
Hindawi Publishing Corporation
Advances in Decision Sciences
Volume 2010, Article ID 573107, 18 pages
doi:10.1155/2010/573107

Research Article
Coevolutionary Genetic Algorithms for
Establishing Nash Equilibrium in Symmetric
Cournot Games

Mattheos K. Protopapas,1 Francesco Battaglia,1
and Elias B. Kosmatopoulos2

1 Department of Statistics, University of Rome “La Sapienza”, Aldo Moro Square 5, 00185 Rome, Italy
2 Department of Production Engineering and Management, Technical University of Crete,
Agiou Titou Square, Chania 73100, Crete, Greece

Correspondence should be addressed to Mattheos K. Protopapas,
mantzos.protopapas@hotmail.com

Received 12 June 2009; Accepted 16 February 2010

Academic Editor: Stephan Dempe

Copyright q 2010 Mattheos K. Protopapas et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We use coevolutionary genetic algorithms to model the players’ learning process in several
Cournot models and evaluate them in terms of their convergence to the Nash Equilibrium. The
“social-learning” versions of the two coevolutionary algorithms we introduce establish Nash
Equilibrium in those models, in contrast to the “individual learning” versions which, do not imply
the convergence of the players’ strategies to the Nash outcome. When players use “canonical
coevolutionary genetic algorithms” as learning algorithms, the process of the game is an ergodic
Markov Chain; we find that in the “social” cases states leading to NE play are highly frequent at
the stationary distribution of the chain, in contrast to the “individual learning” case, when NE is
not reached at all in our simulations; and finally we show that a large fraction of the games played
are indeed at the Nash Equilibrium.

1. Introduction

The “Cournot Game” models an oligopoly of two or more firms that simultaneously define
the quantities they supply to the market, which in turn define both the market price and
the equilibrium quantity in the market. Coevolutionary Genetic Algorithms have been used
for studying Cournot games, since Arifovic [1] studied the cobweb model. In contrast
to the classical genetic algorithms used for optimization, the Coevolutionary versions are
distinct at the issue of the objective function. In a classical genetic algorithm the objective
function for optimization is given before hand, while in the Coevolutionary case, the objective
function changes during the course of play as it is based on the choices of the players. So



2 Advances in Decision Sciences

the players’ strategies and, consequently, the genetic algorithms that are used to determine
the players’ choices coevolve with the goals of these algorithms, within the dynamic process
of the system under consideration. Arifovic [1] used four different Coevolutionary genetic
algorithms to model players’ learning and decision making: two single-population algo-
rithms, where each player’s choice is represented by a single chromosome in the population
of the single genetic algorithm that is used to determine the evolution of the system, and two
multipopulation algorithms, where each player has its own population of chromosomes and
its own Genetic Algorithm to determine his strategy. Arifovic links the chromosomes’ fitness
to the profit established after a round of play, during which the algorithms define the active
quantities that players choose to produce and sell at the market. The quantities chosen define,
in turn, the total quantity and the price at the market, leading to a specific profit for each
player. Thus, the fitness function is dependent on the actions of the players on the previous
round, and the Coevolutionary “nature” of the algorithms is established.

In Arifovic’s algorithms [1], as well as any other algorithms we use here, each
chromosome’s fitness is proportional to its profit, as given by

π
(
qi
)
= Pqi − ci

(
qi
)
, (1.1)

where ci(qi) is the player’s cost for producing qi items of product and P is the market price,
as determined by all players’ quantity choices, from the inverse demand function (a and b
are positive constant coefficients):

P = a − b
n∑

i=1

qi. (1.2)

In Arifovic’s algorithms, populations are updated after every single Cournot game is played
and converge to the Walrasian (competitive) equilibrium and not the Nash equilibrium [2, 3].
Convergence to the competitive equilibrium means that agents’ actions—as determined by
the algorithm—tend to maximize (1.1), with price regarded as given, instead of

max
qi

π
(
qi
)
= P

(
qi
)
qi − ci

(
qi
)

(1.3)

that gives the Nash Equilibrium in pure strategies [2]. Later variants of Arifovic’s model [4, 5]
share the same properties.

Vriend was the first to present a Coevolutionary genetic algorithm in which the
equilibrium price and quantity on the market—but not the strategies of the individual players
as we will see later—converge to the respective values of the Nash Equilibrium [6]. In his
individual learning, multipopulation algorithm, which is one of the two algorithms that
we study—and transform—in this article, chromosomes’ fitness is calculated only after the
chromosomes are used in a game, and the population is updated after a given number
of games are played with the chromosomes of the current populations. Each player has
its own population of chromosomes, from which he picks at random one chromosome to
determine its quantity choice at the current round. The fitness of the chromosome, based
on the profit acquired from the current game, is then calculated, and after a given number
of rounds, the population is updated by the usual genetic algorithm operators (crossover
and mutation). Since the populations are updated separately, the algorithm is regarded as



Advances in Decision Sciences 3

individual learning. These settings yield Nash Equilibrium values for the total quantity on
the market and, consequently, for the price as well, as proven by Vallee and Yildizoglou [3].

Finally, Alkemade et al. [7] present the first (single population) social learning
algorithm that yields Nash Equilibrium values for the total quantity and the price. The
four players pick at random one chromosome from a single population, in order to define
their quantity for the current round. Then profits are calculated and the fitness value of the
active chromosomes is updated, based on the profit of the player who has chosen them. The
population is updated by crossover and mutation, after all chromosomes have been used. As
Alkemade et al. [7] point out, the algorithm leads the total quantities and the market price to
the values corresponding to the NE for these measures.

2. The Models

In all the above models, researchers assume symmetric cost functions (all players have
identical cost functions), which implies that the Cournot games studied are symmetric.
Additionally, Vriend [6], Alkemade et al. [7], and Arifovic [1]—in one of the models she
investigates—use linear (and decreasing) cost functions. Dubey et al. [8] have proved that
a symmetric Cournot Game with indivisibilities (discrete, but closed strategy sets) is a
pseudopotential game, and that the following theorem holds.

Theorem 2.1. “Consider a n-player Cournot Game. We assume that the inverse demand function P
is strictly decreasing and log-concave; the cost function ci of each firm is strictly increasing and left-
continuous; and each firm’s monopoly profit becomes negative for large enough q. The strategy sets Si,
consisting of all possible levels of output producible by firm i, are not required to be convex, but just
closed. Under the above assumptions, the Cournot Game has a Nash Equilibrium [in pure strategies]
” [8].

This theorem is relevant when one investigates Cournot Game equilibrium using
Genetic Algorithms, because a chromosome can have only a finite number of values and,
therefore, it is the discrete version of the Cournot Game that is investigated, in principle.
Of course, if one can have a dense enough discretization of the strategy space, so that the
NE value of the continuous version of the Cournot Game is included in the chromosomes’
accepted values, it is the case for the NE of the continuous and the discrete version under
investigation to coincide.

In all three models we investigate in this paper the assumptions of the above theorem
hold, and hence there is a Nash Equilibrium in pure strategies. We investigate those models
for the cases of n = 4 and n = 20 players.

The first model we use is the linear model used in [7]: the inverse demand is given by

P = 256 −Q (2.1)

with Q =
∑n

i=1 qi, and the common cost function of the n players is

c
(
qi
)
= 56qi. (2.2)



4 Advances in Decision Sciences

The Nash Equilibrium quantity choice of each of the 4 players is q̂ = 40 [7]. In the case of 20
players we have, by solving (1.3), q̂ = 9.5238. The second model has a polynomial inverse
demand function

P = aQ3 − b (2.3)

and linear symmetric cost function

c = xqi + y. (2.4)

If we assume a < 0 and x > 0, the demand and cost functions will be decreasing and
increasing, respectively, and the assumptions of Theorem 2.1 hold. We set a = −1, b =
7.36 × 107 + 10, x = y = 10, so q̂ = 20 for n = 20 and q̂ = 86.9401 for n = 4.

Finally, in the third model, we use a radical inverse demand function

P = aQ3/2 + b (2.5)

and the linear cost function (2.4). For a = −1, b = 8300, x = 100, and y = 10 Theorem 2.1 holds
and q̂ = 19.3749 for n = 20, while q̂ = 82.2143 for n = 4.

3. The Algorithms

We use two multipopulation (each player has its own population of chromosomes
representing its alternative choices at any round) Coevolutionary genetic algorithms,
Vriend’s individual learning algorithm [6] and Coevolutionary programming, a similar
algorithm that has been used for the game of prisoner’s dilemma [9] and, unsuccessfully,
for Cournot Duopoly [10]. Since those two algorithms do not, as it will be seen, lead
to convergence to the NE in the models under consideration, we introduce two different
versions of the algorithms, as well, which are characterized by the use of opponent choices,
when the new generation of each player’s chromosome population is created, and therefore
can be regarded as “socialized” versions of the two algorithms. The difference between the
“individual” and the “social” learning versions of the algorithms is that in the former case
the population of each player is updated on itself (i.e., only the chromosomes of the specific
player’s population are taken into account when the new generation is formed), while on the
latter, all chromosomes are copied into a common “pool”, then the usual genetic operators
(crossover and mutation) are used to form the new generation of that aggregate population
and finally each chromosome of the generation is copied back to its corresponding player’s
population. Thus we have “social learning”, since the alternative strategic choices of a given
player at a specific generation, as given by the chromosomes that comprise its population,
are affected by the chromosomes (the ideas should we say) all other players had at the
previous generation. In that respect, the two “social learning” algorithms are similar to the
algorithm proposed by Alkemade et al. [7], which we also analyse here; their main difference
is that each player has its own population of chromosomes, while in [7], all players share a
common population of chromosomes, and each player chooses—randomly—a chromosome
to determine its strategy for the current game.

Vriend’s individual learning algorithm is presented in pseudocode [3].



Advances in Decision Sciences 5

(1) A set of strategies (chromosomes representing quantities) is randomly drawn for
each player.

(2) While Period is less than T.

(a) If Period mod GArate = 0: generate a new set of strategies for each firm, using
roulette wheel selection, random point (single point) crossover, and mutation
[6].

(b) Each player selects one strategy. The realized profit is calculated (and the
fitness of the corresponding chromosomes, is defined, based on that profit).

As implied by the condition (If Period mod GArate = 0), Vriend’s algorithm keeps
the populations of the genetic algorithms used by the players unchanged for GArate random
match-ups (the number of games played in any given time is stored in the “period” variable);
then, after GArate periods have passed, the populations are updated, and the process is
repeated, for a total of T periods. To update the populations of the genetic algorithms,
the well established in the literature roulette wheel rule for parent selection, random point
crossover and the standard mutation operator with mutation probability fixed throughout
the course of the simulation [11] are employed. The chromosomes in the players’ populations
represent quantity choices. To transform the binary encoded chromosomes to real quantities,
(4.1) is used. As in all genetic algorithms a fitness function measures the performance of a
chromosome on the problem at hand. The fitness function of a chromosome is proportional
to the player’s profit when he chooses the quantity defined by the chromosome, or zero if the
profit is nonpositive (which is an extremely rare incident). Parents are selected using “roulette
wheel selection”: two chromosomes are selected at random from the current population
(using sampling with replacement), with probability of selection proportional to their fitness.
Then these two chromosomes are recombined using single point random crossover. A cutting
point is determined at random (uniform probability) and the two parent chromosomes are
divided in two parts, binary digits at the left of the cutting point belonging to the first part,
and bits at the right to the second. Then two children chromosomes are formed by combining
the left part of the first chromosome with the right part of the second, and vice versa. To get
the final children chromosomes, mutation is finally employed. Each bit of the chromosomes
is, independently, subject to a random change of its value (0 to 1, or 1 to 0); the probability of
a mutation remains constant throughout the course of the algorithm. This process of parent
selection and children formulation is repeated until all positions of the new generation’s
population are filled with children chromosomes.

Coevolutionary programming is quite similar, with the difference that the random
match-ups between the chromosomes of the players’ population at a given generation are
finished when all chromosomes have participated in a game, and then the population is
updated, instead of having a parameter (GArate) that defines the generations at which
populations update takes place. The algorithm, described by pseudocode, is as follows [10].

(1) Initialize the strategy population of each player.

(2) Choose one strategy from the population of each player randomly, among
the strategies that have not already been assigned profits. Input the strategy
information to the tournament. The result of the tournament will decide profit and
fitness values for these chosen strategies.

(3) Repeat step (2) until all strategies have a profit value assigned.



6 Advances in Decision Sciences

(4) Apply the evolutionary operators (selection, crossover, mutation) to each player’s
population. Keep the best strategy of the current generation alive (elitism).

(5) Repeat steps (2)–(4) until maximum number of generations has been reached.

In our implementation, we do not use elitism. The reason is that by using only
selection proportional to fitness, single (random) point crossover, and finally, mutation with
fixed mutation rate for each chromosome bit throughout the simulation, we ensure that
the algorithms can be classified as canonical economic GA’s (Riechmann [12]), and that their
underlying stochastic process forms an ergodic Markov Chain [12].

In order to ensure convergence to Nash Equilibrium, we introduce the two “social”
versions of the above algorithms. Vriend’s multipopulation algorithm could be transformed
to the following.

(1) A set of strategies (chromosomes representing quantities) is randomly drawn for
each player.

(2) While Period is less than T.

(a) If Period mod GArate = 0: generate a new set of strategies for each firm,
using roulette wheel selection, random point (single point) crossover, and
mutation. The realized profit is calculated (and the fitness of the corresponding
chromosomes is defined, based on that profit).

And social coevolutionary programming is defined as follows.

(1) Initialize the strategy population of each player.

(2) Choose one strategy of the population of each player randomly from among
the strategies that have not already been assigned profits. Input the strategy
information to the tournament. The result of the tournament will decide profit
values for these chosen strategies.

(3) Repeat step (2) until all strategies are assigned a profit value.

(4) Apply the evolutionary operators (selection, crossover, mutation) at the union
of players’ populations. Copy the chromosomes of the new generation to the
corresponding player’s population to form the new set of strategies.

(5) Repeat steps (2)–(4) until maximum number of generations has been reached.

So the difference between the social and individual learning variants is that
chromosomes are first copied in an aggregate population, and the new generation of
chromosomes is formed from the chromosomes of this aggregate population. From an
economic point of view, this means that the players take into account their opponents choices
when they update their set of alternative strategies. So we have a social variant of learning,
and since each player has its own population, the algorithms should be classified as “social
multipopulation economic Genetic Algorithms” [12, 13]. It is important to note that the
settings of the game allow the players to observe their opponent choices after every game
is played and take them into account, consequently, when they update their strategy sets.

In the single population social learning of Alkemade et al. [7] a single population is
used, with more chromosomes than the number of players in the game. Its pseudocode is as
follows.



Advances in Decision Sciences 7

(1) Create a random initial population.

(2) Repeat until all chromosomes have a fitness value assigned to them.

(a) Each player selects randomly one chromosome, which determines the player’s
quantity for the current game.

(b) The realized profit is calculated based on the total quantity and the price, and
the fitness of the corresponding chromosome is defined, based on that profit.

(3) Create the new generation using selection, crossover, and mutation.

It is not difficult to show that the stochastic process of all the algorithms presented here
forms a regular Markov chain [14]. Alkemade et al. [7] algorithm has a single population. The
dynamics of the GA (ruled by selection, crossover, and mutation) ensures that the population
of the next generation depends on the current population only; previous generations have no
impact. So the process of the evolution of the GA is a Markov Chain. It is a time homogeneous
Markov Chain, since the probabilities of selection, crossover, and mutation remain constant
throughout the algorithm. Since the last operator employed is the mutation operator, there is
a positive probability (quite low in some cases) for a population to transit to any possible
population at the next generation; the only thing needed is that all the appropriate bits
in the chromosomes are mutated to the “correct values” and coincide with the bits of the
population under consideration. Consequently, the Markov Chain is ergodic and regular.
In the coevolutionary programming algorithms (both individual and social), and since the
matchings are made at random, the expected profit of the jth chromosome of player’s i
population qiji is (we assume n players and K chromosomes in each population)

E
[
π
(
qiji

)]
=

1
(n − 1)K

K∑

j1=1

· · ·
K∑

ji−1=1

K∑

ji+1=1

· · ·

K∑

jn=1

π
(
qiji ; q1j1 , . . . , q(i−1)(ji−1), q(i+1)(ji+1), . . . , qnjn

)
.

(3.1)

The expected profit for Vriend’s algorithm [3] is

E
[
π
(
qij ;Q−i

)]
= pqij − C

(
qij

)
(3.2)

with

p =
∑

l /= i

p

(

qij ,
∑

l

qlj

)

f
(
qlj | GArate

)
, (3.3)

where f(qij |GARate) is the frequency of each individual strategy of other firms, conditioned
by the strategy selection process and GArate.

Any fitness function that is defined on the profit of the chromosomes, either
proportional to profit, scaled or ordered, has a value that is solely dependent on the
chromosomes of the current population. And, since the transition probabilities of the
underlying stochastic process depend only on the fitness and, additionally, the state of



8 Advances in Decision Sciences

the chain is defined by the chromosomes of the current population, the transition probabilities
from one state of the GA to another are solely dependent on the current state (see also
[12]). The stochastic process of the populations is, therefore, a Markov Chain. And since
the final operator used in all the algorithms presented here is the mutation operator, there
is a positive—and fixed—probability that any bit of the chromosomes in the population is
negated. Therefore any state (set of populations) is reachable from any other state—in just
one step actually—and the chain is regular.

Having a Markov chain implies that the usual performance measures—namely, mean
value and variance—are not adequate to perform statistical inference, since the observed
values in the course of the genetic algorithm are interdependent. In a regular Markov
chain, however, one can estimate the limiting probabilities of the chain by estimating the
components of the fixed frequency vector the chain converges to, by

π̂i =
Ni

N
, (3.4)

where Ni is the number of observations in which the chain is at state i and N is the total
number of observations [15]. In the algorithms presented here, however, the number of
states is extremely large. If in any multipopulation algorithm, we have n players, with k
chromosomes consisting of l bits in each player’s population, the total number of possible
states is 2knl, making the estimation of the limiting probabilities of all possible states,
practically impossible. On the other hand, one can estimate the limiting probability of one
or more given states, without needing to estimate the limiting probabilities of all the other
states. A state of importance could be the state where all chromosomes of all populations
represent the Nash Equilibrium quantity (which is the same for all players, since we have a
symmetric game). We call this state Nash State.

Another solution could be the introduction of lumped states [14]. Lumped states are
disjoint aggregate states consisting of more than one state, with their union being the entire
space. Although the resulting stochastic process is not necessarily Markovian, the expected
frequency of the lumped states can still be estimated from (3.4). The definition of the lumped
states can be based on the average Hamming distance between the chromosomes in the
populations and the chromosome denoting the Nash Equilibrium quantity. Denoting qij the
ith chromosome of the ith player’s population, and NE the chromosome denoting the Nash
Equilibrium quantity, the Hamming distance d(qij ,NE) between qij and NE would be equal
to the number of bits that differ in the two chromosomes, and the average Hamming distance
between the chromosomes in the populations from the Nash chromosome would be

d =
1
nK

n∑

i=1

K∑

j=1

d
(
qij , n

)
, (3.5)

where n is the number of players in the game and K is the number of chromosomes in each
player’s population.We define the ith lumped state Si as the set of states si, in which the
chromosomes’ average Hamming distance from the Nash chromosome is less or equal to i
and greater to i − 1.



Advances in Decision Sciences 9

Definition 3.1. Si = {si | i − 1 < d(qij ∈ si, n) ≤ i}, for i = 1, . . . , n.

The maximum value of d is equal to the maximum value of the Hamming distance
between a given chromosome and the Nash chromosome. The maximum value between
two chromosomes is obtained when all bits differ, and it is equal to the length of the
chromosomes L. Therefore we have L different lumped states S1, S2, . . . , SL. We also define S0

to be the individual Nash state (the state reached when all populations consist of the single
chromosome that corresponds to the Nash Equilibrium quantity) which gives us a total of
L + 1 states. This ensures that the union of the Si is the entire populations’ space, and they
consist, therefore, of a set of lumped states [14].

4. Simulation Settings

We use two variants of the three models in our simulations. One about n = 4 players and
one having n = 20 players. We use 20-bit chromosomes for the n = 4 players case and 8-bits
chromosomes for the n = 20 case. A usual mechanism [1, 6] is used to transform chromosome
values to quantities. After an arbitrary choice for the maximum quantity, the quantity that
corresponds to a given chromosome is given by

q =
1

qmax

L∑

k=1

qijk2k−1, (4.1)

where L is the length of the chromosome and qijk is the value of the kth bit of the given
chromosome (0 or 1). According to (4.1) the feasible quantities belong in the interval [0, qmax].
By setting

qmax = 3q̂, (4.2)

where q̂ is the Nash Equilibrium quantity of the corresponding model, we ensure that the
Nash Equilibrium of the continuous model is one of the feasible solutions of the discrete
model, analysed by the genetic algorithms, and that the NE of the discrete model will be,
therefore, the same as the one for the continuous case. And, as it can be easily proven by
mathematical induction, the chromosome corresponding to the Nash Equilibrium quantity
will always be 0101 · · · 01, provided that chromosome length is an even number.

The GArate parameter needed in the original and the “socialized” versions of Vriend’s
algorithms is set to GArate = 50, an efficient value suggested in the literature [3, 6]. We
use single-point crossover, with the point at which chromosomes are combined [11] chosen
at random. Probability of crossover is always set up to 1; that is, all the chromosomes
of a new generation are products of the crossover operation, between selected parents.
Lower values (e.g., pc = 0.6, which is also common in the literature) have no significant
impact on the convergence of the algorithms, apart from the fact that convergence needs
more generations to be established, since many chromosomes of the previous generation
remain in the population. The probability of mutating any single bit of a chromosome is
fixed throughout any given simulation—something that ensures the homogeneity of the
underlying Markov process. In the literature ([6, 7], etc.) the usual values for the mutation
probability are between 0 and 0.2. After some preliminary tests, we concluded that values



10 Advances in Decision Sciences

> 0.1 do not lead to any kind of convergence of the total quantity and price and have excluded
them. The values that have been used (for both cases of n = 4 and n = 20) are pm =
0.1, 0.075, . . . , 0.000025, 0.00001. Also the populations must have enough chromosomes, in
order for the evolutionary dynamics to perform effectively. This has already been resolved in
[1, 6, 7]; Alkemade et al. [7], for example, used a population of as little as four chromosomes
(in a 4-player game); they realized that a population of at least 20 chromosomes was required
for their algorithm to converge to the NE price and total quantities. On the other hand,
larger populations may require an impractical high number of generations to converge.
In our simulations, we used populations consisting of pop = 20, 30, 40, 50, 100, 200, 500
chromosomes. Finally, the maximum number of generations that a given simulation runs,
was T = 103, 2 ∗ 103, 5 ∗ 103, 104, 2 ∗ 104, 5 ∗ 104, 105, 2 ∗ 105. The more generations, the better the
estimation of the limiting probabilities, apparently.

Note that the number of total iterations (number of games played) of Vriend’s
individual and social algorithms is GArate times the number of generations, while in the
coevolutionary programming algorithms it is the number of generations times the number
of chromosomes in a population, which is the number of match-ups. In the algorithm of
Alkemade et al. the number of games played is the number of generations times the number
of chromosomes divided by the number of players in the game.

We run 300 independent simulations for each set of settings for all the algorithms, so
that the test statistics and the expected time to reach the Nash Equilibrium (NE state, or first
game with NE played) are estimated effectively.

5. Presentation of Selected Results

Although the individual-learning versions of Vriend’s and Coevolutionary programming
algorithms led the estimated expected value of the average quantity (as given in (5.1))

Q =
1
nT

T∑

t=1

n∑

i=1

qit (5.1)

(T = number of iterations, n = number of players), close to the corresponding average
quantity of the NE, the strategies of each one of the players converged to different quantities.
That fact can be seen in Figures 1 to 3, that show the outcome of some representative runs of
the two individual-learning algorithms in the polynomial model (2.3). The trajectory of the
average market quantity in Vriend’s algorithm

Q =
1
n

n∑

i=1

qit (5.2)

(calculated in (5.2) and shown in Figure 1) is quite similar to the trajectory of the same
measure in the Coevolutionary case, and a figure of the second case is omitted. The estimated
average values of the two measures (5.1) were 86.2807 and 88.5472, respectively, while the NE



Advances in Decision Sciences 11

20

40

60

80

100

120

140

160

180

200

220

0 2 4 6 8 10
×104

Figure 1: Mean Quantity in one execution of Vriend’s individual learning algorithm in the polynomial
model for n = 4 players. pop = 50,GArate = 50, pcr = 1, pmut = 0.01, T = 2, 000 generations.

Table 1: Mean values of players’ quantities in two runs of the individual-learning algorithms in the
polynomial model for n = 4 players. pop = 50,GArate = 50, pcr = 1, pmut = 0.01, T = 2, 000 generations.

Player Vriend’s algorithm Coevol. programming
1 91.8309 77.6752
2 65.3700 97.8773
3 93.9287 93.9287
4 93.9933 93.9933

quantity in the polynomial model (2.3) is 86.9401. The unbiased estimators for the standard
deviations of the Q (5.3) were 3.9776 and 2.6838, respectively,

sQ =
1

T − 1

T∑

i=1

(
Qi −Q

)2
. (5.3)

The evolution of the individual players’ strategies can be seen in Figures 2 and 3. The
estimators of the mean values of each player’s quantities (calculated by (5.4))

qi =
1
T

T∑

i=1

qi (5.4)

are given in Table 1, while the frequencies of the lumped states in these simulations are given
in Table 2.

That significant difference between the mean values of players’ quantities was
observed in all simulations of the individual-learning algorithms, in all models, and in both
n = 4 and n = 20, for all the parameter sets used (which were described in the previous
section). We used a sample of 300 simulation runs for each parameter set and model, for
hypothesis testing. The hypothesis H0 : Q = qNash was accepted for a = .05 in all cases. On the
other hand, the hypotheses H0 : qi = qNash were rejected for all players in all models, when



12 Advances in Decision Sciences

0

50

100

150

200

250

300

0 2 4 6 8 10
×104

Figure 2: Players’ quantities in one execution of Vriend’s individual learning algorithm in the polynomial
model for n = 4 players. pop = 50,GArate = 50, pcr = 1, pmut = 0.01, T = 2, 000 generations.

Table 2: Lumped states frequencies in two runs of the individual-learning algorithms in the polynomial
model for n = 4 players. pop = 50, pcr = 1, pmut = 0.01, T = 100, 000 generations.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

VI 0 0 0 0 0 0 0 0 0 .8725 .0775
s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

.05 0 0 0 0 0 0 0 0 0
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

CP 0 0 0 0 0 0 0 0 .0025 .1178 .867
s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

.0127 0 0 0 0 0 0 0 0 0

the probability of rejection the hypothesis, under the assumption it is correct, was a = .05.
There was not a single Nash Equilibrium game played, in any of the simulations of the two
individual-learning algorithms.

In the social-learning versions of the two algorithms, as well as the algorithm of
Alkemade et al., both the hypotheses H0 : Q = qNash and H0 : qi = qNash were accepted
for a = .05, for all models and parameters sets. We used a sample of 300 different simulations
for every parameter set, in those cases, as well.

The evolution of the individual players’ quantities in a given simulation of Vriend’s
algorithm on the polynomial model (as in Figure 2) can be seen in Figure 4.

Notice that the all players’ quantities have the same mean values (5.4). The mean
values of the individual players’ quantities for pop = 40, pcr = 1, pmut = 0.00025, T =
10, 000 generations, are given, for one simulation of all the algorithms (social and individual
versions) in Table 3.

On the issue of establishing NE in some of the games played and reaching the Nash
State (all chromosomes of every population equals the chromosome corresponding to the NE
quantity) there are two alternative results. For one subset of the parameters set, the social-
learning algorithms managed to reach the NE state, and in a significant subset of the games
played, all players used the NE strategy (these subsets are shown in Table 4).



Advances in Decision Sciences 13

0

50

100

150

200

250

300

0 2 4 6 8 10
×104

Figure 3: Players’ quantities in one execution of the individual-learning version of the coevolutionary
programming algorithm in the polynomial model for n = 4 players. pop = 50, pcr = 1, pmut = 0.01, T = 2, 000
generations.

Table 3: Mean values of players’ quantities in two runs of the social-learning algorithms in the polynomial
model for n = 4 players. pop = 40, pcr = 1, pmut = 0.00025, T = 10, 000 generations.

Player Alkemade’s Social Social Individual Individual
Vriend’s Coevol. Vriend’s Coevol.

1 87.0320 86.9991 87.0062 93.7536 97.4890
2 87.0363 86.9905 87.0089 98.4055 74.9728
3 87.0347 86.9994 87.0103 89.4122 82.4704
4 87.0299 87.0046 86.9978 64.6146 90.4242

In the cases where mutation probability was too large, the “Nash” chromosomes
were altered significantly and therefore the populations could not converge to the NE state
(within the given iterations). On the other hand, when the mutation probability was low the
number of iterations was not enough to have convergence. A larger population, requires more
generations to converge to the “NE state” as well. The estimators of the limiting probabilities
of one representative parameter set for representative cases of the first- and second-parameter
sets are given in Table 5.

Apparently, the Nash state s0 has greater than zero frequency in the simulations that
reach it. The estimated time needed to reach Nash State (in generations), to return to it
again after departing from it, and the percentage of total games that were played on NE
are presented in Table 6 for a limited set of cases. (Table 6: GenNE = Average number of
Generations needed to reach s0, starting from populations having all chromosomes equal
to the opposite chromosome of the NE chromosome, in the 300 simulations. RetTime =
Interarrival Times of s0 (average number of generations needed to return to s0) in the 300
simulations. NEGames = Percentage of games played that were NE in the 300 simulations.)

We have seen that the original individual-learning versions of the multipopulation
algorithms do not lead to convergence of the individual players’ choices, at the Nash
Equilibrium quantity. On the contrary, the “socialized” versions introduced here accomplish
that goal and, for a given set of parameters, establish a very frequent Nash State, making
games with NE quite frequent as well, during the course of the simulations. The statistical



14 Advances in Decision Sciences

0

50

100

150

200

250

300

0 1 2 3 4 5
×105

Figure 4: Players’ quantities in one execution of the social-learning version of Vriend’s algorithm in the
polynomial model for n = 4 players. pop = 40,GArate = 50, pcr = 1, pmut = 0.00025, T = 10, 000 generations.

Table 4: Parameter sets that yield NE. Holds true for all social-learning algorithms.

Models Algorithm pop pmut T

All 4 payer Vriend 20–40 .001 − .0001 ≥ 5000
models Coevol 20–40 .001 − .0001 ≥ 5000

Alkemade 20–200 .001 − .0001 ≥ 10000
All 20 player Vriend 20 .00075 − .0001 ≥ 5000
models Coevol 20 .00075 − .0001 ≥ 5000

Alkemade 100–200 .001 − .0001 ≥ 50000

tests employed proved that the expected quantities chosen by players converge to the NE
in the social-learning versions while that convergence cannot be achieved at the individual-
learning versions of the two algorithms. Therefore it can be argued that the learning process
is qualitatively better in the case of social learning. The ability of the players to take into
consideration their opponents strategies, when they update theirs, and base their new choices
at the totality of ideas that were used at the previous period (as in [7]) forces the strategies
into consideration to converge to each other and to converge to the NE strategy as well. Of
course this option would not be possible, if the profit functions of the individual players were
not the same, or, to state that condition in an equivalent way, if there were no symmetry at
the cost functions. If the cost functions are symmetric, a player can take note of its opponents
realized strategies in the course of play and use them as they are when he updates his
ideas, since the effect of these strategies at his individual profit will be the same. Therefore
the inadequate learning process of the individually based learning can be perfected, at the
symmetric case. We have also run several simulations for the case of slight asymmetries in
the players’ cost functions. In such a case, a chromosome that is optimal for a given player
might be suboptimal for another, because the difference in their costs imply that they have
different NE quantities. If the players’ costs are sorted from lowest to highest c1 ≤ · · · ≤ cn,
then the NE quantities and the players’ profits in the hypothetical case where all players share
the same costs c1 are higher than the case where all players have common cost cn (as is easily
seen from the profit equation and its properties). In all the simulations we executed with



Advances in Decision Sciences 15

Table 5: Lumped states frequencies in a run of a social-learning algorithm that could not reach NE and
another that reached it. 20 players-polynomial model, Vriend’s algorithms, pop = 20 and T = 10, 000 in
both cases, pmut = .001 in the 1st case, pmut = .0001 in the 2nd.

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

No NE 0 0 .6448 .3286 .023 .0036 0 0 0 0 0
s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

0 0 0 0 0 0 0 0 0 0
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

NE .261 .4332 .2543 .0515 0 0 0 0 0 0 0
s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

0 0 0 0 0 0 0 0 0 0

Table 6: Markov and other statistics for NE.

Model Algorithm pop pmut T GenNE RetTime NEGames
4-Linear Vriend 30 .001 10,000 3,749.12 3.83 5.54
4-Linear Coevol 40 .0005 10,000 2,601.73 6.97 73.82
4-Linear Alkemade 100 .001 100,000 2,021.90 9.94 87.93
20-Linear Vriend 20 .0005 20,000 2,712.45 6.83 88.98
20-Linear Coevol 20 .0001 20,000 2,321.32 6.53 85.64
20-Linear Alkemade 100 .001 100,000 1,823.69 21.06 87.97
4-poly Vriend 40 .00025 10,000 2,483.58 3.55 83.70
4-poly Coevol 40 .0005 10,000 2,067.72 8.77 60.45
20-poly Vriend 20 .0005 20,000 2,781.24 9.58 67.60
20-poly Alkemade 100 .001 100,000 2,617.37 14.79 12.86
4-radic Alkemade 100 .001 100,000 1,969.85 8.54 86.48
4-radic Coevol 40 .0005 10,000 2,917.92 5.83 73.69
20-radic Vriend 20 .0005 20,000 2,136.31 7.87 75.34
20-radic Coevol 20 .0005 20,000 2,045.81 7.07 79.58

slight asymmetries in the cost functions (the ci’s are relatively close to each other), and the
quantities of the players converged into the area bounded by these extreme case quantities
(the NE quantities that would be realized if all the players had cost c1 in the first case or
cn in the second). Neither the NE state had significant frequency, nor a high percentage of
games played had NE, however, as in the cases of Table 6. Although the NE may not be
discovered, that bounding interval the algorithms yield may offer a good approximation of
the NE quantities; the lower the asymmetry, the shorter the length of the [c1, cn] interval will
be, and consequently, a lower error of the approximation will be achieved. Or, this bounding
interval can offer a good initial limiting range of admissible solutions, for other repetitive
heuristics that search for NE, such as the algorithm in [16].

The stability properties of the algorithms are identified by the frequencies of the
lumped states and the expected interarrival times estimated in the previous section (Table 6).
The interarrival times of most of the representative cases shown there are less than 10
generations. The inter-arrival times were in the same range, when the other parameter sets
that yielded convergence to “Nash state” were used. The frequencies of the lumped states
show that the “Nash state” s0 was quite frequent—for the cases it was reached, of course—
and that the states defined by populations, whose chromosomes differ in less than one bits,
on the average, from the Nash state itself, define the most frequent lumped state (s1). As a



16 Advances in Decision Sciences

matter of fact the sum of these two lumped states s0, s1 was usually higher than .90. As it has
been already shown [15] the estimators of the limiting probabilities calculated by (3.4) and
presented for given simulation runs, in Tables 2 and 5, are unbiased and efficient estimators
for the expected frequencies of the algorithm’s performance ad infinitum. The high expected
frequencies of the lumped states that are “near” the NE and the low interarrival time to the
NE state itself ensure the stability of the algorithms.

Using these “social learning” algorithms as heuristics to discover unknown NE
requires a way to distinguish the potential Nash Equilibrium chromosomes. When VS2, CS3

or the single population algorithm of Alkemade et al. converge in the sense mentioned above
to the “Nash state”, most chromosomes in the populations of several of the generations at
the end of the simulation should be identical or almost identical (differing at a small number
of bits) to the Nash Equilibrium chromosome. Using this qualitatively rule, one should be
able to find some potential chromosomes to check for Nash Equilibrium. A more concise
way would be to record the games that all players used the same quantities. Since symmetric
profits functions imply symmetric NE, apparently, one can confine his attention on these
games, of all the games played. In order to check if any of these quantities is the NE quantity,
one could assume that all but one players use that quantity and then solve (either analytically,
numerically, or by a heuristic, depending on the complexity of the model investigated) the
single-variable maximization problem for the player’s profit, given that the other players
choose the quantity under consideration, If the solution of the problem is the same quantity,
then that quantity should be the Nash Equilibrium.

6. Conclusions

By using the lumped state measure introduced in this paper, a fruitful analysis of the evo-
lution of the players’ choices in Vriend’s individual learning algorithm and Coevolutionary
programming algorithm has been achieved. Our results show that these algorithms are not
expected to yield Nash equilibria; players’ quantity choices do not converge to the quantities
corresponding to the Nash Equilibrium, although the total quantity selected and the price
in the market do converge—in a stochastic or Ljapunov sense, that is, the strategies chosen
fluctuated inside a region around the NE, while the expected values were equal (as proven
by a series of statistical tests) to the desired value—to the ones expected at an NE, as reported
earlier [3]. Therefore, we have constructed and analysed two social versions of those two
algorithms, by adding the possibility of sharing chromosomes between the individual popu-
lations of the players; these algorithms have been proven to be much more effective than the
individual learning versions, since the players’ quantities do converge towards the NE, a high
percentage of the games played when players use these algorithms are played at NE, and the
populations holding the players’ alternative choices converge towards the “Nash state” (the
state where all chromosomes represent the NE quantity). The same holds true—as we have
seen in this study—for the single population social learning algorithm of Alkemade et al. [7].

Although the comparison between the “social learning” and the “individual learning”
algorithms is evidently in favour of the former, at least in the models studied here,
the comparison between the single population algorithm of Alkemade et al. and the
multipopulation “socialized” versions of the two individual learning algorithm we have
introduced is not one with a clearly advantageous candidate. Perhaps one could argue that
the multipopulation algorithms represent human learning in a better way, since human
agents do have their own sets of beliefs and ideas, even if they are influenced by the ideas



Advances in Decision Sciences 17

of others; so a population of strategies for each agent seems more accurate, and perhaps
the multipopulation algorithms are more appropriate in an Agent Computational Economics
perspective. On the other hand a single population algorithm is easier to implement, and
sometimes faster, and thus a better candidate in an algorithmic optimization perspective.

The effectiveness of the “social learning” algorithms allows one to treat them as
heuristic algorithms to discover an unknown Nash Equilibrium in symmetric games,
provided that the parameters used are suitable and that the NE belongs in the feasible set
of the chromosomes’ values. If this is the case, the high frequency of the “Nash chromosome”
in the populations—especially in the latest generations—of the algorithms, or the high
frequency of the games played at NE, should leave no doubts about the correct value of the
Nash Equilibrium quantity. Finally, the stability properties of the social-learning versions of
the algorithms allow one to use them as modelling tools in a multiagent learning environment
that leads to effective learning of the Nash Strategy.

Paths for future research could be simulating these algorithms for different bit-lengths
of the chromosomes in the populations since, apparently, the use of more bits for chromosome
encoding implies more feasible values for the chromosomes and, therefore, makes the
inclusion of unknown NE in these sets more probable. Another idea would be to use different
models, especially models that do not have single NE. Finally one could try to apply the
algorithms introduced here in different game theoretic problems.

Acknowledgments

Funding by the EU Commission through COMISEF MRTN-CT-2006-034270 is gratefully
acknowledged. Mattheos Protopapas would also like to thank all the members of the
COMISEF network for their helpful courses, presentations, and comments.

References

[1] J. Arifovic, “Genetic algorithm learning and the cobweb model,” Journal of Economic Dynamics and
Control, vol. 18, no. 1, pp. 3–28, 1994.

[2] C. Alós-Ferrer and A. B. Ania, “The evolutionary stability of perfectly competitive behavior,”
Economic Theory, vol. 26, no. 3, pp. 497–516, 2005.

[3] T. Vallee and M. Yildizoglou, “Convergence in finite cournot oligopoly with social and individual
learning,” Working Papers of GRETha, 2007, http://www.gretha.fr.

[4] H. Dawid and M. Kopel, “On economic applications of the genetic algorithm: a model of the cobweb
type,” Journal of Evolutionary Economics, vol. 8, no. 3, pp. 297–315, 1998.

[5] R. Franke, “Coevolution and stable adjustments in the cobweb model,” Journal of Evolutionary
Economics, vol. 8, no. 4, pp. 383–406, 1998.

[6] N. J. Vriend, “An illustration of the essential difference between individual and social learning, and
its consequences for computational analyses,” Journal of Economic Dynamics & Control, vol. 24, no. 1,
pp. 1–19, 2000.

[7] F. Alkemade, H. La Poutré, and H. M. Amman, “On social learning and robust evolutionary algorithm
design in the Cournot oligopoly game,” Computational Intelligence, vol. 23, no. 2, pp. 162–175, 2007.

[8] P. Dubey, O. Haimanko, and A. Zapechelnyuk, “Strategic complements and substitutes, and potential
games,” Games and Economic Behavior, vol. 54, no. 1, pp. 77–94, 2006.

[9] T. C. Price, “Using co-evolutionary programming to simulate strategic behaviour in markets,” Journal
of Evolutionary Economics, vol. 7, no. 3, pp. 219–254, 1997.

[10] Y. S. Son and R. Baldick, “Hybrid coevolutionary programming for Nash equilibrium search in games
with local optima,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 4, pp. 305–315, 2004.

[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,
Reading, Mass, USA, 1989.



18 Advances in Decision Sciences

[12] T. Riechmann, “Genetic algorithm learning and evolutionary games,” Journal of Economic Dynamics
and Control, vol. 25, no. 6-7, pp. 1019–1037, 2001.

[13] T. Riechmann, “Learning and behavioral stability: an economic interpretation of genetic algorithms,”
Journal of Evolutionary Economics, vol. 9, no. 2, pp. 225–242, 1999.

[14] J. G. Kemeny and J. L. Snell, Finite Markov Chains, The University Series in Undergraduate
Mathematics, D. Van Nostrand, Princeton, NJ, USA, 1960.

[15] I. V. Basawa and B. L. S. Prakasa Rao, Statistical Inference for Stochastic Processes, Probability and
Mathematical Statistics, Academic Press, London, UK, 1980.

[16] M. K. Protopapas and E. B. Kosmatopoulos, “Determination of sequential best replies in n-player
games by Genetic Algorithms,” International Journal of Applied Mathematics and Computational Sciences,
vol. 5, no. 1, 2009.


