution are flatter than normal but thinner than Cauchy. Since
the Cauchy prior distribution is a robust prior with tails very much flatter than the
normal distribution, the robust Bayesian estimator β̂C arising from a Cauchy type
g-prior with normal-distributed sample distribution performs well in yielding an
estimator which is robust with respect to wild fluctuations and extreme observations
of the stock return in the CAPM. The estimator is highly representative in the
situation in which the distribution is between normal and Cauchy.

The next consideration concerns the sampling distribution following the mixture
of normal distributions, as found by Brenner (1974), Boness, Chen and Jatusipitak
(1974), Kon (1984) and Tse (1990). The simulation results in Bian and Dickey
(1996) showed that β̂C is more efficient than both β̂N and β̂ under the mixture of
normal distributions for the error term. This suggests that our approach should
provide a better estimation for the CAPM with respect to the issue of the mixture
of normal distributions.

The last consideration refers to the mixture of normal and Cauchy distributions.
Fielitz and Rozelle (1983) found that the distribution of some security returns
fitted the mixture of normal and non-normal stable distributions with different
characteristic exponents. Bian and Dickey (1996) have already demonstrated that
β̂C is more efficient in the case of the mixture of normal and Cauchy distributions.
This suggests our hypothesis is justified for the issue of the mixture of normal and
Cauchy distributions.

4. Simulation results

From the practical point of view, it is very important to examine the sensitivity of
a statistical procedure to deviations from an assumed model. We thus evaluate, in
the traditional sense, the performance under departures from the assumed model
of the β̂C relative to the β̂ based on the CAPM model (10) with β0 = (a, b) = (0, 1)
and ei’s being distributed as ε-contaminated distributions, as displayed in Table 1.

We then compare β̂C with g = 0.01 to β̂. The values of the mean error (bias)
and MSE of these three estimators for different error distributions and different
locations of the prior center β0 = (a0, b0) are evaluated based on 10,000 runs. The
results are tabulated in Table 1. For convenience, we define the bias and MSE as
follows:

bias(β̂, β) = ||E(β̂)− β|| and MSE(β̂) = E(||β̂ − β||)2 . (11)
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We note that, usually, the bias is defined as E(β̂) − β when the dimension of β
is equal to one. However, we define the bias as in (11) because in our model the
dimension of β is greater than 1.

Based on the tabulated values, we obtain the following findings:

1. The β̂C has no bias when the prior center hits the true values of β perfectly,
and has negligible biases when the prior center deviates moderately.

2. β̂C is uniformly superior to β̂ when the model is contaminated by non-normal
disturbances or when the prior center hits the true location of β perfectly.

3. β̂C is remarkably superior to β̂ when the model is contaminated by Cauchy
disturbances. Relative efficiency is from 8330.88 to as large as 18433.48 in our
simulation.

Cauchy disturbances cause damage to LSE β̂. When Cauchy errors occur in obser-
vations, the sampling means and sampling variances of β̂ do not exist. Hence the
values of LSE fluctuate violently and therefore the values of the MSE for β̂ shown
in Table 1 are very large. Thus one may conclude that LSE is inappropriate when
some or all of the errors follow a Cauchy distribution. On the contrary, the values
of both bias and MSE for β̂C are quite small. In addition, the sampling mean and
sampling variance of β̂C do exist. Hence, β̂C is highly robust relative to β̂. At least,
it can be viewed as a promising alternative method in a number of CAPM model
where the error terms are distributed as mixture distributions.

We note that in Table 1 the MSE for the bayesian estimate with β0 = (0, 1) is less
than the MSE for the LSE in the N(0, 1) case. This is because the prior β0 = (0, 1)
hits the exact value of the parameters in the model. When β0 = (−2, 3), reasonably
far away from the parameters, the MSE for the proposed bayesian estimator is
greater than the MSE for the LSE. When β0 = (−1, 2), it is close to the true value
and hence the MSE is smaller than the MSE for the situation with β0 = (−2, 3).

We also note that in Table 1 the MSE for the LSE in .75N(0, 1) + .25C(0, 1) is
less than the LSE in .90N(0, 1) + .10C(0, 1). This is possible because the variance
of C(0, 1) does not exist and hence the MSE has huge variability and depends on
the samples chosen.

5. Empirical Study

In this section, we demonstrate that the robust Bayesian estimator is a more ap-
propriate estimator of the parameters in the CAPM by examining the US annual
and monthly stock returns.

Twelve industrial portfolios of U.S. data are employed in the study. The indus-
try classifications conform to Sharpe (1982), Breeden, Gibbons and Litzenberger
(1989) and Gibbons, Ross, and Shanken (1989). The portfolios are value-weighted.
The monthly market return is the value weighted NYSE return. The portfolio
returns are available from the Center for Research in Security Prices (CRSP) at
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the University of Chicago. These monthly returns from the period 1926-1987 are
in excess of 30-day Treasury-bill rate available from Ibbotson Associates. Harvey
and Zhou (1990) introduced a Bayesian test and calculated posterior odds ratios
for the industry portfolios of these returns to test the mean-variance efficiency. We
use the same data set to demonstrate that the robust Bayesian estimator is a more
appropriate approach in the CAPM estimation.

Table 1. Values of biases and MSE’s for the estimators with β = (0, 1)

Sample LSE Proposed Bayesian Estimator
of β0 = (0, 1) β0 = (−1, 2) β0 = (−2, 3)

Error Terms Bias MSE Bias MSE Bias MSE Bias MSE
N(0, 1) 0.000 .479 .000 .298 .300 .392 .600 .673

.95N(0, 1) + .05N(0, 9) 0.011 .669 .007 .369 .326 .481 .657 .827

.90N(0, 1) + .10N(0, 9) 0.007 .837 .006 .431 .361 .570 .717 .983

.75N(0, 1) + .25N(0, 9) 0.012 1.426 .008 .627 .435 .830 .864 1.429
.95N(0, 1) + .05(3T4)∗ 0.002 .969 .001 .428 .344 .559 .688 .950
.90N(0, 1) + .10(3T4) 0.002 1.291 .002 .502 .375 .663 .752 1.142
.75N(0, 1) + .25(3T4) 0.030 2.574 .020 .807 .457 1.040 .929 1.770

3T4 0.023 8.556 .018 1.809 .714 2.334 1.430 3.925
.95N(0, 1) + .05C(0, 1) 0.065 108.2 .007 .428 .342 .567 .679 .975
.90N(0, 1) + .10C(0, 1) 0.414 812.5 .008 .550 .374 .726 .741 1.238
.75N(0, 1) + .25C(0, 1) 0.026 445.6 .018 .883 .442 1.146 .898 1.951

C(0, 1) 0.472 40738 .003 2.208 .764 2.880 1.530 4.888
N(0, 1) denotes a normal distrbution with mean 0 and variance 1, 3T4 denotes a scaled

Student t distribution with 4 degree of freedom with a scale of 3, and C(0, 1) denotes a

Cauchy distribution with mean 0 with a scale of 1.

We specify the CAPM for the excess return Ri for the ith industrial classification
portfolio such that:

Ri = ai + biRm + ei for i = 1, 2, · · · , 12

where Rm is the market excess return, and ei is the error term of the ith industrial
portfolio.

We first apply the normality test concerning the measures of skewness and kurtosis
for the returns and the corresponding residuals in the CAPM to test the hypothesis
that the returns Ri are normally distributed and to test the hypothesis that the
disturbances ei come from a normal distribution. The results are shown in the
following tables:

The results in Table 2 lead us to reject the hypothesis that the monthly returns
Ri as well as their corresponding disturbances come from a normal distribution
at 0.01 level of significance. The above finding supports the hypothesis that the
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Table 2. Tests for departure from normality for monthly excess portfolio returns and the
corresponding residuals in CAPM by industrial classifications.

Returns Residuals
Portfolio Skewness kurtosis Skewness kurtosis

NYSE value-weighted 0.3059** 10.6030** — —
Petroleum 0.3103** 7.4277** 0.2477** 4.1315**
Finance & Real Estate 0.2257** 10.6255** 0.0060 4.7600**
Consumer Durables 1.0134** 15.3646** 0.6193** 10.7926**
Basic Industries 0.8691** 13.6209** 0.6333** 9.6177**
Food & Tobacco 0.0178 10.1611** -0.1866* 4.9496**
Construction 0.8995** 11.5376** 0.5306** 6.6211**
Capital Goods 0.2375** 9.0959** 0.1785* 4.7571**
Transportation 1.1614** 15.2275** 1.1199** 8.7320**
Utilities 0.1446 10.7665** -0.0405 5.0824**
Textile & Trade 0.1218 8.6145** -0.0940 4.8637**
Services 0.0349 7.0560** 0.3336** 11.8533**
Recreation 0.2925** 9.1474** -0.4153** 5.3689**

* p < .05
** p < .01

non-normality in the returns will carry over into the non-normality of the distur-
bances in the CAPM, as mentioned in Harvey and Zhou (1993). However, Table 3
leads us to accept the normality hypothesis for the annual returns of all portfolios
except Construction and Basic Industries at 0.01 level of significance but reject
the normality hypothesis for their corresponding disturbances in some cases. This
suggests that the normality in the return may not carry over into the normality
of the disturbance. In the situation where the disturbance is normally distributed
or non-normally distributed for the U.S. portfolio return, we apply both β̂C and β̂
to study the efficiency of estimation in the CAPM. We note that the return may
process possess ARCH effects which may cause the return to depart from normal.
However, temporal aggregation will reduce this ARCH effects; for examples, see
Drost and Nijman (1995). Hence, the annual excess portfolio returns are closer to
normal as compared to the monthly excess portfolio returns, see Tables 2 and 3
respectively.

Since the Bayesian estimation involves subjective judgement, we have to specify
the values of the prior parameters. Ideally, the specification of the hyper-parameters
should be obtained from experts with thorough knowledge in the market. The ex-
pert opinion may come from the detailed information of the fundamentals such as
corporate profitability, capital structure and leverage, and from confidential and
restricted information such as the latest preliminary corporate accounts and invest-
ment plans.
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Table 3. Tests for departure from normality for annual excess portfolio returns and the
corresponding residuals in CAPM by industrial classifications.

Returns Residuals
Portfolio Skewness kurtosis Skewness kurtosis

NYSE value-weighted 0.1361 3.0145 — —
Petroleum -0.1036 3.6989 -0.2063 3.0292
Finance & Real Estate 0.3696 3.0602 -0.2794 3.7495
Consumer Durables -0.4871 3.8769 -0.5831* 4.4674*
Basic Industries -0.0819 5.4423** -1.4005** 8.9522**
Food & Tobacco -0.0129 2.8486 -0.2207 2.1284*
Construction -1.3041** 8.1547** -2.1054** 15.4045**
Capital Goods -0.1921 3.5966 -0.7956** 3.6278
Transportation 0.0455 3.3221 -0.1741 2.6903
Utilities -0.5137* 4.5002* 0.2611 6.8466**
Textile & Trade 0.0230 2.4575 -0.4527 3.9870*
Services 0.0755 3.0064 0.4039 4.7447**
Recreation -0.0037 3.0391 -0.3682 3.5089

* p < .05
** p < .01

However, sometimes there is not enough information for statisticians or finan-
cial analysts to specify the values of the prior parameters. In this situation, we
may acquire the information of the previous corresponding month to specify the
information for the prior.

There are two prior parameters in the robust Bayesian estimator β̂C : β0 and g.
The parameter β0 is the prior centre of β while g is prior precision of β. In this
study, we use the estimate of β from the previous sample with the same sample size
as the value of β0 in the updated estimation. This is essentially a empirical Bayes
approach (see Maritz and Lwin 1989).

We adopt the one-step ahead forecast MSE, see Clements and Hendry (1997) for
more detail, as a basis for comparison between β̂C and β̂ for the U.S. monthly and
annual data. In the computation, the sample size n is chosen from 6 to 36 for
monthly data and from 5 to 20 for annual data. The value of g is chosen from 0.1
to 20. We note that the first n data (t = 1, · · · , n) are being used only to compute
the prior information for β̂C in the first sample (t = n + 1, · · · , 2n). The second n

data (t = 2, · · · , n+ 1) are being used only to compute the prior information for β̂C
in the second sample (t = n+ 2, · · · , 2n+ 1), and so on.

For each sample size n and for each g value, the estimates of both β̂C and β̂
are first computed for each industrial portfolio for t = n+ 1, · · · , T − 1 where T is
December 1987 for monthly data and 1987 for annual data. We then compute their
one-step ahead forecasts, R̂it, by applying β̂C and β̂ respectively for each portfolio
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and for t = 2n+ 1, · · · , T and subsequently the one-step ahead forecast MSE,√∑T
t=2n+1(R̂it −Rit)2

T − 2n

for the ith Portfolio with respect to β̂C and β̂ for each n and each g. The average
one-step ahead forecast MSE∑12

i=1

√∑T
t=2n+1(R̂it −Rit)2

12(T − 2n)

with respect to β̂C and the average with respect to β̂ are then computed for each
g and each n. Their relative efficiency

average one-step ahead of forecast MSE of β̂

average one-step ahead of forecast MSE of β̂C

is then computed for each g value and sample size n.
In our empirical study, we find that β̂C is uniformly more efficient than β̂ in the

sense of the relative efficiency of one-step ahead forecast mean square error for any
sample size and for any g value. For simplicity, we only present the average relative
efficiency for g = 0, 0.1, 0.5, 1, 2, 5, 10, 15 and 20 and sample size from 6 to 36 with
an increment of 6 for monthly data and from 5 to 20 with an increment of 5 for
annual data. The results of the average one-step ahead forecast MSE obtained
by applying β̂C in the CAPM for monthly and annual US returns are in Table 4
and Table 6 respectively. We note that the values in the tables are 1000 times the
original values and the average one-step ahead forecast MSE with respect to β̂C is
equal to that of β̂ when g = 0. The results of the efficiency of β̂C relative to β̂ for
monthly and annual US stock returns are in Table 5 and Table 7 respectively.

Table 4. Average one-step ahead forecast MSE obtained by applying β̂C for monthly US stock
returns (×1000)

Sample g value
Size 0 0.1 0.5 1 2 5 10 15 20

6 1.298 1.279 1.258 1.245 1.229 1.203 1.181 1.168 1.159
12 1.032 1.019 1.007 0.999 0.992 0.981 0.974 0.971 0.969
18 0.963 0.952 0.942 0.937 0.932 0.925 0.923 0.922 0.923
24 0.927 0.918 0.911 0.907 0.904 0.901 0.901 0.902 0.903
30 0.899 0.892 0.888 0.886 0.885 0.885 0.888 0.890 0.891
36 0.871 0.866 0.863 0.862 0.861 0.863 0.866 0.868 0.870

From the results in these tables, we find that the estimate of β̂C is more efficient
than that of β̂ for any g value and for any sample size n in our study especially
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Table 5. Percentage average relative efficiency of β̂C to β̂ for the monthly US stock returns.

Sample g value
Size 0.1 0.5 1 2 5 10 15 20

6 101.53 103.18 104.27 105.65 107.91 109.91 111.14 112.02
12 101.25 102.46 103.20 104.03 105.18 105.96 106.30 106.47
18 101.16 102.20 102.77 103.37 104.06 104.37 104.41 104.37
24 100.96 101.74 102.13 102.50 102.83 102.85 102.74 102.60
30 100.70 101.20 101.40 101.54 101.49 101.22 100.94 100.69
36 100.59 100.96 101.09 101.14 100.97 100.62 100.30 100.02

Table 6. Average one-step ahead forecast MSE obtained by applying β̂C for annual US stock
returns (×1000)

Sample g value
Size 0 0.1 0.5 1 2 5 10 15 20

5 1.858 1.781 1.715 1.680 1.644 1.604 1.586 1.583 1.584
10 1.610 1.542 1.488 1.461 1.435 1.408 1.396 1.393 1.393
15 1.475 1.437 1.412 1.402 1.394 1.389 1.392 1.395 1.398
20 1.612 1.557 1.516 1.497 1.479 1.458 1.447 1.442 1.439

Table 7. Percentage average relative efficiency of β̂C to β̂ for the annual US stock returns.

Sample g value
Size 0.1 0.5 1 2 5 10 15 20

5 104.35 108.36 110.63 113.02 115.83 117.14 117.41 117.33
10 104.47 108.26 110.26 112.24 114.42 115.38 115.59 115.58
15 102.64 104.44 105.21 105.81 106.15 105.98 105.73 105.48
20 103.57 106.31 107.67 109.01 110.55 111.44 111.82 112.04

for small sample sizes. We note from Tables 2 and 3 that the annual returns can
be assumed to be normally distributed in many cases while the monthly returns
are not normally distributed. This suggests that β̂C can also be applied for both
normally distributed and non-normally distributed data. In both situations β̂C is
more efficient than β̂ as illustrated in our study.

As shown in (7), g is the precision of the prior density of β. The larger the value
of g, the less is the prior uncertainty about β; and consequently, the estimate β̂C
puts heavier weight on the prior location. The results in Table 5 and Table 7 show
that in general the relative efficiency is higher for greater g values and for smaller
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sample sizes. This suggests that our choice of prior information is appropriate and
the prior information contributes significantly in the estimation.

The results in Table 5 and Table 7 show that the relative efficiency is lower for
large sample sizes. This implies that β̂C is not much better than β̂ for large sample
sizes. Perhaps, it is because the portfolio of the US stock returns is not stable in
time or it is because the estimate of β̂ is sufficiently good enough. The results in
the tables also show that the relative efficiency is lower for small g values. This
makes sense because β̂C tends to β̂ when g tends to zero.

Table 5 shows that β̂C is up to 12% more efficient than β̂, while Table 7 shows
that β̂C is up to 17% more efficient than β̂. These empirical results illustrate that
β̂C is uniformly better than β̂ in the estimation of the parameters in the CAPM.

6. Conclusion

Bian and Dickey (1996) developed a robust Bayesian estimator for the vector of
regression coefficients using a Cauchy-type g-prior. This estimator is an adaptive
weighted average of the least squares estimator and prior location, and is of great
robustness with respect to wild and extreme observations. In this paper, we apply
the robust Bayesian estimator to financial regression models of stock returns in
which the error is well-known to be ‘flat-tail’ distributed. To compare this estimator
with the traditional least squares estimator, we apply both estimators to analyze
the Capital Asset Pricing Model of the US annual and monthly stock returns. In
our empirical study, we find that the robust Bayesian estimate is uniformly more
efficient than the least squares estimate in terms of the relative efficiency of one-step
ahead forecast mean square error, especially for small samples. Our study supports
that the robust Bayesian estimator is more appropriate in the CAPM estimation.

The approach in our paper is based on regression modeling technique. One may
apply the technique in Wong and Miller (1990) and Wong et al (1999) to inves-
tigate the fundamental component and the error component for each portfolio.
One may also use the modified maximum likelihood estimation approach, see Tiku,
et. al. 1999a,b,c and Tiku and Wong 1998, to relax the normality assumption on
the CAPM.

Another possible area for further research is to compare the beta in this study
with the equity cost of capital for each portfolio. For the estimation of the equity
capital cost, for example see Thompson and Wong (1991, 1996). One may also
apply the approach in this paper in studying the difference of the beta between risk
averters and risk lovers, see Li and Wong (1999) and Wong and Li (1999).
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