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The orthogonal conjunctive normal form of a Boolean function is a conjunctive normal
form in which any two clauses contain at least a pair of complementary literals. Orthog-
onal disjunctive normal form is defined similarly. Orthogonalization is the process of
transforming the normal form of a Boolean function to orthogonal normal form. The
problem is of great relevance in several applications, for example, in the reliability theory.
Moreover, such problem is strongly connected with the well-known propositional satis-
fiability problem. Therefore, important complexity issues are involved. A general proce-
dure for transforming an arbitrary CNF or DNF to an orthogonal one is proposed. Such
procedure is tested on randomly generated Boolean formulae.

1. Introduction

Let B = {0,1}, or, equivalently, {true, false}. A Boolean function of n Boolean variables
xi ∈ B is a function f (x1, . . . ,xn) from the Boolean hypercube Bn to the Boolean set B.
We assume that the reader is familiar with the basic concepts of Boolean algebra (see,
e.g., [11, 19]). A Boolean function can be represented in several manners. The most com-
monly used one is by means of a Boolean (or propositional) formula � in conjunctive
(CNF) or disjunctive (DNF) normal form. Both normal forms are widely used, the choice
often depends on the applicative context. Orthogonal conjunctive normal form (OCNF)
is a CNF in which any two clauses contain at least a pair of complementary literals. Or-
thogonal disjunctive normal form (ODNF) is defined similarly. The orthogonal form is of
great relevance in solving several difficult problems, for example, in the reliability theory.
One of the fundamental issues in reliability is to compute the probability p that a com-
plex system is in operating state (and not in failed state, see, e.g., [3, 4]). The state of the
system depends on the state xi (operating or failed) of its ith component, for i= 1, . . . ,n.
Such relationship is usually described by means of a Boolean function g(x1, . . . ,xn), so that
knowing the state of the components, the state of the system is immediately computable.
Since the probabilities pr of each component to be in operating state are generally known,
p can also be computed by using g. However, such computation may be difficult [16]. For
systems where g is expressed by a Boolean formula in ODNF, this probability is very easily
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computed by summing the probabilities associated to all individual terms, since any two
terms correspond to pairwise incompatible events. Another important application is in
the field of mathematical statistics, where the orthogonality property is needed for assur-
ing independence among statistical variables, and in particular in the analysis of variance,
where it is used to separate the variation inside each group from the variation among the
groups themselves [18].

A classical problem is therefore to derive the orthogonal form, or disjoint products
form, of a Boolean function. A reliability algorithm based on the computation of the or-
thogonal form is proposed, for instance, in [14]. In general, however, computation of the
orthogonal forms is a difficult problem [6]. One of the few interesting classes of formulae
for which this can be performed efficiently is the class of shellable DNF, introduced by Ball
and Provan [2]. It has been recently proved by Boros et al. [6] that every positive Boolean
function (i.e., a Boolean function that can be written as a DNF that has no negative lit-
erals) can be represented by a shellable DNF. However, the complexity of recognizing
shellable DNF is not known, and testing the lexicoexchange property (a strengthening of
shellability) is NP-complete [6].

A procedure to transform a generic normal form formula into an orthogonal nor-
mal form, also briefly called orthogonal form, is described here. Such operation is called
orthogonalization. The proposed procedure is applicable to both CNF and DNF. There-
fore, in Section 2, we introduce a unified notation for normal forms in order to represent
both CNF and DNF. A basic procedure to orthogonalize a generic formula is described
in Section 4. During the above process, the size of the formula tends to exponentially in-
crease. This is not surprising, since in Section 3 we show that an NP-complete problem
like propositional satisfiability [7, 10, 13] becomes easy for formulae in orthogonal form.
(This can be related to a procedure for solving satisfiability by counting the number of
possible solutions proposed in [12].) Hence, the NP complexity [9] can be seen as being
absorbed by the orthogonalization process. Improvements on the above basic procedure,
with the aim of minimizing the size of the formula both in the final result and during the
computation, are then presented in Section 5.

2. Notation and equivalence of problems

A Boolean CNF formula is the logic conjunction (∧) of m clauses, each clause being the
logic disjunction (∨) of literals, each literal being either a positive (xi) or a negative (¬xi)
Boolean (or propositional) variable. By denoting with Pj ⊆ {1, . . . ,n} the set of positive
variables of the jth clause, and with Nj ⊆ {1, . . . ,n} the set of negative variables of the
same clause, we have

∧
j=1,...,m

( ∨
i∈Pj

xi∨
∨
i∈Nj

¬xi
)
. (2.1)

Conversely, a Boolean DNF formula is the logic disjunction of m terms, each term being
the logic conjunction of literals, defined as above. By denoting with Pj ⊆ {1, . . . ,n} the set
of positive variables of the jth term, and with Nj ⊆ {1, . . . ,n} the set of negative variables
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of same term, we have

∨
j=1,...,m

( ∧
i∈Pj

xi∧
∧
i∈Nj

¬xi
)
. (2.2)

The proposed procedure will apply to both CNF and DNF. Therefore, a notation which
can represent both forms is needed. Clauses and terms can be viewed as pairs of sets
(Pj ,Nj) of literals plus a logical operator connecting all such literals. Such structures will
be called monomials, and be denoted by mj . The Boolean function expressed by a single
monomial mj will be denoted by mj(x1, . . . ,xn). A CNF or DNF formula � can now be
viewed as a collection of monomials. An external operator is applied between monomials,
and will be indicated here with the symbol⊥, and an internal operator is applied between
literals of the same monomial, and will be indicated here with the symbol �. Both CNF
and DNF are therefore representable as follows:

⊥
j=1,...,m

(�
i∈Pj

xi��
i∈Nj

¬xi
)
. (2.3)

Clearly, ⊥means ∧ when considering CNF, and ∨ when considering DNF, and vice versa
holds for�. Given a so defined monomial mj , let the set Tj ⊆ Bn where mj has value 1 be
the set of true points of mj :

Tj =
{(
x1, . . . ,xn

)∈ Bn : mj
(
x1, . . . ,xn

)= 1
}

, (2.4)

and let the set Fj ⊆ Bn (the complement of Tj with respect to Bn) where mj has value 0
be the set of false points of mj :

Fj =
{(
x1, . . . ,xn

)∈ Bn : mj
(
x1, . . . ,xn

)= 0
}
. (2.5)

Given now a generic Boolean formula �, let the global set of true points be T = {(x1, . . . ,
xn) ∈ Bn : f (x1, . . . ,xn) = 1}, and let the global set of false points be F = {(x1, . . . ,xn) ∈
Bn : f (x1, . . . ,xn) = 0}. When � has the structure of normal form (CNF or DNF), the
following relations hold.

Lemma 2.1. In the case of CNF, the sets T and F are given by

T =
n⋂
j=1

Tj , F =
n⋃
j=1

Fj . (2.6)

Lemma 2.2. In the case of DNF, the sets T and F are given by

T =
n⋃
j=1

Tj , F =
n⋂
j=1

Fj . (2.7)
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Note that T and F are not immediately computable from �, nor are their cardinali-
ties. Besides the fact that their cardinality can be exponential in the number of variables,
even expressing such sets in some compressed but usable form appears difficult. In fact,
knowing the set T (or equivalently F) would give the solution of an NP-complete prob-
lem, namely the propositional satisfiability problem (see, e.g., [10]). Also, knowing the
cardinality |T| (or equivalently |F|) would give the solution of the decision version of the
propositional satisfiability problem, which is still NP-complete. Moreover, this theoret-
ically means that every problem in NP can be polynomially reduced to the problem of
finding this cardinality [9].

On the contrary, the sets Fj for CNF and Tj for DNF are immediately computable
and expressible in compressed form (see below). However, in the case of a generic CNF
or DNF, such sets are not disjoint, but can overlap each other: it can be Tj ∩Tk �= φ or
Fj ∩ Fk �= φ for some j,k ∈ {1, . . . ,m}. Due to the above reason, in order to find, respec-
tively, the cardinalities |T| and |F|, it would be necessary to identify, respectively, all the
Tj and all the Fj . Since the number of points in Tj and Fj can be exponential in the
number of variables, the approach of identifying all the Tj and all the Fj has exponential
worst-case time complexity. This is not surprising. On the other hand, if all the Tj (resp.,
all the Fj) would be pairwise disjoint sets, in order to find the cardinality |T| (resp., |F|) it
would suffice to know the cardinalities of the Tj (resp., Fj), and sum them. Such cardinal-
ities are, in fact, trivially computable. In order to proceed with our notation unification,
dissimilarities between true and false sets should be overcome. Consider again the satis-
fiability problem. It consists in finding if, in the Boolean hypercube Bn, there is at least
one true point for all clauses (for DNF formulae), or at least one false point for all terms
(for DNF formulae). Altogether, false points are bad for CNF, while true points are bad
for DNF. We will now call the set of such bad points B, with the convention that B = F
for CNF, and B = T for DNF. Moreover, every monomial mj has its set of bad points Bj

of the Boolean hypercube Bn, with the convention that Bj = Fj for CNF, and Bj = Tj for
DNF. (More intuitively, every mj forbids a set of points: in the case of CNF, the jth clause
forbids its Fj , while in the case of DNF, the jth term forbids its Tj .) Conversely, we will
call G the set of good points, with the convention that G = T for CNF, and G = F for
DNF. Therefore, every monomial mj has its set of good points Gj , with Gj = Tj for CNF,
and Gj = Fj for DNF. Sets Bj and Gj on Bn are directly obtainable by the structure of mj .
In the case of CNF, Bj (in implicit form) is given by a vector of length n, called pattern,
having 0 for each variable appearing positive in mj , 1 for each variable appearing negative
in mj , and∗ (do not care) for each variable not appearing in mj . Expanding every∗ with
both 0 and 1 gives all the points of Bj explicitly. Clearly, Gj is given by Bn \Bj . In the case
of DNF, Bj (in implicit form) is given by a pattern having 1 for each variable appearing
positive in mj , 0 for each variable appearing negative in mj , and ∗ for each variable not
appearing in mj . Explicit expression of all points of Bj and Gj are obtainable as above.
Pattern notation can be unified by using symbol “+” for 1 in case of CNF, for 0 in the case
of DNF, and symbol “−” for 0 in the case of CNF, for 1 in the case of DNF (cf. Table 2.1).

Example 2.3. Suppose n = 5. Given monomial (x1�¬x3�x4), the pattern for the set of
its bad points is {−,∗,+,−,∗}, corresponding to {0,∗,1,0,∗} in the case of CNF, to
{1,∗,0,1,∗} in the case of DNF.
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Table 2.1. Conventions used in the unified notation for CNF and DNF.

Form External operator Internal operator Bad point Good point Pattern

CNF ∧ ∨ F T 0 1

DNF ∨ ∧ T F 1 0

Unified ⊥ � B G − +

The cardinalities of the above Bj and Gj are easily computable, as follows.

Lemma 2.4. Let n be the number of variables, and let l(mj) be the number of distinct literals
appearing in mj . The cardinalities of the above introduced Bj and Gj are |Bj| = 2n−l(mj),
and |Gj| = 2n−|Bj| = 2n− 2n−l(mj).

We denote with (φ) the empty monomial, that is, the monomial mφ which is an empty
set of literals. According to Lemma 2.4, B(φ) = Bn, hence (φ) has only bad points. Finally,
we denote with φ the empty formula, that is, the formula �φ which is an empty set of
monomials. By definition, φ has only good points, so Gφ = Bn.

3. The orthogonal form

A Boolean formula (in unified notation) is in orthogonal normal form when every pair of
monomials mj and mk contains at least one Boolean variable xi (not necessarily the same
i for all the couples of indexes ( j,k)) as a positive instance (xi) in one of them (e.g., mj)
and as a negative instance (¬xi) in the other (e.g., mk):

mj =
(···�xi�···), mk = (···�¬xi�···

) ∀ j,k ∈ {1, . . . ,m}. (3.1)

The above situation for mj and mk is variously expressed in literature: the above mono-
mials are said to be orthogonal [6], or to clash [8] on xi, or to resolve [17] on xi, or also to
hit [1] on xi.

Theorem 3.1. A Boolean formula is in orthogonal normal form if and only if the above
defined sets Bj are pairwise disjoint.

The above theorem clearly particularizes for CNF as follows:

Fj ∩Fk = φ ∀ j,k ∈ {1, . . . ,m},(
Tj ∩Tk can be �= φ for some j,k ∈ {1, . . . ,m}), (3.2)

and for DNF as follows:

Tj ∩Tk = φ ∀ j,k ∈ {1, . . . ,m},
(Fj ∩Fk can be �= φ for some j,k ∈ {1, . . . ,m}). (3.3)

Proof. We first prove that orthogonal form implies Bj ∩ Bk = φ for all j,k ∈ {1, . . . ,m}.
If two monomials mj and mk clash on at least one variable xc, the corresponding Bj and
Bk are defined by two patterns which, respectively, have − and + in at least position c,
hence they define two sets Bj and Bk which cannot have any common point. We now
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prove that Bj ∩Bk = φ for all j,k ∈ {1, . . . ,m} implies orthogonal form. Since Bj and Bk

are disjoint, the patterns corresponding to them must contain in at least one position c,
respectively, + and − (or − and +). This is because any other combination (+ and +, +
and∗, etc.) would contradict the hypothesis of Bj and Bk disjoint. Therefore, by letting xc
be the variable corresponding to position c, monomials mj and mk corresponding to such
patterns must both contain xc and clash on it. Finally, since we assumed that every pair
of sets Bj , Bk has empty intersection, every pair of monomials mj , mk is orthogonal. �

Since the orthogonal form is a necessary and sufficient condition for having all the
Bj pairwise disjoint, it is a condition for trivially solving the problem of computing |B|,
which implies trivially solving the propositional satisfiability problem, with the above
implications on all problems in NP.

Example 3.2. Suppose we are interested in checking satisfiability of

(¬x1�¬x2�x3�x4�x5
)⊥(¬x1�¬x2�x3�x4�x5

)⊥(x2�x3�x4�x5
)

⊥(x3�¬x4�x5
)⊥(x3�x4�¬x5

)⊥(x3�¬x4�¬x5
)⊥(¬x3

)
.

(3.4)

In our terms, we need to check whether the global B covers the whole B5. There are
many different and very efficient techniques to solve the satisfiability problem (see [10]).
In practical cases, however, without imposing restrictions on the structure of the formula
(Horn, quadratic, etc.), they have worst-case exponential time complexity. On the other
hand, computing the above defined sets Bj , and their cardinalities, is straightforward:

(
x1�¬x2�x3�x4�x5

)−→ B1 = {−,+,−,−,−} |B1| = 1,(¬x1�¬x2�x3�x4�x5
)−→ B2 = {+,+,−,−,−} ∣∣B2

∣∣= 1,(
x2�x3�x4�x5

)−→ B3 = {∗,−,−,−,−} ∣∣B3
∣∣= 2,(

x3�¬x4�x5
)−→ B4 = {∗,∗,−,+,−} ∣∣B4

∣∣= 4,(
x3�x4�¬x5

)−→ B5 = {∗,∗,−,−,+} ∣∣B5
∣∣= 4,(

x3�¬x4�¬x5
)−→ B6 = {∗,∗,−,+,+} ∣∣B6

∣∣= 4,(¬x3)−→ B7 = {∗,∗,+,∗,∗} ∣∣B7
∣∣= 16.

(3.5)

By computing the union of all the Bj , we have that B actually covers B5 (see Figure 3.1
which reports the case of a CNF). Hence, the given formula is unsatisfiable. Since the
number of points of such union is exponential (in the worst case) in the number of vari-
ables, this procedure has exponential time complexity. On the contrary, one could observe
that the formula is orthogonal, hence the Bj are pairwise disjoint. On this basis, trivially,
|B| = |B1|+ |B2|+ |B3|+ |B4|+ |B5|+ |B6|+ |B7| = 32. This suffices to say that B covers
B5, whose cardinality is 25 = 32, and so the given formula is unsatisfiable. Altogether, by
using the fact that the given formula is in orthogonal form, one can very easily solve the
satisfiability problem.
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01111 10111 11011 11101 11110

11111

B6 B7

00111 01011 01101 01110 10011 10101 10110 11001 11010 11100

B5

B4

00011 00101 00110 01001 01010 01100 10001 10010 10100 11000 B2

00001 00010 00100 01000 10000

00000
B1 B3

Figure 3.1. The sets Bj of Example 3.2 on the Boolean hypercube B5 in the case of a CNF.

4. Basic orthogonalization procedure

In order to present a procedure for the orthogonalization of a generic Boolean formula,
we first need to define an operation which will be called multiplication, denote it with �,
and apply it to a pair of monomials mj and mk. The result of such multiplication is a new
monomial containing all the literals of mj and mk (but without repeated ones) when the
two monomials are not orthogonal, and the empty formula φ (i.e., a formula for which
there are only good points, cf. Section 2) when they are orthogonal:

mj �mk =
(�

i∈Pj

xi��
i∈Nj

¬xi
)
�
(�

i∈Pk
xi��

i∈Nk

¬xi
)

=



φ if mj and mk are orthogonal,( �
i∈(Pj∪Pk)

xi� �
i∈(Nj∪Nk)

¬xi
)

otherwise.

(4.1)

Theorem 4.1. Consider any two monomials mj and mk with their corresponding sets Bj ,
Gj , Bk, and Gk. Let ml = mj �mk be their product. The set of the bad points for mh is
Bl = Bj ∩Bk, while the set of good points is Gl =Gj ∪Gk.

Proof. Given a generic monomial mj , by adding literals to mj the set Bj can in general
only be reduced (this means decreasing the false set for CNF, decreasing the true set for
DNF), and therefore the set Gj increased. Monomial ml can be seen as adding literals
to mj , so Bl ⊆ Bj , and can also be seen as adding literals to mk, so Bl ⊆ Bk. Therefore,
Bl ⊆ Bj ∩Bk. Moreover, any point x ∈ Bj ∩Bk is a bad point for ml, hence x ∈ Bl. This
proves Bl = Bj ∩Bk, and consequentially Gl = Gj ∪Gk. Coherently, when mj and mk are
orthogonal, the result of the multiplication, by definition, is the empty formula φ, the sets
Bj and Bk are disjoint by Theorem 3.1, their intersection is empty, and so is the set Bφ by
definition. �
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Given an arbitrary monomial mj = (xh�xh+1�···�xi), its negation ¬(mj) is easily
computable (by De Morgan’s laws [19]) as the following set of monomials connected
by our external operator: (¬xh)⊥(¬xh+1)⊥···⊥(¬xi)=¬(mj). However, the expression
for ¬(mj) is not unique. One could, in fact, consider a negation which is in orthogonal
form, namely the orthogonal negation ¬o(mj) of mj . Such negation ¬o(mj) is composed

of k monomials o
j
1⊥oj2⊥···⊥ojk, the first of which contains the negation of the first vari-

able, the second contains the first variable and the negation of the second one, and so on,
as follows:

(¬xh)⊥(xh�¬xh+1
)⊥···⊥(xh�xh+1�···�¬xi

)
. (4.2)

Example 4.2. The orthogonal negation of m= (x1�x2�¬x3) is

¬o(m)= om1 ⊥om2 ⊥om3 =
(¬x1

)⊥(x1�¬x2
)⊥(x1�x2�x3

)
. (4.3)

We also define the multiplication of a monomial mk by the negation ¬(mj) of an-
other monomial mj as the set of monomials obtained by multiplying mk by each of the
monomials in¬(mj). We denote this operation by mk �¬(mj). Based on this, a basic or-
thogonalization operation can be developed. For clarity, we report the procedure without
indicating negative variables. However, this does not cause any loss of generality, since
negative variables can perfectly be present, and the negations will eventually appear in
the result according to elementary rules of Boolean algebra.

Basic orthogonalization operation. Consider any two distinct monomials mj and mk not
already orthogonal. Let Cjk be the (possibly empty) set of common literals between mj

and mk, and Dj and Dk the (possibly empty) sets of literals, respectively, belonging only
to mj and only to mk:

mj =
(�

i∈Dj

xi��
i∈Cjk

xi

)
, mk =

(�
i∈Dk

xi��
i∈Cjk

xi

)
. (4.4)

Note that, since they are not orthogonal, they cannot contain complementary liter-
als: xi ∈mj ⇒¬xi �∈mk. Choose one of the sets of different literals, for instance Dj , and
consider the monomial md composed of all such literals. Compute now its orthogonal
negation¬o(md)= od1⊥od2⊥···⊥odj . We have that the (sub)formula mj⊥mk is equivalent
(in the sense that they both represent the same Boolean function, we prove this through-
out the rest of this section) to the following (sub)formula obtained by replacing mk with
mk �¬o(md):

mj⊥od1 �mk⊥od2 �mk⊥···⊥odj �mk. (4.5)

The essential point is that the obtained (sub) formula is now in orthogonal form. Hence,
the (sub)formula composed of the two monomials mj and mk has been orthogonalized.
Note that the number of monomials of the result is 1 plus the cardinality of the set of
noncommon literals (Dj) used. In order to obtain a smaller number of monomials, we
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Gj

G

Gk

Bk = G¬k

Figure 4.1. The partition of the Boolean hypercube Bn determined by Bk and Gk .

always choose the set of noncommon literals of minimum cardinality. When one of these
two sets is empty, this means that one of the monomials, say mj , is a subset of the other
mk. Coherently, by choosing Dj for the above procedure, the result is only mk. In fact, the
Boolean (sub)formula mj⊥mk is equivalent, in this case, to the Boolean (sub)formula
mk. The following two theorems prove that replacing mk with mk �¬o(md) produces an
equivalent formula.

Theorem 4.3. Consider a monomial mj and the negation ¬(mk) of another monomial
with their corresponding sets Bj , Gj , B¬k, and G¬k. The set of bad points for their product
mj �¬(mk) is Bj ∩B¬k, while the set of good points is Gj ∪G¬k.

Proof. Denote the set of bad points for the hth monomial of ¬(mk) by Bh
¬k, and de-

note the number of monomials composing ¬(mk) by p. We clearly have B¬k =
⋃p

h=1B
h
¬k.

Moreover, by Theorem 4.1, for each single monomial product constituting mj �¬(mk),
we have that the corresponding set of bad points is Bj ∩ Bh

¬k. Therefore, the set of bad

points of the entire mj �¬(mk) is
⋃p

h=1(Bj ∩Bh
¬k), which is Bj ∩B¬k. As a consequence,

also the set of good points of the entire mj �¬(mk) is Gj ∪G¬k. �

Theorem 4.4. Consider an arbitrary Boolean formula � in normal form representing the
Boolean function f (x1, . . . ,xn). If an arbitrary monomial mj ∈� is multiplied by the nega-
tion ¬(mk) of another arbitrary monomial mk ∈�, the new Boolean formula obtained �′

still represents the same f (x1, . . . ,xn).

Proof. It is sufficient to prove that the sets B and G are the same for � and �′. As can
be observed in Figure 4.1, monomial mk determines in Bn a partition in Bk and Gk. Its
negation ¬(mk) determines a partition B¬k = Gk and G¬k = Bk. Now multiply another
monomial mj by ¬(mk), to obtain new monomials mj �¬(mk); add mj �¬(mk) and
remove mj from the formula �, thus obtaining �′. The set G′j corresponding to mj �
¬(mk), by Theorem 4.3, is Gj ∪G¬k, which is ⊇ Gj . So, the set of good points G for the
formula �, which is the intersection of all the Gj , cannot decrease. We now prove that G
cannot increase. It could only increase in the area of G¬k, since G′j =Gj ∪G¬k. However,
all points of G¬k are forbidden by the fact that G ⊆ Gk. Hence, G is the same for � and
�′, and therefore B also remains the same. The thesis follows. �
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Example 4.5. Given the formula composed of two monomials m1 and m2:

m1 =
(
x1�¬x2�x5

)⊥(¬x2�x3�x4
)=m2, (4.6)

the defined sets of noncommon literals are

D1 =
(
x1�x5

)
, D2 =

(
x3�x4

)
. (4.7)

Their cardinality is the same. We choose D1, and the orthogonal negation of the mono-
mial corresponding to D1 is the following:

(¬x1
)⊥(x1�¬x5

)
. (4.8)

By using the orthogonalization operation, the above formula becomes

(
x1�¬x2�x5

)⊥((¬x1
)� (¬x2�x3�x4

))⊥((x1�¬x5
)� (¬x2�x3�x4

))
(4.9)

which is the following orthogonal formula:

(
x1�¬x2�x5

)⊥(¬x1¬x2�x3�x4
)⊥(x1�¬x2�x3�x4�¬x5

)
. (4.10)

Theorem 4.6. Given an arbitrary Boolean formula � in normal form, representing the
Boolean function f (x1, . . . ,xn), it is always possible to transform it into an orthogonal normal
form � still representing same f (x1, . . . ,xn).

Proof. The (constructive) proof is given by the above orthogonalization operation, since
that is a general procedure capable of orthogonalizing any two monomials. Define the or-
thogonalization of two monomials by means of procedure such as a step. Given therefore
an arbitrary formula with m monomials, by iterating this orthogonalization operation to
exhaustion until every pair of monomials is orthogonal, the orthogonal form is obtained

in a finite number of steps, at most
(
m
2

)
. �

5. Improvements on the basic procedure

Unfortunately, by repeatedly applying above operation to exhaustion, the size of the for-
mula tends to exponentially increase. As remarked above, this is not surprising, since
the process of orthogonalization makes easy an NP-complete problem like satisfiability.
Hence, the NP complexity [9] can be seen as being absorbed by the orthogonalization
process; so it is unlikely that the orthogonalization process can be made inexpensive.
However, improvements on the above basic procedure, with the aim of minimizing the
size of the formula both in the final result and during the computation, are possible, as
follows.

5.1. Absorption of implied monomials. Consider two generic monomials mj and mk

appearing in the same formula �, which represents the Boolean function f (x1, . . . ,xn), as
follows:

mj =
(�

i∈Pj

xi��
i∈Nj

¬xi
)

, mk =
(�

i∈Pk
xi��

i∈Nk

¬xi
)
. (5.1)
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If Pj ⊆ Pk and Nj ⊆Nk, monomial mk is logically implied by mj [11, 19], and can there-
fore be removed from � obtaining a smaller formula �′ still representing the same
f (x1, . . . ,xn). This operation is applied in order to reduce the number of monomials in
the formula.

5.2. Synthesis resolution. This operation is a special case of the general operation called
resolution [5, 17] in the case of CNF, and consensus [15] in the case of DNF. Suppose a
formula � is given and that it represents the Boolean function f (x1, . . . ,xn). If � contains
two monomials, which are identical except for one literal xs appearing positive in one
monomial and negative in the other, as follows:

mj =
(
xs��

i∈Pj

xi��
i∈Nj

¬xi
)

, mk =
(�

i∈Pj

xi��
i∈Nj

¬xi�¬xs
)

, (5.2)

their resolvent [17] mr , reported below, can be added to �, thus obtaining a new formula
�′ which still represents the same Boolean function f (x1, . . . ,xn):

mr =
(�

i∈Pj

xi��
i∈Nj

¬xi
)
. (5.3)

Moreover, their resolvent logically implies both its parents mj and mk, hence they can be
removed from the formula, in order to obtain a new formula �′′ which still represents
the same Boolean function f (x1, . . . ,xn). This operation helps in reducing the number of
monomials in the formula.

Finally, our aim being not to excessively increase the size of the formula, for each
orthogonalization step t, we define the quality qt of such step as the number ot of
clauses orthogonalized by such step divided by the number nt of new clauses created
by such step: qt = ot/nt (it can be computed in advance). In our procedure, we set
an initial quality limit qlimit in order to initially perform the most convenient basic
orthogonalizations. During iterations, at the beginning of each phase of basic orthog-
onalization steps, if no steps respecting current limit are possible, current limit is de-
creased.

Complete orthogonalization procedure.

Input: an arbitrary Boolean formula � in CNF or DNF.
Output: an equivalent Boolean formula �′ in OCNF or ODNF.

Repeat
(a) If the current formula is orthogonal, stop.
(b) Else if qlimit allows no basic orthogonalization steps, decrease qlimit.
(c) Perform all basic orthogonalization steps of quality q ≥ qlimit.
(d) Perform all possible synthesis resolutions.
(e) Perform all possible absorptions.
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Table 6.1. Orthogonalization procedure on artificially generated CNF formulae.

Problem minit mmax mortho Time

uf20-01 91 1443 130 1.93

uf20-02 91 912 100 1.53

uf20-03 91 859 132 1.59

uf20-04 91 861 134 1.09

uf20-05 91 341 31 0.11

uf20-06 91 723 40 0.58

uf20-07 91 506 85 0.49

uf20-08 91 895 136 1.67

uf20-09 91 1669 144 4.49

uf20-010 91 1068 128 1.72

uf20-011 91 418 130 0.35

uf20-012 91 1117 190 2.58

uf20-013 91 784 65 0.74

uf20-014 91 947 167 2.19

uf20-015 91 980 120 1.78

uf20-016 91 954 102 1.47

uf20-017 91 787 109 1.27

uf20-018 91 1530 105 2.44

uf20-019 91 861 70 1.09

uf20-020 91 1335 98 2.64

uf20-021 91 870 73 0.59

uf20-022 91 700 79 0.81

uf20-023 91 1575 211 3.40

uf20-024 91 837 171 1.63

uf20-025 91 935 82 1.31

uf20-026 91 836 59 1.05

uf20-027 91 888 63 0.78

uf20-028 91 740 93 1.03

uf20-029 91 618 66 0.70

uf20-030 91 509 90 0.61

6. Testing of the procedure

The algorithm was tested on artificially generated CNF formulae obtained from the
SATLIB collection of the Darmstadt University of Technology. They represent 3-SAT
problems. Table 6.1 reports the number of monomials of the original formula (minit),
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the number of monomials in the orthogonalized formula produced (mortho), the maxi-
mum number of monomials reached by the formula during the orthogonalization pro-
cess (mmax), and computational time in seconds on a PC Pentium IV 1.7 GHz. Such test-
ing is intended solely as a study of the behavior of the orthogonalization procedure, since
it currently does not constitute, from the practical point of view, a fast alternative for
solving satisfiability problems.

It can be observed that the number of monomials in the orthogonalized formula gen-
erally increases, although not always. Moreover, intermediate formulae contain a much
larger number of monomials. This turns out to be a general rule in performing similar
operations. However, there are practical applications where the advantages of having the
orthogonal form completely surmount the disadvantage of such size increase.

7. Conclusions

The orthogonal form of a Boolean formula has remarkable properties. Several difficult
problems become easy when in orthogonal form. A general procedure for the orthogo-
nalization of an arbitrary CNF or DNF is developed. A unified and coherent notation for
representing at the same time CNF and DNF is therefore introduced. The procedure is
proved to always produce the orthogonal form (OCNF or ODNF) in a finite number of
steps. The problem is indeed computationally demanding. As predictable, in the initial
phase of the procedure, the size of the formula tends to exponentially increase. On the
other hand, the size of the formula decreases again when approaching the final phase.
In spite of this size growth, orthogonalization appears to be the preferable way to solve
some practical problems, for instance, in the field of reliability theory. Some computa-
tional complexity implications of the orthogonalization process are analyzed.
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Michelangelo Buonarroti 12, Roma 00185, Italy

E-mail address: bruni@dis.uniroma1.it

mailto:bruni@dis.uniroma1.it

