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It is well known that the Steiner minimal tree problem is one of the classical nonlinear combinatorial optimization problems.
A visualization experiment approach succeeds in generating Steiner points automatically and showing the system shortest path,
named Steiner minimum tree, physically and intuitively. However, it is difficult to form stabilized system shortest path when the
number of given points is increased and irregularly distributed. Two algorithms, geometry algorithm and geometry-experiment
algorithm (GEA), are constructed to solve system shortest path using the property of Delaunay diagram and basic philosophy of
Geo-Steiner algorithm and matching up with the visualization experiment approach (VEA) when the given points increase. The
approximate optimizing results are received byGEA andVEA for two examples.The validity of GEAwas proved by solving practical
problems in engineering, experiment, and comparative analysis. And the global shortest path can be obtained by GEA successfully
with several actual calculations.

1. Introduction

The Steiner minimal tree (SMT) problem can be stated as
follows. Given a set 𝑋 of 𝑛 points in the plane, a network
(graph) could be found with the shortest length, where the
length is the sum of the lengths of all edges, a Steiner
minimum tree, interconnecting𝑋. The points in𝑋 are called
terminals, and the points introduced are called Steiner points.
The shortest path interconnecting 𝑋 without introducing
Steiner points is called a minimum spanning tree (MST).
SMT is usually compared with MST. The ratio of the length
|SMT(𝑋)| of an SMT to the length |MST(𝑋)| of an MST
spanning the same set of 𝑋 is larger than √3/2 ≈ 0.866

[1].
SMT, which is a well-known problem in combinatorial

optimization, attracts considerable attention from theoretical
to engineering point of view due to its applicability, which
has been confirmed to be nondeterministic polynomial hard
(NP-hard) in 1977, and scientists and researchers around the
world have been devoting themselves to the resolution [1, 2].
SMT has many applications in various fields, especially in
nanotechnology and modern textile engineering (see [1, 3–7]
and their references).

There are precise algorithm and heuristic algorithm for
solving the system shortest path. The first precise algorithm
for SMT problem is given by Melzak in 1961. Winter has
given an opposite algorithm with the Melzak algorithm. The
procedure Geo-Steiner given byWarme et al. had realized the
algorithm previously given by Warme et al. [8]. Geo-Steiner
algorithm is the best precise algorithm for SMT problem at
present [8].

The existing algorithms for SMT problem are mostly
heuristic algorithms. The heuristic algorithm for SMT prob-
lem started from the early 1970s. The heuristics by Chang
[9] and Thompson [10] may be described as greedy Steiner
point insertion algorithmswhich iteratively reduce the length
of an initial MST, at each step inserting a “best” possible
Steiner point.The idea of localization was used in their paper,
although they did not use the notion “local optimization”
or “local search.” The existing heuristic algorithms for SMT
problem aremostly local search algorithms, such as simulated
annealing, tabu search, and genetic algorithms.

Fampa and Maculan presented a new mathematical pro-
gramming formulation for SMT problem [11]. Karpinski and
Zelikovsky have designed new approximation algorithms for
SMT problems using a novel technique of choosing Steiner
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points in dependence on the possible deviation from the
optimal solutions [12]. Up to now they achieve the best
approximation ratios of 1.644 in arbitrary metric and 1.267
in rectilinear plane, respectively. Cinel and Bazlamaçci have
proposed a distributed heuristic algorithm for the rectilin-
ear SMT problem [13], which uses two recently developed
successful heuristic algorithms, namely, rectilinear Steiner
tree (RST) by Zhou and batched greedy algorithm (BGA) by
Kahng et al., as the basis to speed up the RSMT construction.
L. Luyet, S. Varone, and N. Zufferey proposed an ant algo-
rithm (called ANT-STP) for the STP in graphs [12] which is
better than TM, which is a greedy constructive method for
the Steiner tree problem. Cinel and Bazlamaçci have set up
the SteinLib test data library as a communication platform for
the SMT problem [13], but the Steiner points have not been
mentioned in the SteinLib yet.

Although there are a large amount of methods for
solving the SMT problem existing, most of them are heuris-
tic algorithms and are easy to fall into partially optimum
[14, 15]. At present, an effective and simple method has
not been discovered yet. VEA is proposed by using the
physical chemistry characteristics of the surfactant solution
and developed experiment device [16, 17]. The minimum
surface tension of the surfactant solution can be transformed
into two- dimensional system in the shortest path planning,
and a transparency visualization scheme, that is, a Steiner
minimum tree for objective, can be formed steadily and
rapidly.

Here is the plan of our work. We first introduce the
visualization experiment approach (Section 2). This method
will be used in our new method. Then we give the detail of
our new methods (Section 3). In the last part, we give two
applications of our methods (Section 4).

2. Visualization Experiment Approach

In this section, wewill introduce the visualization experiment
approach, since thismethodwill be used in our newmethods.
First, we present the theoretical basis of visualization experi-
ment.

2.1. Theoretical Basis of Visualization Experiment

Definition 1. Let 𝑋 denote a given set of 𝑛 points on the
Euclidean plane. A Steiner minimal tree on 𝑋 (SMT) is the
shortest network interconnecting 𝑋. Suppose that the set of
vertexes of SMT is 𝑌, we have𝑋 ⊂ 𝑌. Let 𝑥 be a point of 𝑌; 𝑥
is called regular point if 𝑥 ∈ 𝑋 and a Steiner point otherwise.
It is well known that |𝑌 − 𝑋| ≤ |𝑋| − 2.

Some well-known properties should be given to obtain a
solution for the SMT [18].

Property 1. Given 𝑛 points in the plane, the maximum
number of Steiner points is 𝑛 − 2.

Property 2. A Steiner point has a degree equal to 3.

Property 3. The edges emanating from a Steiner point have
mutual angle equal to 120∘.

Property 4. All Steiner points lie in the convex hull of the
given points.

The surfactant solution can easily formvesiclemembrane.
To achieve the steady state, in the effects of surface tension,
the solution, perhaps the surface area of solution membrane,
will also achieve smallest, but the surface area of sphere is of
the smallest shape in all geometric solids which have the same
volume. This is the solution physical property and principle
of why the soap bubble always is sphere.

Many practical problems can be abstracted as SMT prob-
lem, such as the shortest path between cities, the distribution
of grids, and the connections of network nodes. Since the cost
can be reduced up to 13.4% by using SMT, the solution SMT is
a hot spot issue, although SMT is an NP-hard problem. SMT
can make a significant reduction in costs, so this problem
has caused many mathematics and engineering researchers
in the world to pay attention to it, and these researchers
have established an international SteinLib test database [15].
Because of the complexity of SMT, the SteinLib test database
did not consider the location and the number of Steiner
points. Therefore, the key point is how to determine the
location and number of Steiner points.

Steiner minimal tree is often observed in our everyday
life. For example, the multiple bubbles interact to form a
Steiner tree [19, 20]. The foundation of VEA will be the
Plateau geometry general rule [17].The liquid surface tension
is a physical effect, which makes the liquid surface try to get
the smallest and smooth state. In this situation, the surface
has the minimum energy.

The liquid surface tension can be defined as the surface
energy of unit surface area. From the definition of the liquid
surface tension, we hold that many systems in the nature tend
to make its energy as low as possible, when certain external
condition was satisfied. In other words, many systems in the
nature tend to get the most stable state. So the liquid tends
to get the shape with the minimum surface, so that the liquid
has lowest surface energy [17]. Using the property of liquid
surface tension, when the surface of the liquid in the system
is in the stable state, the surface area of membrane is the least.

In this paper, according to the properties of the liquid
surface tension, we hold that the membrane has the smallest
surface area, when the membrane formed by the liquid in the
system is in the stable state. We design two parallel plates
which can make the membrane surface with equal altitude.
Then we can use the minimum surface area property to solve
the minimum Steiner tree problem.

In the 19th century, scientists J.A.F. Plateau from Belgium
observed and recorded the geometric shape of bubbles. He
proposed the following rules [17].

Rule 1. Bubble membrane attaching to the wire frame or
other closed structure has a smooth structure.

Rule 2. Bubbles connect in one or two ways, one of which
is three surfaces connecting along with one smooth curve,
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and the other is the six-plane form curve, connecting at
a vertex.

Rule 3. Bubble membrane connects at the same curve or at
the same vertex and between the two surfaces it is equal; the
angle should be 120∘ when three surfaces connect at a vertex;
the angle approximately is 120∘ when six surfaces connect at
a vertex.

VEA [16] which uses Plateau geometry general rule
coincides with the principles of the minimal Steiner tree
theory to solve SMT problem.

In the following part, we will introduce our visualization
experiment device.

2.2. Visualization Experiment Device. In the exploratory
experiment, the parallel plates with fixed points are put in the
surface active agent liquid slowly. After excluding the surface
bubble, the parallel plates are taken out from the liquid slowly
and measure the system shortest path (i.e., minimum Steiner
tree) formed between the fixed points 𝑃 on the parallel plates.
The transparent intersections of the membrane traces are the
positions of the Steiner points. After a six-month trial, we
configure the surface active agent liquid and find out the
influencing rule of the liquid formula and liquid strength, the
distance between the parallel plates, and the temperature in
the keeping time of the membrane traces [21]. Figure 1 shows
the processes of exploratory experiments. The results of the
experiments are as follows.

(1) The formula of active agent liquid: first put 2000mL
of distilledwater into the vessel and add 20 g detergent
with few additives and 8 g glycerin and mix all the
materials. After 3 to 24 hours, the liquid will mix fully.
Then the membrane traces can be kept more than 30
minutes.

(2) The experiment for performance parameter: the
smaller the distance between the parallel plates is,
the longer the membranes are kept, more slowly the
bubbles between the plates are excluded. Otherwise,
the larger the distance between the parallel plates is,
the shorter the membranes are kept and the faster the
bubbles are excluded. The larger the diameters of the
pillars are, the longer themembranes are kept, and the
harder the membranes form. The smaller the diame-
ters of the pillars are, the shorter the membranes are
kept, and the more easily the membranes form.

(3) The relative relationship between the plates and liq-
uid: the liquid is still in the whole process. Get the
membrane traces of global shortest path by putting
test boards into the liquid and by taking test boards
out of the liquid.

It is difficult to promote the exploratory experiment
because the exploratory experiment has many limitations.
The main reason is as follows.

(1) It is difficult to introduce the engineering drawings
to the experimental system because the test board
contacts with liquid directly.

(a) Put the test boards into the liquid

(b) Take the test boards out of the liquid

Figure 1: The process of the exploratory experiment.

(2) It is not easy to change the place and the number
of the fixed points between the text boards, for the
promotion will be blocked.

(3) The entire operation is finished by hands, so human
factors may reduce the accuracy of the experimental
results.

To solve these problems, we assume that the stationary
parts (the liquid) are changed to movable parts. Let the mov-
ing parts (the test plates) keep still. Then the above problems
can be solved. The specific methods are the following

(1) The liquid tank is composed of a double bottom with
hollow parts.The placement of drawings is solved and
the drawing is isolated with liquid.

(2) Use magnet columns as fixed points. It is convenient
to change to other engineering drawings.

(3) Install the gradienter and the adjustable bolts to
reduce the human factors to improve the accuracy of
the test results.

(4) Add the scale marks on the bottom of the tank to
realize the measure of the visual paths. As a result,
the movable cover board with the magnet columns in
both sides and the bottom of the tank constitutes the
instrument of the exploratory experiment.The mem-
brane trace of the shortest path is formed through
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the variation of relative position. The visual instru-
ment for the shortest path is shown in Figure 2.

When the number of given points is not too many, we
can use VEA to get the shortest path. The shortest path of
given points is obtained intuitively and simply through VEA,
according to the physical properties of fluid.The step of using
visualization experiment device is as follows:

(1) configuration solution for experiment;
(2) to insert drawing below the sink, select node in

accordance with the drawing;
(3) to pour the solution compounded into the channel,

clearing up the bubble formed as the solution is
poured into the channel;

(4) open drainage switch and solution is discharged. The
shortest path is formed at the same time;

(5) when the membrane is stable, read the coordinates of
given points and Steiner points, photograph and the
experimental result chart is obtained;

(6) at the end of the experiment, clean apparatus is used;
(7) reorganize the empirical data.

Using VEA [16], the global shortest path can be found,
and the approach has been applied in optimizing some power
transmission grid system [21]. But it reads data through the
instrument ledger coordinate system, and the precision is
not high enough; Along with the increasing of given points,
it takes more and more time to form membrane and the
objective is not steady, so the propagableness and applicability
of VEA are influenced simultaneously. In this paper, GEA
for SMT problem by referring VEA (referred to GEA in
the following chapters) is proposed unifying the experiment
approach and the geometry algorithm to solve the SMT
problem.

3. GEA for SMT Problem

In the last section, we can use VEA to get the shortest path
for the systemwhich has not toomany points. In this section,
we will deal with the system with many points. We give two
methods in this section. First, we introduce some definitions.

Definition 2. Suppose that 𝑉 = {V
1
, V
2
, . . . , V

𝑛
}, 𝑛 ≥ 3 is a set

of points in the Euclidean space. Any three points in𝑉 are not
in the same line, and any four points in𝑉 are not in the same
circle. The distance between V

𝑖
and V
𝑗
is denoted by 𝑑(V

𝑖
, V
𝑗
).

Suppose that 𝑥 is a point in the plane, then the regions

𝑉 (𝑖) = {𝑥 ∈ 𝐸
2

| 𝑑 (V
𝑖
, 𝑥) ≤ 𝑑 (𝑥, V

𝑗
)} (1)

for 𝑖 = 1, 2, . . . , 𝑛; 𝑗 ̸= 𝑖 are called Voronoi polygon (𝑉-poly-
gon). The 𝑉-polygon of all points V

𝑖
compose 𝑉-diagram.

Simply speaking, each point of the given point set 𝑉 is a
growth of the nuclear and expand outside in the same rate
until they meet with each other. The formed diagram in the
plane is𝑉-diagram.The diagram formed by outermost points
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Figure 2: The shortest path experiment device.

is open region, while the diagram formed by the other points
is convex polygon.

Definition 3. The 𝑉-polygons which have the common sides
are called adjacent 𝑉-polygons. The triangular network
formed by connecting the nuclear of all adjacent 𝑉-polygons
is called Delaunay diagram (𝐷-diagram).

The outer boundary of Delaunay diagram is a convex
polygon, which is formed by connecting the convex sets in
𝑉. Delaunay diagram has two properties.

(1) The empty circumcircle property: the circumcircle of
each triangular in the Delaunay diagram which is
formed by points set 𝑉 does not include any other
points in 𝑉. The Delaunay diagram is unique.
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(a) Initial construction of𝐷-triangulation

(b) Inner point insertion of𝐷-triangulation

Figure 3

(2) The property of maximizing the minimum angle: the
minimum angle of each triangular in the Delaunay
diagram is the biggest in the minimum angle of the
triangular network formed by points set 𝑉.

The algorithm used in this paper for constructing Delau-
nay diagram is as follows.

Step 1. Traverse all points and find the minimal horizontal
coordinate and the minimal vertical coordinate (min𝑋,
min𝑌) and the maximal horizontal coordinate and the
maximal vertical coordinate (max𝑋, max𝑌). Using these two
points, we can construct such a rectangle that all points are
included in.

Step 2. Connect a pair of diagonal vertices of the rectangle.
The rectangle is split into two triangles.

Step 3. Put the points which coincide with the vertices and
the boundary of rectangle in the rectangle.These points form
the initial triangle network.

Step 4. Add the remaining points in the corresponding
triangle, using LOP algorithm to update the adjacent triangles
from inside to outside.

Step 5. Repeat Step 4 until all points are added in the
diagram.

Algorithm process is shown in Figure 3.
First, we introduce some definitions to be used later.

Definition 4. A topology is called Steiner topology, if the
degree of each Steiner point is 3, and the degree of each given
point is less than 3.

A topology is called full Steiner topology if the degree of
each given point is 1 each the degree of each Steiner point is 3.

Figure 4: Decomposition of Steiner topology.

The resulting Steiner tree is called full Steiner tree (full Steiner
tree referred to as the FST).

Full Steiner topology satisfies the following conditions.
(1) Degree condition: the degree of Steiner points must

be 3, and the degree of the given points must be 1.
(2) Angle condition: each angle between the three sides

associated with the Steiner point is at 120 degrees.
(3) The number of Steiner points: FSTwith 𝑛 given points

has 𝑛 − 2 Steiner points.
Melzak gives an algorithm for constructing a full Steiner

tree from a full Steiner topology. This algorithm is the
basis of constructing a minimal Steiner tree. We know that
each nonfull topology can be decomposed into several small
subfull topologies.The point sets of each subfull topology are
the subsets of nonfull topology. Each side of nonfull topology
only belongs to one full topology. For example, the five-point
nonfull topology in Figure 4 can be decomposed into two full
topologies. One is four-point full topology (solid line) and the
other is two-point full topology (dotted line).

For a nonfull Steiner topology, we can decompose it into
several full Steiner topologies and then construct the full
Steiner tree in each full Steiner topology by using Melzak
method. Connecting all these full Steiner trees, we can get the
full Steiner tree of the nonfull Steiner topology.

Method 1 (geometry algorithm). First, the Delaunay diagram
[18, 22–24] is constructed connecting all points in 𝑋. The
edges of the Delaunay diagram can be characterized by the
property: there is a Delaunay edge through two points if and
only if there is not any other point being contained in 𝐸, and
the property of Delaunay diagram guarantees that there is no
other point belonging to 𝑋 included in any circumcircle of
triangle.

Then the minimal spanning tree (MST) is constructed.
Subsequently, some subsets including 2, 3, or 4 points

are constructed, for example, 𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
(𝑛 represents the

subset integer).

Definition 5. (i) The subsets of 2 points are referred to as the
sets only including 2 points, and the edge connecting these 2
points belongs to MST.
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(ii) The subsets of 3 points are referred to as apexes of the
triangle, and the 2 edges connecting these apexes belong to
MST in Delaunay diagram.

(iii) The subsets of 4 points are referred to as apexes
of convex quadrilateral. The apexes constitute two adjacent
triangles in Delaunay diagram, and adjacent triangles have 3
edges belonging to MST.

The notion is used for dividing MST edges into some
subsets including 2, 3, or 4 points.

When the given set is nonconvex, GEA description is as
follows.

Step 1 (definite subset). (1) After preparation, according to
Definition 4(2), the subsets containing 3 points can be identi-
fied; likewise, the subsets containing 4 points can be identified
according to Definition 4(3) using Labeling. Construct FST
for these subsets, in accordance with the FST rules.

(2) Regarding subsets that only have one edge of MST,
we can calculate its length and insert it into the rear of F in
ascending.

Step 2 (construct FSMT for each subset). If the subsets
contain 3 points, please refer to FST Rule I; if the subsets
contain 4 points, please refer to FST Rule II. Calculate
|FSMT|/|MST|, the result set of |FSMT|/|MST| is sorted
in ascending in order to form an optimized queue 𝐹 = {𝐹

1
,

𝐹
2
, . . . , 𝐹

𝑠
}.

If the subset contains 2 points, the length is calculated
directly, and it would be joined into the rear of queue 𝐹 in
ascending.

Step 3. All the FSMT should be connected to be a tree
according to the Kruskal algorithm, and the tree should
be MST. In order to structure SMT, the queue of SMT is
initialized to be null, taking out the subsets𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑠
from

optimized queue 𝐹 in turn. If the new tree does not constitute
circle, we can join it in the queue of SMT; otherwise, we can
continue taking and judging next one and construct the SMT
by circulating it.

The Rules for constructing FST are introduced as follows.

Rule I. Regarding subsets containing three points 𝐴, 𝐵, 𝐶
(Figure 5), according to the nature of FSMT, we can see that
constructing FSMT for 𝐴, 𝐵, 𝐶 is equal to finding a Steiner
point 𝑃, which makes 𝑃𝐴 + 𝑃𝐵 + 𝑃𝐶minimum and requires
∠𝐴𝑃𝐵 = ∠𝐵𝑃𝐶 = ∠𝐴𝑃𝐶 = ∠120

∘. The key is to determine
the location of Steiner point 𝑃. Assume that 𝐴 is selected as
the root; the first Steiner point 𝑃must be located somewhere
on the Steiner arc𝐴𝐵 of𝐴 and 𝐵. It is determined as follows.

Consider the equilateral triangle with the line segment
𝐴𝐵 as one of its sides, and with its third corner to the
right of 𝐴𝐵 (when looking from 𝐴 toward 𝐵). This third
corner is referred to as the equilateral point and is denoted
by 𝐸
1
considering the circle 𝐶(𝐴, 𝐵, 𝐸

1
) circumscribing this

equilateral triangle. The arc from 𝐴 to 𝐵 (clockwise) is the
Steiner arc𝐴𝐵. Consider the region 𝑅

𝑘
bounded by half-lines

𝐴1

𝐴2

𝐴3

𝐸1

𝑃1

Figure 5: Picture for 3 points using Rule I.

rooted at 𝐸
1
through the extreme points of the (pruned)

Steiner arc𝐴𝐵. The intersection of the line segment 𝐶𝐸
1
with

arc𝐴𝐵 is the location of P. Why is 𝑃 Steiner point that we
want to find? Because 𝐴𝐵𝐸

1
is equilateral triangle, so

∠𝐴𝐵𝐸
1
= ∠𝐴𝐸

1
𝐵 = ∠𝐸

1
𝐴𝐵 = 60

∘

,

Arc𝐴𝐸
1
= Arc𝐸

1
𝐵 = Arc𝐴𝐵 = 60

∘

,

∠𝐴𝑃𝐵 = ∠𝐴𝑃𝐶 = ∠𝐵𝑃𝐶 = 120
∘

,

(2)

So 𝑃 is Steiner point. The shortest path of 3 points is
shown in bold solid lines in Figure 5. It can be proved that the
length of the FSMT is equal to the length of the line-segment
𝐶𝐸
1
, recorded as 𝐿(𝐹

𝑠
).

Rule II. Regarding subsets containing three points 𝐴, 𝐵, 𝐶,
𝐷 (Figure 6), Steiner point 𝑃 is located in Rule I. Possible
locations of the Steiner point 𝑄 adjacent to 𝑃 and 𝐶 are on
the Steiner arc𝐸

1
𝐶. The corresponding equilateral point is

denoted by 𝐸
2
. The Steiner arc𝐸

1
𝐶 can be reduced; the edge

connecting 𝑃 and𝑄must overlap with the line segment from
𝐸
1
to 𝑄. Steiner arcs for Steiner points 𝐶 are determined in

analogous manner. Let 𝐸
2
denote the associated equilateral

point. Consider the region 𝑅
𝑘
bounded by half-lines rooted

at 𝐸
2
through the extreme points of the Steiner arc𝐸

1
𝐶.

The terminal 𝐷 ∈ 𝑅
𝑘
\ 𝐶(𝐸

1
, 𝐶, 𝐸
2
) yields an FSMT. More

precisely, the intersection of the line segment 𝐷𝐸
2
with

arc𝐸
1
𝐶 is the location of 𝑄. Why is 𝑄 Steiner point that we

want to find? Because 𝐸
1
𝐶𝐸
2
is equilateral triangle,

∠𝐸
1
𝐸
2
𝐶 = ∠𝐸

1
𝐶𝐸
2
= ∠𝐶𝐸

1
𝐸
2
= 60
∘

,

arc𝐸
1
𝐶 = arc𝐸

1
𝐸
2
= arc𝐸

2
𝐶 = 60

∘

,

∠𝐸
1
𝑄𝐶 = ∠𝐶𝑄𝐷 = ∠𝐷𝑄𝑃 = 120

∘

,

(3)

So𝑄 is Steiner point. FSMT for𝐴,𝐵,𝐶,𝐷 is obtainedwith
connecting𝐴𝑃, 𝐵𝑃, 𝑃𝑄, 𝐶𝑄,𝐷𝑄. The shortest path is shown
in bold solid lines in Figure 6. It can be proved that the length
of the FSMT is equal to the length of the line-segment𝐷𝐸

2
.

Especially, when the given set is convex, we will adopt
classical algorithm which was proposed by Melzak [25] to
construct SMT. Consider 𝑘 + 1 given points are 𝑧

0
, 𝑧
2
, . . . , 𝑧

𝑘
.

Assume that 𝑧
0
is selected as the root. We can obtain Steiner

arc 𝑧
0
𝑧
1
and 𝑒

1
𝑧
2
according to Rules I and II. Similarly,
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𝐴1

𝐴2
𝐴3

𝐴4

𝐸1

𝐸2

𝑃1

𝑃2

Figure 6: Picture for 4 points using Rule II.

the arc 𝑒
2
𝑧
3
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can be reduced. Regarding
𝑧
𝑡
∈ 𝑅
𝑘
\ 𝐶(𝑒

𝑘−2
, 𝑧
𝑘−1

, 𝑒
𝑘−1

), the intersection of the line
segment 𝑧

𝑡
𝑒
𝑘−1

with arc 𝑒
𝑘−2

𝑧
𝑘−1

is the location of 𝑠
𝑘
. Given

the location of 𝑠
𝑘
, the location of 𝑠

𝑘−1
is given as the inter-

section of the line-segment 𝑠
𝑘
𝑒
𝑘−1

with 𝑒
𝑘−2

𝑧
𝑘−1

. Locations
of 𝑠
𝑘−2

, 𝑠
𝑘−3

, . . . , 𝑠
1
can be determined successively in the

same manner. The shortest path of 7 points which constitute
a convex polygon is constructed in Melzak algorithm [2]
(Figure 7). The shortest path is shown in bold solid lines.

On the basis of Melzak algorithm [25], drawing support
from the thought of Geo-Steiner algorithm [2] and VEA,
GEA avoids searching full topology which is constructed
by given points and Steiner points in the plane, constructs
Delaunay diagram according to the character of Delaunay
diagram, constructs MST, divides given points into some
subsets containing 2, 3, or 4 points, and constructs SMT
using Kruskal algorithm to connect all the FSMT. The time
complexity is 𝑂(𝑛 log 𝑛).

Method 2 (geometry-experiment algorithm). The Delaunay
diagram and the minimal spanning tree (MST) are con-
structed as in the Method 1.

From the last section, we know that VEA can treat
the system with points less than 10. Then, we can con-
struct some subsets including 2, 3, . . . , 10 points, for example,
𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑠
(𝑠 represents the subset integer).

Definition 6. The subsets of 𝑛 points are refered to as the
sets only including 𝑛 points, and the edges connecting this
𝑛 points belong to MST.

When the given set is nonconvex, GEA description is as
follows.

Step 1 (definite subset). This step can be done similarly as in
Method 1. We can get some subsets including 𝑛 (2 ≤ 𝑛 ≤ 10)
points.

𝐴5

𝐴6𝐴7
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5
𝑆1
𝑆2

𝑆3
𝑆4

𝑆5

𝐴1

𝐴2

𝐴3
𝐴4

Figure 7: SMT of seven points in Melzak.

Step 2 (construct FSMT for each subset). We can use VEA to
construct FST for subsets containing 𝑛 (2 ≤ 𝑛 ≤ 10) points.
Calculate |FSMT|/|MST|, the results set of |FSMT|/|MST| are
sorted in ascending in order to form an optimized queue 𝐹 =

{𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑠
}.

If the subsets contain 2 points, the length is calculated
directly, and it would be joined into the rear of queue 𝐹 in
ascending.

Step 3. All the FSMT should be connected to be a tree
according to the Kruskal algorithm, and the tree should
be MST. In order to structure SMT, the queue of SMT is
initialized to be null, taking out the subsets𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑠
from

optimized queue 𝐹 in turn. If the new tree does not constitute
circle, we can join it in the queue of SMT; otherwise, we can
continue taking and judging next one and construct the SMT
by circulating it.

4. Application

4.1. Example of the Cities of Henan Province. Optimize local
line of the cities of Henan province, designing seventeen
points for An Yang, Pu Yang, He Bin, Jiao Zuo, Xin Xiang,
SanMen Xia, Luo Yang, Zhen Zhou, Kai Feng, Shang Qiu, Xu
Chang, Ping Ding Shan, Luo He, Zhou Kou, Nan Yang, Zhu
Ma Dian, and Xin Yang as given points (Figure 8). Since the
number of the given points is seventeen, it is difficult to obtain
SMT using experimental approach directly. So the picture is
divided into two parts (see Figure 8), Part 1 and Part 2. The
numbers of the points in two parts are 10 and 7, respectively.
We can use experimental approach to get the SMT for Part 1
and Part 2 (Figure 9). One Steiner point is produced in Part
1 and two points are produced in Part 2. All points will be
connected to be MST at last. Connecting two parts together,
we can get SMT for this problem. After measuring the length
of the lines, we can get the following results. The total length
of the original lines is 756.8693mm and the total length of the
experiment lines is 737.9284mm.

4.1.1. Optimized Example Using GEA. When given points
are increased, it is difficult to obtain SMT using experi-
mental approach directly which requires higher operating
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Figure 8: Cities of Henan province.

(a) Experiment picture of optimization of Part 1

(b) Experiment picture of optimization of Part 2

Figure 9: Experiment Pictures.
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Figure 10: Example of 64 points.

techniques; meanwhile, the membrane is unstable, and the
success ratio is lower.

GEA is used for shortest path planning for 65 given points
as shown in Figure 10.This is an example in SteinLib (see Test
Set ES30FST in [15]). In this example, the coordinates of the
points are given. We first draw the picture of these points
according to the coordinates. We only get 64 points in the
picture (Figure 10) because some points are too close. Due
to GEA, the picture is divided into 6 parts. It is too difficult
to handle with VEA because some points in the picture are
too close. Hence, we assume some points as one point in the
experiment. We use experimental approach to get the SMT
for 6 parts (Figure 11). At last, these SMTs for 6 parts are
connected to be a tree according to the Kruskal algorithm.
This tree is the MST for this problem. After calculating, the
total length of the original lines is 975.411mm and the total
length of the experiment lines is 923.937mm. Hence, the
Steiner ratio is

𝜌 = inf
𝑃

𝐿
𝑆
(𝑃)

𝐿
𝑀
(𝑃)

= 0.947 ≧
√3

2
. (4)

𝐿
𝑆
(𝑃) here represents the length of the Steiner minimal

tree and 𝐿
𝑀
(𝑃) the length of the minimal spanning tree. The

total length of the lines in the result in Steiner test database
[15] is 1567.348mm. Our result is better than theirs. We think
the possible reason is that the location and the number of
Steiner points were not considered in SteinLib test database.
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(a) Experiment picture of optimiza-
tion of Part 1

(b) Experiment picture of optimiza-
tion of Part 2

(c) Experiment picture of optimiza-
tion of Part 3

(d) Experiment picture of optimiza-
tion of Part 4

(e) Experiment picture of optimiza-
tion of Part 5

(f) Experiment picture of optimiza-
tion of Part 6

Figure 11: Experiment pictures.

5. Concluding Remarks

A new geometry algorithm for SMT problem by referring
visualization experiment is proposed in this paper. It is
desired to make up for the insufficiency of experimental
approach, that is, along with the increasing of given points. A
new geometry algorithm for SMT problem by referring visu-
alization experiment is proposed in this paper. It is desired
to make up for the insufficiency of experimental approach,
that is, along with the increasing of given points and irregular
distribution; it takes more andmore time to formmembrane,
and the objective is not steady; simultaneously the promotion
of visualization approach is influenced. The example of the
cities ofHenan province has verified feasibility ofGEA.When
the given points are increased, GEA has obtained the shortest
path when the membrane path is difficult to form through
experimental approach, as shown in example of 65 points. By
analyzing instances, contrasting compared with experiment
results and verifying for many times, it is proved that GEA
could find the location and number of Steiner points and
could be used to solve global shortest path coordinating with

visualization approach and to make up for the insufficiency
of experimental approach.

The algorithm matched with visualization approach
would be used in path planning not only for engineering
problems, such as logistics warehouse system location, but
also for the field of social services, such as transportation
route planning. At the same time, the algorithm’ statement
has broaden the thinking and provided a theoretical basis for
the development of visualization approach.
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[13] S. Cinel and C. F. Bazlamaçci, “A distributed heuristic algo-
rithm for the rectilinear steiner minimal tree problem,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 11, pp. 2083–2087, 2008.

[14] L. Luc, V. Sacha, and Z. Nicolasdesign, “An ant algorithm
for the steiner tree problem in graphs,” in Proceedings of the
EvoWorkshops, EvoCOMNET, EvoFIN, EvoIASP, EvoINTERAC-
TION, EvoMUSART, EvoSTOC and EvoTRANSLOG, pp. 42–51,
2007.

[15] T. Koch and A. Martin, “SteinLib Testdata Library,” 2002,
http://elib.zib.de/steinlib/steinlib.php.

[16] B. Toppur and J. M. Smith, “A Sausage heuristic for Steiner
minimal trees in three-dimensional euclidean space,” Journal of
Mathematical Modelling and Algorithms, vol. 4, no. 2, pp. 199–
217, 2005.

[17] Z. M. Fu and Z. P. Chen, “Beauty of bubble,” Science Develop-
ment Monthly, vol. 29, no. 11, pp. 788–796, 1990 (Chinese).

[18] Z. X. Yang, Y. P. Gao, C. Y. Cheng, Z. Q. Feng, and Z. J. Zhang,
“Visualization approach for the Steiner minimal tree problem,”
System Engineering Theory and Practice, vol. 28, no. 7, pp. 173–
178, 2008.

[19] J. H. He and Y. Liu, “Control of bubble size and bubble number
in bubble electrospinning,” Computers & Mathematics with
Applications, vol. 64, no. 5, pp. 1033–1035, 2012.

[20] J. H. He, “Effect of temperature on surface tension of a bubble
and hierarchical ruptured bubbles for nanofiber fabrication,”
Thermal Science, vol. 16, no. 1, pp. 327–330, 2012.

[21] Z. X. Yang, “Visualization device of system shortest path pro-
gramming,” Chinese Patent, ZL2006201301488, October 2007.

[22] E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” SIAM
Journal on Applied Mathematics, vol. 16, pp. 323–345, 1968.

[23] Y.-P. Gao, B.-B. Yang, Z.-X. Yang, and J.-Y. Hao, “Visualization
experimental approaches for power grid planning,” Power
System Technology, vol. 33, no. 2, pp. 51–55, 2009.

[24] X. Y. Li, I. Stojmenovic, and Y. Wang, “Partial Delaunay
triangulation and degree limited localized bluetooth scatternet
formation,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 15, no. 4, pp. 350–361, 2004.

[25] Z. A.Melzak, “On the problem of Steiner,”CanadianMathemat-
ical Bulletin, vol. 4, pp. 143–148, 1961.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


