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We introduce the concept of possibility fuzzy soft set and its operation and study some of its
properties. We give applications of this theory in solving a decision-making problem. We also
introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a
medical diagnosis problem.

1. Introduction

Fuzzy set was introduced by Zadeh in [1] as a mathematical way to represent and deal with
vagueness in everyday life. After that many authors have studied the applications of fuzzy
sets in different areas (see Klir and Yuan [2]). Molodtsov [3] initiated the theory of soft sets as
a new mathematical tool for dealing with uncertainties which traditional mathematical tools
cannot handle. He has shown several applications of this theory in solving many practical
problems in economics, engineering, social science, medical science, and so forth. Maji et
al. [4, 5] have further studied the theory of soft sets and used this theory to solve some
decision-making problems. They have also introduced the concept of fuzzy soft set, a more
general concept, which is a combination of fuzzy set and soft set and studied its properties
[6], and also Roy and Maji used this theory to solve some decision-making problems [7].
Alkhazaleh et al. [8] introduced soft multiset as a generalization of Molodtsov’s soft set. They
also introduced in [9] the concept of fuzzy parameterized interval-valued fuzzy soft set and
gave its application in decision making. Zhu and Wen in [10] incorporated Molodtsov’s soft
set theory with the probability theory and proposed the notion of probabilistic soft sets. In
[11] Chaudhuri et al. defined the concepts of soft relation and fuzzy soft relation and then
applied them to solve a number of decision-making problems. Majumdar and Samanta [12]
defined and studied the generalised fuzzy soft sets where the degree is attached with the
parameterization of fuzzy sets while defining a fuzzy soft set. In this paper, we generalise



2 Advances in Decision Sciences

the concept of fuzzy soft sets as introduced by Maji et al. [6] to the possibility fuzzy soft
set. In our generalisation of fuzzy soft set, a possibility of each element in the universe is
attached with the parameterization of fuzzy sets while defining a fuzzy soft set. Also we give
some applications of the possibility fuzzy soft set in decision-making problem and medical
diagnosis.

2. Preliminaries

In this section, we recall some definitions and properties regarding fuzzy soft set and
generalised fuzzy soft set required in this paper.

Let U be a universe set, and let E be a set of parameters. Let P(U) denote the power
set of U and A ⊆ E.

Definition 2.1 (see [3]). A pair (F, E) is called a soft set overU, where F is a mapping given by
F : E → P(U). In other words, a soft set over U is a parameterized family of subsets of the
universe U.

Definition 2.2 (see [6]). Let U be an initial universal set, and let E be a set of parameters. Let
IU denote the power set of all fuzzy subsets ofU. LetA ⊆ E. A pair (F, E) is called a fuzzy soft
set over U where F is a mapping given by F : A → IU.

The following definitions and propositions are due to Majumdar and Samanta [12].

Definition 2.3. Let U = {x1, x2, . . . , xn} be the universal set of elements, and let E =
{e1, e2, . . . , em} be the universal set of parameters. The pair (U,E)will be called a soft universe.
Let F : E → IU and μ be a fuzzy subset of E, that is, μ : E → I = [0, 1], where IU is the
collection of all fuzzy subsets of U. Let Fμ : E → IU × I be a function defined as follows:

Fμ(e) =
(
F(e), μ(e)

)
. (2.1)

Then Fμ is called a generalized fuzzy soft set (GFSS in short) over the soft universe (U,E). Here
for each parameter ei, Fμ(ei) = (F(ei), μ(ei)) indicates not only the degree of belongingness of
the elements of U in F(ei) but also the degree of possibility of such belongingness which is
represented by μ(ei). So we can write Fμ(ei) as follows:

Fμ(ei) =
({

x1

F(ei)(x1)
,

x2

F(ei)(x2)
, . . . ,

xn

F(ei)(xn)

}
, μ(ei)

)
, (2.2)

where F(ei)(x1), F(ei)(x2), . . . , F(ei)(xn) are the degrees of belongingness and μ(ei) is the
degree of possibility of such belongingness.

Definition 2.4. Let Fμ and Gδ be two GFSSs over (U,E). Fμ is said to be a generalised fuzzy
soft subset of Gδ if

(i) μ is a fuzzy subset of δ;

(ii) F(e) is also a fuzzy subset of G(e), forall e ∈ E.

In this case, we write Fμ ⊆ Gδ.
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Definition 2.5. Union of two GFSSs Fμ and Gδ, denoted by Fμ ∪̃Gδ, is a GFSS Hν, defined as
Hν : E → IU × I such that

Hν(e) = (H(e), ν(e)), (2.3)

where H(e) = s(F(e), G(e)), ν(e) = s(μ(e), δ(e)), and s is any s-norm.

Definition 2.6. Intersection of two GFSSs Fμ and Gδ, denoted by Fμ ∩̃Gδ, is a GFSSHν, defined
asHν : E → IU × I such that

Hν(e) = (H(e), ν(e)), (2.4)

where H(e) = t(F(e), G(e)), ν(e) = t(μ(e), δ(e)), and t is any t-norm.

Definition 2.7. A GFSS is said to be a generalised null fuzzy soft set, denoted by φθ, if φθ : E →
IU × I such that φθ(e) = (F(e), θ(e)), where F(e) = 0, forall e ∈ E and θ(e) = 0 forall e ∈ E.

Definition 2.8. A GFSS is said to be a generalised absolute fuzzy soft set, denoted by Ãα, if Ãα :
E → IU × I such that Ãα(e) = (A(e), α(e)), where A(e) = 1, forall e ∈ E and α(e) = 1 forall
e ∈ E.

Proposition 2.9. Let Fμ be a GFSS over (U,E). Then the following holds:

(i) Fμ ⊆ Fμ ∪̃Fμ,

(ii) Fμ ∩̃ Fμ ⊆ Fμ,

(iii) Fμ ∪̃φθ = Fμ,

(iv) Fμ ∩̃φθ = φθ,

(v) Fμ ∪̃ Ãα = Ãα,

(vi) Fμ ∪̃ Ãα = Fμ.

Proposition 2.10. Let Fμ,Gδ, and Hλ be any three GFSSs over (U,E). Then the following holds:

(i) Fμ ∪̃Gδ = Gδ ∪̃Fμ,

(ii) Fμ ∩̃Gδ = Gδ ∩̃Fμ,

(iii) Fμ ∪̃ (Gδ ∪̃Hλ) = (Fμ ∩̃Gδ) ∪̃Hλ,

(iv) Fμ ∩̃ (Gδ ∩̃Hλ) = (Fμ ∩̃Gδ) ∩̃Hλ.

Definition 2.11. Similarity between the two GFSSs Fμ and Gδ, denoted by S(Fμ,Gδ), is defined
as follows:

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·m(

μ(e), δ(e)
)

(2.5)

such that M(F(e), G(e)) = maxiMi(F(e), G(e)), where

Mi(F(e), G(e)) = 1 −
∑n

j=1

∣∣Fij(e) −Gij(e)
∣∣

∑n
j=1

∣∣Fij(e) +Gij(e)
∣∣ , m

(
μ(e), δ(e)

)
= 1 −

∑∣∣μ(e) − δ(e)
∣∣

∑∣∣μ(e) + δ(e)
∣∣ . (2.6)
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Definition 2.12. Let Fμ and Gδ be two GFSSs over the same universe (U,E). We call the two
GFSSs to be significantly similar if S(Fμ,Gδ) ≥ 1/2.

Proposition 2.13. Let Fμ and Gδ be any two GFSSs over (U,E). Then the following holds:

(i) S(Fμ,Gδ) = S(Gδ, Fμ),

(ii) 0 ≤ S(Fμ,Gδ) ≤ 1,

(iii) Fμ = Gδ ⇒ S(Fμ,Gδ) = 1,

(iv) Fμ ⊆ Gδ ⊆ Hλ ⇒ S(Fμ,Hλ) ≤ S(Gδ,Hλ),

(v) Fμ ∩̃Gδ = ϕ ⇔ S(Fμ,Gδ) = 0.

3. Possibility Fuzzy Soft Sets

In this section, we generalise the concept of fuzzy soft sets as introduced by Maji et al. [6]. In
our generalisation of fuzzy soft set, a possibility of each element in the universe is attached
with the parameterization of fuzzy sets while defining a fuzzy soft set.

Definition 3.1. Let U = {x1, x2, . . . , xn} be the universal set of elements and let E =
{e1, e2, . . . , em} be the universal set of parameters. The pair (U,E)will be called a soft universe.
Let F : E → IU and μ be a fuzzy subset of E, that is, μ : E → IU, where IU is the collection of
all fuzzy subsets of U. Let Fμ : E → IU × IU be a function defined as follows:

Fμ(e) =
(
F(e)(x), μ(e)(x)

)
, ∀x ∈ U. (3.1)

Then Fμ is called a possibility fuzzy soft set (PFSS in short) over the soft universe (U,E).
For each parameter ei, Fμ(ei) = (F(ei)(x), μ(ei)(x)) indicates not only the degree of
belongingness of the elements ofU in F(ei) but also the degree of possibility of belongingness
of the elements ofU in F(ei), which is represented by μ(ei). So we can write Fμ(ei) as follows:

Fμ(ei) =
{(

x1

F(ei)(x1)
, μ(ei)(x1)

)
,

(
x2

F(ei)(x2)
, μ(ei)(x2)

)
, . . . ,

(
xn

F(ei)(xn)
, μ(ei)(xn)

)}
.

(3.2)

Sometime we write Fμ as (Fμ, E). If A ⊆ E, we can also have a PFSS (Fμ,A).

Example 3.2. Let U = {x1, x2, x3} be a set of three blouses. Let E = {e1, e2, e3} be a set of
qualities where e1 = bright, e2 = cheap, and e3 = colourful, and let μ : E → IU. We define a
function Fμ : E → IU × IU as follows:

Fμ(e1) =
{(

x1

0.3
, 0.7

)
,

(
x2

0.7
, 0.5

)
,

(
x3

0.5
, 0.6

)}
,

Fμ(e2) =
{(

x1

0.5
, 0.6

)
,

(
x2

0.6
, 0.5

)
,

(
x3

0.6
, 0.5

)}
,

Fμ(e3) =
{(

x1

0.7
, 0.5

)
,

(
x2

0.6
, 0.5

)
,

(
x3

0.5
, 0.7

)}
.

(3.3)
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Then Fμ is a PFSS over (U,E). In matrix notation, we write

Fμ =

⎛

⎜
⎜
⎝

0.3, 0.7 0.7, 0.5 0.5, 0.6

0.5, 0.6 0.6, 0.5 0.6, 0.5

0.7, 0.5 0.6, 0.5 0.5, 0.7

⎞

⎟
⎟
⎠. (3.4)

Definition 3.3. Let Fμ and Gδ be two PFSSs over (U,E). Fμ is said to be a possibility fuzzy soft
subset (PFS subset) of Gδ, and one writes Fμ ⊆ Gδ if

(i) μ(e) is a fuzzy subset of δ(e), forall e ∈ E,

(ii) F(e) is a fuzzy subset of G(e), forall e ∈ E.

Example 3.4. Let U = {x1, x2, x3} be a set of three cars, and let E = {e1, e2, e3} be a set of
parameters where e1 = cheap, e2 = expensive, and e3 = red. Let Fμ be a PFSS over (U,E)
defined as follows:

Fμ(e1) =
{(

x1

0.2
, 0.4

)
,

(
x2

0.6
, 0.5

)
,

(
x3

0.5
, 0.6

)}
,

Fμ(e2) =
{(

x1

0.7
, 0.5

)
,

(
x2

0.6
, 0.6

)
,

(
x3

0.8
, 0.6

)}
,

Fμ(e3) =
{(

x1

0
, 0.1

)
,

(
x2

0.5
, 0.3

)
,

(
x3

0.3
, 0.1

)}
.

(3.5)

Let Gδ : E → IU × IU be another PFSS over (U,E) defined as follows:

Gδ(e1) =
{(

x1

0.3
, 0.6

)
,

(
x2

0.7
, 0.6

)
,

(
x3

0.6
, 0.7

)}
,

Gδ(e2) =
{(

x1

0.8
, 0.6

)
,

(
x2

0.7
, 0.7

)
,

(
x3

0.9
, 0.8

)}
,

Gδ(e3) =
{(

x1

0.1
, 0.2

)
,

(
x2

0.6
, 0.5

)
,

(
x3

0.5
, 0.2

)}
.

(3.6)

It is clear that Fμ is a PFS subset of Gδ.

Definition 3.5. Let Fμ and Gδ be two PFSSs over (U,E). Then Fμ and Gδ are said to be equal,
and one writes Fμ = Gδ if Fμ is a PFS subset of Gδ and Gδ is a PFS subset of Fμ.

In other words, Fμ = Gδ if the following conditions are satisfied:

(i) μ(e) is equal to δ(e), forall e ∈ E,

(ii) F(e)is equal to G(e), forall e ∈ E.

Definition 3.6. A PFSS is said to be a possibility null fuzzy soft set, denoted by ϕ0, if ϕ0 : E →
IU × IU such that

ϕ0(e) =
(
F(e)(x), μ(e)(x)

)
, ∀e ∈ E, (3.7)

where F(e) = 0, and μ(e) = 0, forall e ∈ E.
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Definition 3.7. A PFSS is said to be a possibility absolute fuzzy soft set, denoted by A1, if A1 :
E → IU × IU such that

A1(e) =
(
F(e)(x), μ(e)(x)

)
, ∀e ∈ E, (3.8)

where F(e) = 1 and μ(e) = 1, forall e ∈ E.

Example 3.8. Let U = {x1, x2, x3} be a set of three blouses. Let E = {e1, e2, e3} be a set of
qualities where e1 = bright, e2 = cheap, and e3 = colorful, and let μ : E → IU. We define a
function Fμ : E → IU × IU which is a PFSS over (U,E) defined as follows:

Fμ(e1) =
{(

x1

0
, 0
)
,

(
x2

0
, 0
)
,

(
x3

0
, 0
)}

,

Fμ(e2) =
{(

x1

0
, 0
)
,

(
x2

0
, 0
)
,

(
x3

0
, 0
)}

,

Fμ(e3) =
{(

x1

0
, 0
)
,

(
x2

0
, 0
)
,

(
x3

0
, 0
)}

.

(3.9)

Then Fμ is a possibility null fuzzy soft set.
Let μ : E → IU, and we define the function Fμ : E → IU × IU which is a PFSS over

(U,E) as follows:

Fμ(e1) =
{(x1

1
, 1
)
,
(x2

1
, 1
)
,
(x3

1
, 1
)}

,

Fμ(e2) =
{(x1

1
, 1
)
,
(x2

1
, 1
)
,
(x3

1
, 1
)}

,

Fμ(e3) =
{(x1

1
, 1
)
,
(x2

1
, 1
)
,
(x3

1
, 1
)}

.

(3.10)

Then Fμ is a possibility absolute fuzzy soft set.

Definition 3.9. Let Fμ be a PFSS over (U,E). Then the complement of Fμ, denoted by Fc
μ, is

defined by Fc
μ = Gδ such that δ(e) = c(μ(e)) and G(e) = c(F(e)), forall e ∈ E, where c is a

fuzzy complement.

Example 3.10. Consider the matrix notation in Example 3.2:

Fμ =

⎛

⎜⎜⎜
⎝

0.3, 0.7 0.7, 0.5 0.5, 0.6

0.5, 0.6 0.6, 0.5 0.6, 0.5

0.7, 0.5 0.6, 0.5 0.5, 0.7

⎞

⎟⎟⎟
⎠

. (3.11)
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By using the basic fuzzy complement, we have Fc
μ = Gδ where Gδ

Gδ =

⎛

⎜
⎜
⎜
⎝

0.7, 0.3 0.3, 0.5 0.5, 0.4

0.5, 0.4 0.4, 0.5 0.4, 0.5

0.3, 0.5 0.4, 0.5 0.5, 0.3

⎞

⎟
⎟
⎟
⎠

. (3.12)

4. Union and Intersection of PFSS

In this section, we introduce the definitions of union and intersection of PFSS, derive some
properties, and give some examples.

Definition 4.1. Union of two PFSSs Fμ and Gδ, denoted by Fμ ∪̃Gδ, is a PFSSHν : E → IU × IU
defined by

Hν(e) = (H(e)(x), ν(e)(x)), ∀e ∈ E, (4.1)

such that H(e) = s(F(e), G(e)) and ν(e) = s(μ(e), δ(e))where s is an s-norm.

Example 4.2. Let U = {x1, x2, x3} and E = {e1, e2, e3}. Let Fμ be a PFSS defined as follows:

Fμ(e1) =
{(

x1

0.7
, 0.4

)
,

(
x2

0.7
, 0.6

)
,

(
x3

0.6
, 0.6

)}
,

Fμ(e2) =
{(

x1

0.4
, 0.6

)
,

(
x2

0.8
, 0.5

)
,

(
x3

0.3
, 0.8

)}
,

Fμ(e3) =
{(

x1

0.2
, 0.9

)
,

(
x2

0.8
, 0.8

)
,

(
x3

0.3
, 0.6

)}
.

(4.2)

Let Gδ be another PFSS over (U,E) defined as follows:

Gδ(e1) =
{(

x1

0.6
, 0.4

)
,

(
x2

0.3
, 0.5

)
,

(
x3

0.3
, 0.5

)}
,

Gδ(e2) =
{(

x1

0.7
, 0.7

)
,

(
x2

0.5
, 0.6

)
,

(
x3

0.4
, 0.7

)}
,

Gδ(e3) =
{(

x1

0.3
, 0.9

)
,

(
x2

0.4
, 0.4

)
,

(
x3

0.6
, 0.5

)}
.

(4.3)
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By using the basic fuzzy union, we have Fμ ∪̃Gδ = Hv, where

Hν(e1) =
{(

x1

max(0.7, 0.6)
,max(0.4, 0.4)

)
,

(
x2

max(0.7, 0.3)
,max(0.6, 0.5)

)
,

(
x3

max(0.6, 0.3)
,max(0.6, 0.5)

)}

=
{(

x1

0.7
, 0.4

)
,

(
x2

0.7
, 0.6

)
,

(
x3

0.6
, 0.6

)}
.

(4.4)

Similarly we get

Hν(e2) =
{(

x1

0.7
, 0.7

)
,

(
x2

0.8
, 0.6

)
,

(
x3

0.4
, 0.8

)}
,

Hν(e3) =
{(

x1

0.3
, 0.9

)
,

(
x2

0.8
, 0.8

)
,

(
x3

0.6
, 0.6

)}
.

(4.5)

In matrix notation, we write

Hν(e) =

⎛

⎜⎜
⎝

0.7, 0.4 0.7, 0.6 0.6, 0.6

0.7, 0.7 0.8, 0.6 0.4, 0.8

0.3, 0.9 0.8, 0.8 0.6, 0.6

⎞

⎟⎟
⎠. (4.6)

Definition 4.3. Intersection of two PFSSs Fμ and Gδ, denoted by Fμ ∩̃Gδ, is a PFSS Hν : E →
IU × IU defined by

Hν(e) = (H(e)(x), ν(e)(x)), ∀e ∈ E, (4.7)

such that H(e) = t(F(e), G(e)) and ν(e) = t(μ(e), δ(e))where t is a fuzzy t-norm.

Example 4.4. Consider the Example 4.2 where Fμ and Gδ are PFSSs defined as follows:

Fμ(e1) =
{(

x1

0.7
, 0.4

)
,

(
x2

0.7
, 0.6

)
,

(
x3

0.6
, 0.6

)}
,

Fμ(e2) =
{(

x1

0.4
, 0.6

)
,

(
x2

0.8
, 0.5

)
,

(
x3

0.3
, 0.8

)}
,



Advances in Decision Sciences 9

Fμ(e3) =
{(

x1

0.2
, 0.9

)
,

(
x2

0.8
, 0.8

)
,

(
x3

0.3
, 0.6

)}
,

Gδ(e1) =
{(

x1

0.6
, 0.4

)
,

(
x2

0.3
, 0.5

)
,

(
x3

0.3
, 0.5

)}
,

Gδ(e2) =
{(

x1

0.7
, 0.7

)
,

(
x2

0.5
, 0.6

)
,

(
x3

0.4
, 0.7

)}
,

Gδ(e3) =
{(

x1

0.3
, 0.9

)
,

(
x2

0.4
, 0.4

)
,

(
x3

0.6
, 0.5

)}
.

(4.8)

By using the basic fuzzy intersection, we have Fμ ∩̃Gδ = Hν, where

Hν(e1) =
{(

x1

min(0.7, 0.6)
,min(0.4, 0.4)

)
,

(
x2

min(0.7, 0.3)
,min(0.6, 0.5)

)
,

(
x3

min(0.6, 0.3)
,min(0.6, 0.5)

)}

=
{(

x1

0.6
, 0.4

)
,

(
x2

0.3
, 0.5

)
,

(
x3

0.3
, 0.5

)}
.

(4.9)

Similarly we get

Hν(e2) =
{(

x1

0.4
, 0.6

)
,

(
x2

0.5
, 0.5

)
,

(
x3

0.3
, 0.7

)}
,

Hν(e3) =
{(

x1

0.2
, 0.9

)
,

(
x2

0.4
, 0.4

)
,

(
x3

0.3
, 0.5

)}
.

(4.10)

In matrix notation, we write

Hν(e) =

⎛

⎜⎜
⎝

0.6, 0.4 0.3, 0.5 0.3, 0.5

0.4, 0.6 0.5, 0.5 0.3, 0.7

0.2, 0.9 0.4, 0.4 0.3, 0.5

⎞

⎟⎟
⎠. (4.11)

Proposition 4.5. Let Fμ,Gδ, and Hν be any three PFSSs over (U,E). Then the following results
hold:

(i) Fμ ∪̃Gδ = Gδ ∪̃Fμ,

(ii) Fμ ∩̃Gδ = Gδ ∩̃Fμ,

(iii) Fμ ∪̃ (Gδ ∪̃Hν) = (Fμ ∪̃Gδ) ∪̃Hν,

(iv) Fμ ∩̃ (Gδ ∩̃Hν) = (Fμ ∩̃ Gδ) ∩̃Hν.

Proof. The proof is straightforward by using the fact that fuzzy sets are commutative and
associative.
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Proposition 4.6. Let Fμ be a PFSS over (U,E). Then the following results hold:

(i) Fμ ∪̃Fμ = Fμ,

(ii) Fμ ∩̃Fμ = Fμ,

(iii) Fμ ∪̃Aμ = Aμ,

(iv) Fμ ∩̃Aμ = Fμ,

(v) Fμ ∪
∼
ϕμ = Fμ,

(vi) Fμ ∩̃ϕμ = ϕμ.

Proof. The proof is straightforward by using the definitions of union and intersection.

Proposition 4.7. Let Fμ,Gδ, and Hν be any three PFSSs over (U,E). Then the following results
hold:

(i) Fμ ∪̃ (Gδ ∩̃Hν) = (Fμ ∪̃Gδ) ∩̃ (Fμ ∪̃Hν),

(ii) Fμ∩̃ (Gδ ∪̃Hν) = (Fμ ∩̃Gδ) ∪̃ (Fμ ∩̃Hν).

Proof. For all x ∈ E,

λF(x) ∪̃ (G(x) ∩̃H(x))(x) = max
{
λF(x)(x), λ(G(x) ∩̃H(x))(x)

}

= max
{
λF(x)(x),min

(
λG(x)(x), λH(x)(x)

)}

= min
{
max

(
λF(x)(x), λG(x)(x)

)
,max

(
λF(x)(x), λH(x)(x)

)}

= min
{
λ(F(x)∩̃G(x))(x), λ(F(x) ∩̃H(x))(x)

}

= λ(F(x) ∩̃ G(x)) ∪̃ (F(x) ∩̃H(x))(x),

γμ(x)∪̃(δ(x) ∩̃ ν(x))(x) = max
{
γμ(x)(x), γ(δ(x) ∩̃ ν(x))(x)

}

= max
{
γμ(x)(x),min

(
γδ(x)(x), γν(x)(x)

)}

= min
{
max

(
γμ(x)(x), γδ(x)(x)

)
,max

(
γμ(x)(x), γν(x)(x)

)}

= min
{
γ(μ(x) ∩̃ δ(x))(x), γ(μ(x) ∩̃ ν(x))(x)

}

= γ(μ(x) ∩̃ δ(x)) ∪̃ (μ(x) ∩̃ ν(x))(x).

(4.12)

We can use the same method in (i).

5. AND and OR Operations on PFSS with Applications in
Decision Making

In this section, we introduce the definitions of AND and OR operations on possibility fuzzy
soft sets. Applications of possibility fuzzy soft sets in decision-making problem are given.
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Definition 5.1. If (Fμ,A) and (Gδ, B) are two PFSSs then “(Fμ,A) AND (Gδ, B)”, denoted by
(Fμ,A) ∧ (Gδ, B) is defined by

(
Fμ,A

) ∧ (Gδ, B) = (Hλ,A × B), (5.1)

where Hλ(α, β) = (H(α, β)(x), v(α, β)(x)), forall (α, β) ∈ A × B, such that H(α, β) =
t(F(α), G(β)) and v(α, β) = t(μ(α), δ(β)), forall (α, β) ∈ A × B.

Example 5.2. Suppose the universe consists of three machines x1, x2, x3, that is, U =
{x1, x2, x3}, and there are three parameters E = {e1, e2, e3}which describe their performances
according to certain specific task. Suppose a firm wants to buy one such machine depending
on any two of the parameters only. Let there be two observations Fμ and Gδ by two experts
defined as follows:

Fμ(e1) =
{(

x1

0.6
, 0.4

)
,

(
x2

0.7
, 0.3

)
,

(
x3

0.7
, 0.5

)}
,

Fμ(e2) =
{(

x1

0.7
, 0.5

)
,

(
x2

0.8
, 0.6

)
,

(
x3

0.4
, 0.5

)}
,

Fμ(e3) =
{(

x1

0.4
, 0.4

)
,

(
x2

0.6
, 0.6

)
,

(
x3

0.9
, 0.2

)}
.

Gδ(e1) =
{(

x1

0.7
, 0.4

)
,
(x2

1
, 0.4

)
,

(
x3

0.5
, 1
)}

,

Gδ(e2) =
{(

x1

0.8
, 0.3

)
,

(
x2

0.5
, 0.7

)
,

(
x3

0.9
, 1
)}

,

Gδ(e3) =
{(

x1

0.4
, 0.7

)
,

(
x2

0
, 0.4

)
,

(
x3

0.6
, 0.4

)}
.

(5.2)

Then (Fμ,A) ∧ (Gδ, B) = (Hλ,A × B)where

Hλ(e1, e1) =
{(

x1

min(0.6, 0.7)
,min(0.4, 0.4)

)
,

(
x2

min(0.7, 1)
,min(0.3, 0.4)

)
,

(
x3

min(0.6, 0.5)
,min(0.5, 1)

)}

=
{(

x1

0.6
, 0.4

)
,

(
x2

0.7
, 0.3

)
,

(
x3

0.5
, 0.5

)}
.

(5.3)

Similarly we get

Hλ(e1, e2) =
{(

x1

0.6
, 0.3

)
,

(
x2

0.5
, 0.3

)
,

(
x3

0.6
, 0.5

)}
,

Hλ(e1, e3) =
{(

x1

0.4
, 0.4

)
,

(
x2

0
, 0.3

)
,

(
x3

0.6
, 0.4

)}
,
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Hλ(e2, e1) =
{(

x1

0.7
, 0.4

)
,

(
x2

0.8
, 0.4

)
,

(
x3

0.4
, 0.5

)}
,

Hλ(e2, e2) =
{(

x1

0.7
, 0.3

)
,

(
x2

0.5
, 0.6

)
,

(
x3

0.4
, 0.5

)}
,

Hλ(e2, e3) =
{(

x1

0.4
, 0.5

)
,

(
x2

0
, 0.4

)
,

(
x3

0.4
, 0.4

)}
,

Hλ(e3, e1) =
{(

x1

0.4
, 0.4

)
,

(
x2

0.6
, 0.4

)
,

(
x3

0.5
, 0.2

)}
,

Hλ(e3, e2) =
{(

x1

0.4
, 0.3

)
,

(
x2

0.5
, 0.6

)
,

(
x3

0.9
, 0.2

)}
,

Hλ(e3, e3) =
{(

x1

0.4
, 0.4

)
,

(
x2

0
, 0.4

)
,

(
x3

0.6
, 0.2

)}
.

(5.4)

In matrix notation, we have

(
Fμ,A

) ∧ (Gδ, B) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.6, 0.4 0.7, 0.3 0.5, 0.5

0.6, 0.3 0.5, 0.3 0.6, 0.5

0.4, 0.4 0, 0.3 0.6, 0.4

0.7, 0.4 0.8, 0.4 0.4, 0.5

0.7, 0.3 0.5, 0.6 0.9, 0.2

0.4, 0.5 0, 0.4 0.4, 0.4

0.4, 0.4 0.6, 0.4 0.5, 0.2

0.4, 0.3 0.5, 0.6 0.9,0.2

0.4, 0.4 0, 0.4 0.6, 0.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.5)

Now to determine the best machine, we first mark the highest numerical grade (values with
underline mark) in each row. Now the score of each of such machines is calculated by taking
the sum of the products of these numerical grades with the corresponding possibility λ. The
machine with the highest score is the desired machine. We do not consider the numerical
grades of the machine against the pairs (ei, ei), i = 1, 2, 3, as both the parameters are the
same.

Then the firm will select the machine with the highest score. Hence, they will buy
machine x3 (see Table 1).

Definition 5.3. If (Fμ,A) and (Gδ, B) are two PFSSs then “(Fμ,A) OR (Gδ, B)”, denoted by
(Fμ,A) ∨ (Gδ, B), is defined by

(
Fμ,A

) ∨ (Gδ, B) = (Hλ,A × B), (5.6)

where Hλ(α, β) = (H(α, β)(x), v(α, β)(x)) forall (α, β) ∈ A × B, such that H(α, β) =
s(F(α), G(β)) and v(α, β) = s(μ(α), δ(β)), forall (α, β) ∈ A × B.
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Table 1: Grade table.

H xi Highest numerical grade λi

(e1, e1) x2 × ×
(e1, e2) x1, x3 0.6 0.3, 0.5
(e1, e3) x3 0.6 0.4
(e2, e1) x2 0.8 0.4
(e2, e2) x3 × ×
(e2, e3) x1, x3 0.4 0.5, 0.4
(e3, e1) x2 0.6 0.4
(e3, e2) x3 0.9 0.2
(e3, e3) x3 × ×
Score(x1) = (0.6 × 0.3) + (0.4 × 0.5) = 0.38.
Score(x2) = (0.8 × 0.4) + (0.6 × 0.4) = 0.56.
Score(x3) = (0.6 × 0.5) + (0.6 × 0.4) + (0.4 × 0.4) + (0.9 × 0.2) = 0.88.

Example 5.4. Let U = {x1, x2, x3}, E = {e1, e2, e3}; consider Fμ and Gδ as in Example 5.2.
suppose now the firm wants to buy a machine depending on any one of two parameters.
Then we have (Fμ,A) ∨ (Gδ, B) = (Hλ,A × B)where

Hλ(e1, e1) =
{(

x1

max(0.6, 0.7)
,max(0.4, 0.4)

)
,

(
x2

max(0.7, 1)
,max(0.3, 0.4)

)
,

(
x3

max(0.6, 0.5)
,max(0.5, 1)

)}

=
{(

x1

0.7
, 0.4

)
,
(x2

1
, 0.4

)
,

(
x3

0.6
, 1
)}

.

(5.7)

Similarly we get

Hλ(e1, e2) =
{(

x1

0.8
, 0.4

)
,

(
x2

0.7
, 0.7

)
,

(
x3

0.9
, 1
)}

,

Hλ(e1, e3) =
{(

x1

0.6
, 0.7

)
,

(
x2

0.7
, 0.4

)
,

(
x3

0.6
, 0.5

)}
,

Hλ(e2, e1) =
{(

x1

0.7
, 0.5

)
,
(x2

1
, 0.6

)
,

(
x3

0.5
, 1
)}

,

Hλ(e2, e2) =
{(

x1

0.8
, 0.5

)
,

(
x2

0.8
, 0.7

)
,

(
x3

0.9
, 1
)}

,

Hλ(e2, e3) =
{(

x1

0.7
, 0.7

)
,

(
x2

0.8
, 0.6

)
,

(
x3

0.6
, 0.5

)}
,

Hλ(e3, e1) =
{(

x1

0.7
, 0.4

)
,
(x2

1
, 0.6

)
,

(
x3

0.9
, 1
)}

,
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Hλ(e3, e2) =
{(

x1

0.8
, 0.4

)
,

(
x2

0.6
, 0.7

)
,

(
x3

0.9
, 1
)}

,

Hλ(e3, e3) =
{(

x1

0.4
, 0.7

)
,

(
x2

0.6
, 0.4

)
,

(
x3

0.9
, 0.4

)}
.

(5.8)

In matrix notation, we have

(
Fμ,A

) ∨ (Gδ, B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.7, 0.4 1, 0.4 0.6, 1

0.8, 0.4 0.7, 0.7 0.9, 1

0.6, 0.7 0.7, 0.4 0.6, 0.5

0.7, 0.5 1, 0.6 0.5, 1

0.8, 0.5 0.8, 0.7 0.9, 1

0.7, 0.7 0.8, 0.6 0.6, 0.5

0.7, 0.4 1, 0.6 0.9, 1

0.8, 0.4 0.6, 0.7 0.9, 1

0.4, 0.7 0.6, 0.6 0.9, 0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.9)

Now to determine the best machine, we first mark the highest numerical grade (value with
underline mark) in each row. Now the score of each of such machines is calculated by taking
the sum of the products of these numerical grades with the corresponding possibility λ. The
machine with the highest score is the desired machine. We do not consider the numerical
grades of the machine against the pairs (ei, ei), i = 1, 2, 3, as both the parameters are the
same. Then the firm will select the machine with the highest score. Hence, they will buy the
machine x2 (see Table 2).

6. Similarity between Two Possibility Fuzzy Soft Sets

Similarity measures have extensive application in several areas such as pattern recognition,
image processing, region extraction, coding theory, and so forth. We are often interested to
know whether two patterns or images are identical or approximately identical or at least to
what degree they are identical.

Several researchers have studied the problem of similarity measurement between
fuzzy sets, fuzzy numbers, and vague sets. Majumdar and Samanta [12–14] have studied
the similarity measure of soft sets, fuzzy soft sets, and generalised fuzzy soft sets.

In this section, we introduce a measure of similarity between two PFSSs. The set
theoretic approach has been taken in this regard because it is easier for calculation and is
a very popular method too.

Definition 6.1. Similarity between two PFSSs Fμ and Gδ, denoted by S(Fμ,Gδ), is defined as
follows:

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·M(

μ(e), δ(e)
)
, (6.1)
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Table 2: Grade table.

H xi Highest numerical grade λi

(e1, e1) x2 × ×
(e1, e2) x3 0.9 1
(e1, e3) x2 0.7 0.4
(e2, e1) x2 1 0.6
(e2, e2) x3 × ×
(e2, e3) x2 0.8 0.6
(e3, e1) x2 1 0.6
(e3, e2) x3 0.9 1
(e3, e3) x3 × ×
Score(x1) = 0.
Score(x2) = (0.7 × 0.4) + (1 × 0.6) + (0.8 × 0.6) + (1 × 0.6) = 1.96.
Score(x3) = (0.9 × 1) + (0.9 × 1) = 1.8.

such that

M(F(e), G(e)) = maxiMi(F(e), G(e)),

M
(
μ(e), δ(e)

)
= maxiMi

(
μ(e), δ(e)

)
,

(6.2)

where

Mi(F(e), G(e)) = 1 −
∑n

j=1

∣∣Fij(e) −Gij(e)
∣∣

∑n
j=1

∣∣Fij(e) +Gij(e)
∣∣ ,

Mi

(
μ(e), δ(e)

)
= 1 −

∑n
j=1

∣∣μij(e) − δij(e)
∣∣

∑n
j=1

∣∣μij(e) + δij(e)
∣∣ .

(6.3)

Definition 6.2. Let Fμ and Gδ be two PFSSs over (U,E). We say that Fμ and Gδ are significantly
similar if S(Fμ,Gδ) ≥ 1/2.

Proposition 6.3. Let Fμ and Gδ be any two PFSSs over (U,E). Then the following holds:

(i) S(Fμ,Gδ) = S(Gδ, Fμ),

(ii) 0 ≤ S(Fμ,Gδ) ≤ 1,

(iii) Fμ = Gδ ⇒ S(Fμ,Gδ) = 1,

(iv) Fμ ⊆ Gδ ⊆ Hλ ⇒ S(Fμ,Hλ) ≤ S(Gδ,Hλ),

(v) Fμ ∩̃Gδ = ϕ ⇔ S(Fμ,Gδ) = 0.

Proof. The proof is straightforward and follows from Definition 6.1.

Example 6.4. Consider Example 4.2 where Fμ and Gδ are defined as follows:

Fμ(e1) =
{(

x1

0.7
, 0.4

)
,

(
x2

0.7
, 0.6

)
,

(
x3

0.6
, 0.6

)}
,

Fμ(e2) =
{(

x1

0.4
, 0.6

)
,

(
x2

0.8
, 0.5

)
,

(
x3

0.3
, 0.8

)}
,
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Fμ(e3) =
{(

x1

0.2
, 0.9

)
,

(
x2

0.8
, 0.8

)
,

(
x3

0.3
, 0.6

)}
,

Gδ(e1) =
{(

x1

0.6
, 0.4

)
,

(
x2

0.3
, 0.5

)
,

(
x3

0.3
, 0.5

)}
,

Gδ(e2) =
{(

x1

0.7
, 0.7

)
,

(
x2

0.5
, 0.6

)
,

(
x3

0.4
, 0.7

)}
,

Gδ(e3) =
{(

x1

0.3
, 0.9

)
,

(
x2

0.4
, 0.4

)
,

(
x3

0.6
, 0.5

)}
.

(6.4)

Here

M1
(
μ(e), δ(e)

)
= 1 −

∑3
j=1

∣∣μ1j(e) − δ1j(e)
∣∣

∑3
j=1

∣∣μ1j(e) + δ1j(e)
∣∣

= 1 − |(0.4 − 0.4)| + |(0.6 − 0.5)| + |(0.6 − 0.5)|
|(0.4 + 0.4)| + |(0.6 + 0.5)| + |(0.6 + 0.5)| = 0.82.

(6.5)

Similarly we get M2(μ(e), δ(e)) = 0.77 and M3(μ(e), δ(e)) = 0.88. Then

M
(
μ(e), δ(e)

)
= max

(
M1

(
μ(e), δ(e)

)
,M2

(
μ(e), δ(e)

)
,M3

(
μ(e), δ(e)

))
= 0.88,

M1(F(e), G(e)) = 1 −
∑3

j=1

∣∣F1j(e) −G1j(e)
∣∣

∑3
j=1

∣∣F1j(e) +G1j(e)
∣∣

= 1 − |(0.7 − 0.6)| + |(0.7 − 0.3)| + |(0.6 − 0.3)|
|(0.7 + 0.6)| + |(0.7 + 0.3)| + |(0.6 + 0.3)| = 0.75.

(6.6)

Similarly we get M2(F(e), G(e)) = 0.77 and M3(F(e), G(e)) = 0.69. Then

M(F(e), G(e)) = max(M1(F(e), G(e)),M2(F(e), G(e)),M3(F(e), G(e))) = 0.77. (6.7)

Hence, the similarity between the two PFSSs Fμ and Gδ is given by

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·M(

μ(e), δ(e)
)
= 0.96 × 0.77 ∼= 0.74. (6.8)

7. Application of This Similarity Measure in Medical Diagnosis

In the following example we will try to estimate the possibility that a sick person having
certain visible symptoms is suffering from dengue fever. For this we first construct a model
possibility fuzzy soft set for dengue fever and the possibility fuzzy soft set of symptoms for
the sick person. Next we find the similarity measure of these two sets. If they are significantly
similar then we conclude that the person is possibly suffering from dengue fever.
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Table 3:Model PFSS for dengue fever.

Mμ e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

y 1 0 0 1 1 1 1 0 1 1 0
μy 1 1 1 1 1 1 1 1 1 1 1
n 0 1 1 0 0 0 0 1 0 0 1
μn 1 1 1 1 1 1 1 1 1 1 1

Table 4: PFSS for the sick person.

Fα e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

y 0.3 0.7 0.5 0.3 0.4 0.1 0 0.7 0 0.4 0.2
μy 0.6 0.2 0.1 0.5 0.5 0.8 0.7 0.2 1 0.4 0.5
n 0.6 0.1 0.4 0.5 0.4 0.6 0.7 0.1 0.8 0.5 0.4
μn 0.5 0.6 0.4 0.5 0.3 0.6 0.4 0.1 0.5 0.6 0.7

Let our universal set contain only two elements “yes” and “no”, that is, U =
(y, n). Here the set of parameters E is the set of certain visible symptoms. Let E =
(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11), where e1 is body temperature, e2 is cough with chest
congestion, e3 is loose motion, e4 is chills, e5 is headache, e6 is low heart rate (bradycardia),
e7 is pain upon moving the eyes, e8 is breathing trouble, e9 is a flushing or pale pink rash
comes over the face, e10 is low blood pressure (hypotension), and e11 is Loss of appetite.

Our model possibility fuzzy soft set for dengue fever Mμ is given in Table 3, and this
can be prepared with the help of a physician.

After talking to the sick person, we can construct his PFSS Gδ as in Table 4. Now we
find the similaritymeasure of these two sets (as in Example 6.4), here S(Mμ,Gδ) ∼= 0.43 < 1/2.
Hence the two PFSSs are not significantly similar. Therefore, we conclude that the person is
not suffering from dengue fever.

8. Conclusion

In this paper, we have introduced the concept of possibility fuzzy soft set and studied some of
its properties. Applications of this theory has been given to solve a decision-making problem.
Similarity measure of two possibility fuzzy soft sets is discussed and an application of this to
medical diagnosis has been shown.
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