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We describe a new approach to multiple class pattern classification problems with noise
and high dimensional feature space. The approach uses a random matrix X which has a
specified distribution with mean M and covariance matrix ri j(Σs +Σε) between any two
columns of X . When Σε is known, the maximum likelihood estimators of the expectation
M, correlation Γ, and covariance Σs can be obtained. The patterns with high dimensional
features and noise are then classified by a modified discriminant function according to
the maximum likelihood estimation results. This new method is compared with a multi-
layer feed forward neural network approach on nine digit recognition tasks of increasing
difficulty. Both methods achieved good results for those classification tasks, but the new
approach was more effective and more efficient than the neural network method for dif-
ficult problems.

1. Introduction

This paper presents a new approach to the multiple class pattern classification process.
Consider the situation where the multivariate observation �xi with p dimensions on an
object consists of two independent components �yi and �εi (i= 1,2, . . . ,n), where n is total
sample size. Let �yi have a p-dimensional multivariate normal distribution with mean
vector �µ and covariance matrix Σs, while �εi has a multivariate normal distribution with

mean vector�0 and covariance Σε.
If we let �xi = �yi +�εi and the vector �xi has a multivariate normal distribution with mean

vector �µ, then the covariance structure between �xi and �xj is constructed by

cov
(
�xi,�xj

)= γi j
(
Σs +Σε

)
, (1.1)

where γi j = γji is the correlation between�xi and�xj and γii = 1 if i= j. Thus the probability
density function of the observation matrix Xp×n = (�x1,�x2, . . . ,�xn) is given by Wang and
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Lawoko [1]:

f
(
X |M,Σs,Σε,Γ

)

= (2π)−np/2
∣∣Σs +Σε

∣∣−n/2|Γ|−p/2 exp
{
− 1

2
tr
[(
Σs +Σε

)−1
(X −M)Γ−1(X −M)′

]}
,

(1.2)

where M = µ1′, Γ= {γrs} is the correlation matrix, which is estimated by sample correla-
tion matrix for X . The term tr(·) denotes the trace of a matrix, and 1 is a column vector
of unit elements. It is assumed that Σs, Σε and Γ are positive definite matrices. Note that in
pattern recognition �yi and �εi are referred to as “signal” and “noise,” respectively. With the
model, the observation vector X can be decomposed into independent signal and noise
components, and its covariance matrix can be written as Γ⊗ (Σs +Σε), where ⊗ denotes
the Kronecker product.

2. Estimation of parameters

2.1. Estimation of covariance matrix Σs. With the assumptions that Γ and Σε are known
and n� p in (1.2), Wang and Lawoko [1] proved the following results for normally
distributed random matrices.

(a) The maximum likelihood estimators of Σε and M are obtained as

Σ̂s = n−1(X − M̂)Γ−1(X − M̂)′ −Σε

M̂ = µ̂1′ = (1′Γ−11
)−1

XΓ−111′.
(2.1)

(b) If we let Σ̂∗s = n(n− 1)−1Σ̂s + (n− 1)−1Σε, then Σ∗s is an unbiased estimator of Σs

and the covariance of Σ∗s is given by

cov
(
Σ̂∗s
)= (n− 1)−1(Σs +Σε

)2
+ (n− 1)−1 tr

[(
Σs +Σε

)](
Σs +Σε

)
, (2.2)

while

cov(M̂)= n
(

1′Γ−11
)−1

Σs +n
(

1′Γ−11
)−1

Σε. (2.3)

(c) The covariance matrix between the unbiased estimator Σ̂∗s of Σs and M̂ is calculated
by

cov
{
M̂, Σ̂∗s

}= (1′Γ−11
)−1

Γ11′Γ−1(Σs +Σε
)
CM′ +M

[
2M′ +

(
1′Γ−11

)−1
I
]
CM′, (2.4)

where

C = (n− 1)−1Γ−1
[
I − (1′Γ−11

)−1
11′Γ−1

]
. (2.5)

2.2. Estimation of correlation matrix Γ. Suppose that Γ is unknown in (1.2), the prob-
lem of Σs (and Σε), which is only possible after the separation of “signal” from “noise,”
is considered for a specific model [2]. We now need to estimate the correlation matrix in
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(1.2). The log-likelihood function from (1.2) is written as

L= loglik
(
M,Σs,Γ | X ,Σε

)

= constant +
(
n

2

)
log
∣∣∆−1

∣∣+
(
p

2

)
log
∣∣Γ−1

∣∣

−
(

1
2

)
tr
[
H∆−1H′(X −M)Γ−1(X −M)′

]
,

(2.6)

where ∆=H′(Σs +Σε)H and H is an orthogonal matrix. Differentiation of L with respect
to Γ and ∆ yields

dL=
{
n

2
tr(∆)− 1

2
tr
[
H(X −M)Γ−1(X −M)′H′]}d∆−1

+
{
n

2
tr(Γ)− 1

2
tr
[
(X −M)′H∆−1H′(X −M)

]}
dΓ−1.

(2.7)

Equating dL to zero, we obtain the equations

(X −M)Γ−1(X −M)= nΣ

(X −M)′Σ−1(X −M)= pΓ,
(2.8)

where Σ= Σs +Σε. Noting that

M = (1′Γ−11
)−1

XΓ−111′, (2.9)

we have the following matrix equation in Γ−1

X ′X − (1′Γ−11
)−1

X ′XΓ−111′ − (1′Γ−11
)−1

11′Γ−1X ′X +
(

1′Γ−11
)−2

11′Γ−1X ′XΓ−111′

= 0n×n,
(2.10)

where 0n×n denotes a zero matrix of dimension n× n, and 1 is a column vector of unit
elements.

From this we obtain the equation

[
X ′X − (1′Γ−11

)−1
11′Γ−1X ′X

][
In−

(
1′Γ−11

)−1
11′Γ−1

]′ = 0n×n, (2.11)

so that

[
In−

(
1′Γ−11

)−1
11′Γ−1

]
X ′X

[
In−

(
1Γ−11

)−1
11′Γ−1

]′ = 0n×n. (2.12)

If we let Y = In− (1′Γ−11)−111′Γ−1 and A= X ′X , the expression is a quadratic form,
that is,

YAY ′ = 0n×n. (2.13)
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It is known that a solution Y = Y∗ can be obtained through numerical methods [3].
Once Y∗ is known, we can solve for Γ−1 from

Y∗ = In−
(

1′Γ−11
)−1

11′Γ−1. (2.14)

That is, the equation

11′Γ−1− (1′Γ−11
)(
I −Y∗

)= 0n×n (2.15)

is linear in Γ−1 and has a unique solution [4], provided that the coefficient matrix is
nonsingular. Finally, the elements of Γ are obtained from Γ−1. Note that the solution Γ̂=
{γ̂i j} obtained from the above equations will not necessarily satisfy the usual properties
of a true correlation matrix, which would be that

(1) Γ is a positive definite symmetric matrix.
(2) |γi j| ≤ 1, with γii = 1 for all i.

In order to find a true correlation matrix Γ̃= {γ̃i j} which, on the basis of some mea-
sure, is as close as possible to Γ̂, several methods can be used. Some of these techniques,
like the “shrinking” and “eigenvalue” methods, are summarized in Rousseeuw and
Molenberghs [5].

2.3. Generating a modified discriminant function (MDF). When Σε is known and Σs

and Γ are estimated as in Sections 2.1 and 2.2, the covariance matrix Γ̂⊗ (Σ̂s +Σε) ofX can
be obtained by maximum likelihood method. Then the modified discriminant function
MDF for each class j is given by

MDF j(�x)=− ln
∣∣Γ̂⊗ (Σ̂s +Σε

)∣∣− (�x− �̄xj)T(Γ̂⊗ (Σ̂s +Σε
))−1(�x− �̄xj), (2.16)

where j = 1,2, . . . ,c; �̄xj is an estimator of the sample mean vector of the jth cluster of
random matrix X , and c is the number of classes. Note that we use the covariances Γ̂⊗
(Σ̂s +Σε) in MDF.

Equation (2.16) can be further simplified to give a linear modified discriminant func-
tion (LMDF) as follows:

LMDF j(�x)=− ln
∣∣Γ̂⊗ (Σ̂s +Σε

)∣∣− �̄xTj (Γ̂⊗ (Σ̂s +Σε
))−1�̄xj

+ �̄xTj
(
Γ̂⊗ (Σ̂s +Σε

))−1�x.
(2.17)

The classification rule is given as follows: assign any given observation, �x∗, if
LMDFi(�x∗) ≥ LMDF j(�x), for all j �= i, then the item �x∗ is assigned class i. Classifica-
tion functions of linear modified discriminant analysis assume equal variance-covariance
matrices for all the groups and a multivariate normal distribution. Note that we use the
central limit theorem, where the total noise can be approximated as Gaussian or normal
distribution. The Polar method can be used for generating noise, and relies on having
good uniform random number generator. We describe the method to generate noise in
Section 3, where we use it to adjust the mean and variance of signals for making digit
recognition with classification problems of increasing difficulty.
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Figure 3.1. Digit pattern examples with different rates of noise.

Also note that the MDF approach differs from the method of Support Vector Machines
presented in Duda et al. [6]. Their method is a special case in (2.16) and (2.17) where the
random samples are correlated with a covariance Γ⊗ (Σs +Σε), and classification func-
tions can be also used to develop discriminant regions.

3. Numerical example

3.1. Simulation data sets. To investigate the power of our new approach, we used nine
multiple dimension digit recognition tasks in the experiments. Each task involves a file (a
collection) of binary digit images. Each file contains 100 examples for each of the 10 digits
(0,1, . . . ,9), making a total number of 1000 digit examples. Each digit example is an image
of 7×7 bitmap. These tasks were chosen to provide classification problems of increasing
difficulty, as shown in Table 3.1. In all of these recognition problems, the goal is to au-
tomatically recognize which of the 10 classes (digits 0,1,2, . . . ,9) each pattern (digit ex-
ample) belongs to. Except for the first file which contains clean patterns, all data patterns
in the other eight files have been corrupted by noise. The amount of noise in different
files was randomly generated based on the percentage of flipped pixels and was given by
the two numbers nn in the file name. For example, the first row of this table shows that,
recognition Task 1 is to classify those clean digit patterns into the ten different classes.
In this task, there are 1000 patterns in total, 500 are used for training and 500 for test-
ing. In Task 3, 10% of pixels, chosen at random, have been flipped. Before starting the
training/learning process, all the training examples are randomly ordered.

Examples of the 9 tasks are shown in Figure 3.1. The 9 lines of digit examples cor-
respond to the 9 recognition tasks in Table 3.1. The first 3 tasks, one with clean data
and two with only 5% and 10% of flipped rate, are relatively straightforward for human
eyes, though there is still some difficulty in distinguishing between “3” and “9.” With the
increase of the flipped rate in these patterns such as Task 4 and Task 5, it becomes more
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Table 3.1. Nine digit recognition tasks.

Task File name Noise amount Total patterns Training set Test set

1 digit00 0% 1000 500 500

2 digit05 5% 1000 500 500

3 digit10 10% 1000 500 500

4 digit15 15% 1000 500 500

5 digit20 20% 1000 500 500

6 digit30 30% 1000 500 500

7 digit40 40% 1000 500 500

8 digit50 50% 1000 500 500

9 digit60 60% 1000 500 500

Table 3.2. Results for optimal error rate for Task 6.

Digit 0 1 2 3 4 5 6 7 8 9

OER 0.00 0.00 0.00 0.26 0.00 0.08 0.16 0.00 0.20 0.26

Prior

Probability 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

difficult to classify these digit patterns, even if humans can still recognize the majority.
From Task 6 to Task 9, however, it is very difficult, even impossible, for human eyes to
make good discrimination. We hypothesized that our new method will do a good job
for the first three tasks, but cannot be excellent for Tasks 6 to 9. We also want to investi-
gate whether our new method can achieve an acceptable performance for these difficult
tasks and whether the new method outperforms a neural network approach (Section 4)
on these tasks.

3.2. An MDF classification example. This subsection uses an example to briefly describe
how to obtain the classification error for each task by applying the new method (2.16).
After applying (2.17) to each task, the conferences of discriminant function can be ob-
tained. In Task 6 in Table 3.1, for example, there is 30% of noise flipped in the 1000 digits.
The discriminant function for digit “2” is:

LMDF2(�x)=−9.24× 108 + 4.55x1 + 4.41x2 + 4.48x3 + 7.83x4 + ···
+ 6.57x47 + 6.580x48 + 1.85× 109x49,

(3.1)

where vector �x = (x1,x2,x3, . . . ,x48,x49)T .
Task 6 classification results for test data are summarized in Table 3.2. The total optimal

error rate (OER) for this task is 0.106, or the classification accuracy is 89.40% on average
of 10 runs.
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Table 4.1. Example patterns used in neural networks for Task 1.

Class Input pattern Output pattern

0 0011100010001010000011000001100000101000100011100 1000000000

1 0001000001100001010000001000000100000010000111110 0100000000

2 0111110100000100000010111110100000010000001111111 0010000000

3 0111110100000100000010111110000000110000010111110 0001000000

4 1000000100001010000101000010111111100000100000010 0000100000

5 1111111100000010000001111110000000110000010111110 0000010000

6 0111110100000110000001111110100000110000010111110 0000001000

7 1111111100001000001000001000001000000100000010000 0000000100

8 0111110100000110000010111110100000110000010111110 0000000010

9 0111110100000110000010111111000000110000010111110 0000000001

4. The neural networks approach

This section briefly describes the neural network approach to this problem. This approach
involves the following steps: determination of the neural network architecture, network
training and network testing for classification.

4.1. Network architecture. Multilayer feed forward neural networks have been proved
to be suitable for classification and prediction problem [7, 8, 9, 10, 11]. In this approach,
we use a three layer network (with a single hidden layer) to perform the digit recognition
problems. The task then becomes determining the number of input nodes, the number
of output nodes and the number of hidden nodes.

To avoid feature selection and hand-crafting of feature extraction programs, we di-
rectly used the raw pixels as inputs to neural networks. Since each digit example in our
recognition tasks is a 7×7 bitmap, we used 49 input nodes in the network architecture.
The ten classes of digits, from 0 to 9, form the output nodes in the network. Example
patterns containing input patterns and corresponding output patterns for the ten classes
of digits for the first digit recognition task are shown in Table 4.1.

The number of hidden nodes was determined by an empirical search method of “trial
and error” during network training. We have found that 10–20 hidden nodes were suit-
able for these classification problems and that the process was relatively robust using these
number of hidden nodes. An example neural network architecture with a non-flipped
bitmap pattern from class “0” in Task 1 is shown in Figure 4.1.

4.2. Network training and testing. We used the back error propagation algorithm [12]
with the following two variations to train the network.

(i) Online learning. Rather than updating the weights after presenting all the exam-
ples in a full epoch, we update the weights after presenting each bit map pattern.

(ii) Fan-in. Weight initialization and weight changes are modified by the fan-in fac-
tor. The weights are divided by the number of inputs of a node (referred to as
the fan-in factor of the node) before network training and the size of the weight
change of a node is updated accordingly during network training.
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Class “0” Class“1” Class“9”· · · Output pattern

Output layer

Hidden layer

Input layer

Input pattern
“0”

· · ·

· · ·

· · ·
Pixel 1 Pixel 2 Pixel 3 Pixel 4 · · · Pixel 49

Figure 4.1. An example neural network associated with a bit map pattern “0.”

During network training and testing, the network classification is considered correct
if the largest activation value produced by the neural network is for the output node
which corresponds to the target class. Otherwise, the classification is incorrect. For ex-
ample, if the actual activation values of all the output nodes for a given digit pattern
is (0.32,0.12,0.45,0.85,0.23,0.21,0.13,0.15,0.33,0.45) and the target output pattern is
“0001000000,” then this digit was correctly classified as digit “3” by the network; if the
target output pattern is “0000000001,” then this digit (“9”) was incorrectly classified as
digit “3” by the network.

5. Results and discussion

This section describes a comparison of the experimental results of the modified discrimi-
nant analysis method and the neural network method. For the neural network approach,
we used a network architecture of 49-15-10. The network was trained with a learning rate
of 0.5, without momentum. For the MDF approach, we used a priori probability of 0.1
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Table 5.1. Results for different tasks and methods.

Recognition task
Recognition Accuracy µ± σ(%)

Neural Networks MDF

(1) digits00 100± 0 100±0

(2) digits05 99.00± 0.155 99.00± 0.012

(3) digits10 96.06± 0.156 96.40± 0.011

(4) digits15 94.26± 0.220 94.60± 0.017

(5) digits20 91.44± 0.310 91.60± 0.008

(6) digits30 89.10± 0.361 89.40± 0.015

(7) digits40 80.18± 0.384 81.40± 0.005

(8) digits50 75.86± 0.451 76.80± 0.029

(9) digits60 58.70± 0.677 63.60± 0.017

for all the ten classes. The results of the two methods on the unseen data in the test set
for all the nine tasks are shown in Table 5.1. For both approaches, the training and testing
are repeated 10 times and the average results (mean µ and standard deviation σ) on the
test set are presented and compared.

As can be seen from Table 5.1, both methods achieved quite promising results on all
of the nine tasks. On the clean data (Task 1), both methods achieved 100% accuracy.
On the data sets with different noisy (flipped) rates ranging from 5% to 60% (Tasks 2
to 9), the new MDF method always achieved a higher mean recognition accuracy and a
lower standard deviation than the neural network method, which suggests that the new
MDF approach is more robust and more stable for these tasks. As expected, the perfor-
mances from both approaches deteriorated for the recognition tasks of increasing diffi-
culty.

5.1. Analysis. After further checking the results, we found that misclassification mainly
came from the digit patterns of “3,” “6,” “8,” and “9.” As can be seen from Table 3.2, the
optimal error rates were quite big (0.26, 0.16, 0.20 and 0.26) for these digits but quite
small for other digits. After we checked these digit patterns from Figure 3.1, this was not
surprising. On the relatively clean data patterns (Tasks 1 or 2), these digits are very similar
(the gap is only two or three pixels). On the flipped digit patterns, some of them are more
similar and even human eyes cannot distinguish between them. It is quite promising that
both approaches achieved such good results.

5.2. Training time and preparation time. In terms of training efficiency, the MDF ap-
proach was also better than neural networks for these tasks. While training time for the
MDF method was only about 2 seconds for each task for a single run, it took about 20–30
seconds to train the network on average. Furthermore, there is a major disadvantage for
the use of neural networks. It is often very time consuming to determine an appropriate
number of hidden nodes in the network architecture and a set of good learning parame-
ters, which usually involves an empirical search in the experiments. The MDF approach,
however, only needs to set the prior probabilities for different classes, which is relatively
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easy since they can be usually set equally. Thus the MDF method generally takes a shorter
preparation time and a shorter training time for the same problem.

6. Conclusions and further work

The goal of this paper was to develop an effective and efficient approach for high di-
mension, multiple class, noisy pattern classification problems. This goal was achieved by
developing a noisy factor and a modified discriminant function in our discriminant ap-
proach. The second goal was to investigate whether this approach could do a good enough
job for those problems on both clean data and noisy data. Nine digit recognition tasks of
increasing difficulty were used as examples in the experiments. A neural network classifier
was also developed for the purpose of comparison.

The results suggest that both the MDF approach and the neural network approach did
a very good job for the noisy data. On all the 8 noisy tasks presented in this paper, the
new MDF approach always achieved better classification performances than the neural
network method. Furthermore, it was also more stable, took a shorter preparation time
and a much shorter training time than the neural network method. As expected, the per-
formance from both approaches deteriorated as the degree of difficulty of the recognition
problems was increased.

Also, both the MDF approach and the neural network approach performed quite well
on the very noisy tasks. This is inconsistent with our hypothesis, which did not expect
them to achieve good results. This suggests that our new method and the neural network
classifier are better than human eyes on these multivariant types of tasks.

To further investigate the power of the MDF method, we will apply it to other classifi-
cation problems with multiple dimension, noisy data in the future.
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