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We show how to adapt an efficient numerical algorithm to obtain an approximate solution of a
system of pantograph equations. This algorithm is based on a combination of Laplace transform
and Adomian decomposition method. Numerical examples reveal that the method is quite

accurate and efficient, it approximates the solution to a very high degree of accuracy after a few
iterates.

1. Introduction

The pantograph equation:

W () = F(Lu®),u(gt)), t20,
u(0) = uo,

(1.1)

where 0 < g < 1is one of the most important kinds of delay differential equation that arise in
many scientific models such as population studies, number theory, dynamical systems, and
electrodynamics, among other. In particular, it was used by Ockendon and Tayler [1] to study
how the electric current is collected by the pantograph of an electric locomotive, from where
it gets its name.

The primary aim of this paper is to develop the Laplace decomposition for a system of
multipantograph equations:
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uy (t) = P () + fu(t, wi(t), wi(qjt)),
uy(t) = Porn (t) + fo (b, ui(t), ui(gjt)),

(12)

1y, (1) = Buutn(t) + fu(t,ui(t), ui(gqit)),

ui(O) = U, i=1,...,n, j=1,2,...,

where f;, ujp € C, and f; are analytical functions, and 0 < g; < 1.

In 2001, the Laplace decomposition algorithm (LDA) was proposed by khuri in [2],
who applied the scheme to a class of nonlinear differential equations. In this method, the
solution is given as an infinite series usually converging very rapidly to the exact solution of
the problem.

A major advantage of this method is that it is free from round-off errors and without
any discretization or restrictive assumptions. Therefore, results obtained by LDA are more
accurate and efficient. LDA has been shown to easily and accurately to approximate a
solutions of a large class of linear and nonlinear ODEs and PDEs [2-4]. Ongun [5], for
example, employed LDA to give an approximate solution of nonlinear ordinary differential
equation systems which arise in a model for HIV infection of CD4" T cells, Wazwaz [6]
also used this method for handling nonlinear Volterra integro-differential equations, Khan
and Faraz [7] modified LDA to obtain series solutions of the boundary layer equation, and
Yusufoglu [8] adapted LDA to solve Duffing equation.

The numerical technique of LDA basically illustrates how Laplace transforms are used
to approximate the solution of the nonlinear differential equations by manipulating the de-
composition method that was first introduced by Adomian [9, 10].

2. Adaptation of Laplace Decomposition Algorithm

We illustrate the basic idea of the Laplace decomposition algorithm by considering the fol-
lowing system:

Ltul = Rl(ul,...,un) +N1(u1,...,un) + g1,

Ltuz = Rz(ul,...,un) + Nz(ul,...,un) +g2,
2.1)

Liuy = Ry(u1,...,uy) + Np(ui, ..., upn) + gn.
With the initial condition
u,-(O) = Ui, i=1,...,n, (2.2)

where L, is first-order differential operator, R; and Nj, i = 1,...,n, are linear and nonlinear
operators, respectively, and g;, i = 1, ..., n, are analytical functions.
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The technique consists first of applying Laplace transform (denoted throughout this
paper by .£) to the system of equations in (2.1) to get

L[Lan] = L[Ri(uy, ..., un)] + L[N1(ur, ..., un)] + L[g1],
L[Liup] = L[Ry(uy, ..., un)] + L[No(uy, ..., un)] + L[],
2.3)

L[Liuy] = L[Ry(ur, ..., un)] + L[Ny(us, ..., un)] + L[]
Using the properties of Laplace transform, and the initial conditions in (2.2) to get

.Z[ul] = Jé1(s) + %.E[Rl(ul,...,un)] + é.ﬁ[Nl(ul,.. .,un)],

ﬂ[uz] = 9@2(8) + é/.’[Rz(ul,...,un)] + %ﬂ[Nz(ul,.. .,un)],

(2.4)
Lluy] = H,(s) + éﬂ[Rn(ul,...,un)] + %ﬁ[Nn(ul,. U],
where
Hi(s) = é(ui(O) +2L[g]), i=1,...,n (2.5)
The Laplace decomposition algorithm admits a solution of u;(t) [2] in the form
u;(t) = guij(t), i=1,...,n, (2.6)

where the terms u;;(t) are to be recursively computed. The nonlinear operator N; is decom-
posed as follows:

Ni(u1/~'-run) = ZAI] (27)
j=0
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and A;; are the so-called Adomian polynomials that can be derived for various classes of non-
linearity according to specific algorithms set by Adomian [9, 10].

Ao = f(uio),
A = up f'(uio),
! 1 " 2.8
Ap = up f'(up) + Euizlf (uio), 28)

1
Az = uf'(ui) + unup f" (ui) + g”izlfm(uio),- .

Substituting (2.6) and (2.7) into (2.4),and Using the linearity of Laplace transform, we get

S 2] = i(s) + %iﬁ Ry (1t . )] + éiz [Ad],
j=0 j=0 =0
3 2] = a(5) + 23 2[Ra(oty )] + 13 2[5,
j=0 j=0 =0

(2.9)

D 2[uaf] = Hu(s) + = D 2[R (o )] + 2L [Au].
=0 =0 =0

We thus have the following recurrence relations from corresponding terms on both
sides of (2.9):

Lluio(t)] = Hi(s), (2.10)
Ll (] = L £[RGmo, .- 10n0)] + < LI A, eat)
Llup(t)] = éﬁ[R(un,...,unl)] + %z[Aﬂ],.... 2.12)
Generally,
gy ()] = SRy )] + - 2[Ag]. (2.13)

Applying the inverse Laplace transform to (2.10) gives the initial approximation

uip(t) = L7 [Hi(s)], i=1,...,n. (2.14)
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Substituting these values of u;y into the inverse Laplace transform of (2.11) gives u;;. The
other terms u;p, u;3, . . . can be obtained recursively in similar fashion from

1 1 .
ui(j+1)(t) = ,E_l EI[R(uli, .. .,unj)] + E‘E[Al]] , ] = 0,1,2,.... (215)

To provide clearly a view of the analysis presented above, three illustrative systems of
pantograph equations have been used to show the efficiency of this method.

3. Test Problems

All iterates are calculated by using Matlab 7. The absolute errors in Tables 1-3 are the values
of |u;(t) - Z?:o u;j(t)|, those at selected points.

Example 3.1. Consider the two-dimensional pantograph equations:

t
uy = ui(t) —un(t) + uy <§> —el? 4 e,

uy = —uy(t) —ua(t) —uz<é> +el’? ¢t 3.1)
u1(0) =1, u(0) = 1.
Applying the result of (2.14) gives us
uio(t) =4 -2e? - e,
(3.2)
Uz (t) =2 —2e7% 4 et
The iteration formula (2.15) for this example is
41 t
uijs1y = £ g—ﬁ uij(t) — () +ug( 5 ) )|
(3.3)

u(jeny = L7 [EA@(—uu(t) — Upj(t) — 1a; (é) >] :
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Table 1: Comparison of the absolute errors for Example 3.1.

; Exact solution U
u =éet n=2 n=4 n==6
0.2 1.221403 3.240E -3 1.210E -5 1.254E-7
0.4 1.491825 5401E -2 4.238E -4 3.170E -6
0.6 1.822119 1.099E -1 3.499E -3 5.583E-5
0.8 2.225541 2.878E -1 1.594E -2 4.460E-4
1.0 2.718282 6.171E -1 5.236E -2 2.259E-3
U =et 12
n=2 n=4 n=6
0.2 8.187308E — 1 1.179E -2 5.219E -5 7.807E - 8
0.4 6.703201E - 1 9.414E -2 1.668E - 3 1.310E -5
0.6 5.488116E - 1 3.179E -1 1.266E -2 2.227E -4
0.8 4.493290E -1 7.558E -1 5.338E -2 1.668E - 3
1.0 3.678794E - 1 1484E +0 1.632E -1 7.956E - 3

Starting with an initial approximations u1o(t) and u(t) and use the iteration formula (3.3).
We can obtain directly the other components as

u () =14+ 6t + et — et —2e71/2 —4¢t/% — 8e!/4,
Uy (1) =12 -8t —e™t — et —4e7t/2 4 2¢!/2 — 8e7H/4,

17 3.4
w1 (t) = 158 + 16t + ?tz —2e7t —14e"? — 67?2 — 48e!/* — 246714 — 64e!/8, G4

17
up(t) = 158 + 16t + 7# —2e7t —14e!/? — 6e7!/? — 48e!/* — 247/ — 64e!/8 .

Table 1 shows the absolute error of LDA with n =2, 4, and 6.

Example 3.2. Consider the system of multipantograph equations:

uy(t) = - (t) - ™! cos<%>u2<%> —Ze’(3/4)tcos<§) sin<£>u1<£>,
(1) = eh&(%) —u%(%), (3.5)

w(0)=1,  u(0)=0.
Let us start with an initial approximation:

Uuio (t) = 1/

(3.6)
Uy (t) =0.
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Table 2: Comparison of the absolute errors for Example 3.2.
; Exact solution Uy
u; = e~ cos(t) n=1 n=2 n=3
0.2 8.024106E - 1 1.144E -2 4432E -4 1.900E -5
0.4 6.174056E - 1 4.990E -2 4.274E -3 3.656E — 4
0.6 4.529538E -1 4.185E -1 1.643E -2 2.119E-3
0.8 3.130505E - 1 2171E -1 4274E -2 7.420E -3
1.0 1.987661E — 1 3.437E -1 8.925E -2 1.960E -2
. Uz
up = sin(t

: ® n=1 n=2 n=3
0.2 1.986693E — 1 2273E -2 5.174E - 4 1.670E -5
0.4 3.894183E -1 1.024E -1 5.840E -3 1.790E - 4
0.6 5.646425E - 1 2.575E -1 2.630E -2 3.282E -4
0.8 7.173561E -1 5.082E -1 8.022E -2 1.276E -3
1.0 8.414710E - 1 8.768E -1 1.965E -1 1.015E -2
The iteration formula (2.15) for this example is

41 t
uijs1y = £ gﬁ u1j(t) — ugj(t) +uyj 5))|
(3.7)
41
ua(jeny = L7 [gﬂ(etAlj - Azj)] ,
where
t
_ .2
AiO = Uy (E)/
t t
Aj =2uip( 5 Junl( 5 ),
il i0 (2 ) il <2 >
(3.8)

t t t
Ap = uj) <§> + Zui0<§>ui2<§),
t t t
Az = 2up (z)%‘z(z) +2ui0<§>ui3<

t

2

),..., i=1,2.

Table 2 shows the absolute error of LDA withn =1,2, and 3.

Example 3.3. Consider the three-dimensional pantograph equations:

uj(t) = 2uz<%> +us(t) - tCOS(%)/

uy(t) =1—tsin(t) — 2u§<

t

2

).
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uy(t) = up(t) — us () — tcos(t),

1251 (0) = —1, uz(O) = 0, Us (0) =0.

(3.9)
By (2.14) our initial approximation is
uyp(t) =3 - 4cos<£) -2t sin<£>
10 - 2 2 7

upo(t) = —sin(-t) + tcos(t) +1t, (3.10)

uzo(t) = —cos(t) —tsin(t) + 1.

The iteration formula (2.15) for this example is
a1 t
uien) = L7 = L( 2ug5( 5 ) +usi(t) )|,
41

Up(j+1) = L ;ﬂ(—ZAz]') , (3.11)

Uz = L7 Eﬂ(uzj(f) - ulj(f))] ,
where
Ay = u%o(%)/
Ap = 2”20(%)”21(%);
Ay = u§1 (%) + 2u20<£>u22<£>, (3.12)
Anz = 2uy (%)un(%) + 2“20(%)“23(%),

Table 3 shows the absolute error of LDA withn =1,2, and 3.

4. Conclusion

The main objective of this paper is to adapt Laplace decomposition algorithm to investigate
systems of pantograph equations. We also aim to show the power of the LAD method
by reducing the numerical calculation without need to any perturbations, discretization,
or/and other restrictive assumptions which may change the structure of the problem being
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Table 3: Comparison of the absolute errors for Example 3.3.

; Exact solution U
uy = —cos(t) n=1 n=2 n=3
0.2 9.800658E — 1 2.124E -2 1.525E -4 8.904E - 5
0.4 9.210610E -1 8.908E -2 2474E -3 1511E-3
0.6 8.253356E - 1 2.074E -1 3.267E -2 8.051E -3
0.8 6.967067E — 1 3.764E - 1 4.042E -2 2.665E — 2
1.0 5.403023E - 1 5.920E -1 1.934E -1 6.766E — 2
u
uy = tcos(t) I hen -
0.2 1.960133E - 1 1.329E-3 1.935E -4 5.496E - 6
0.4 3.684244F - 1 1.052E -2 5.824E -3 1.808E — 4
0.6 4.952014E -1 3.489E -2 1.139E -2 1.408E -3
0.8 5.573654E - 1 8.071E -2 2.312E -2 6.069E — 3
1.0 5.403023E -1 1.528E -1 1.078E -1 1.890E -2
. Us
us = sin(f) n=1 n=2 n=3
0.2 1.986693E — 1 2.7285E - 3 1.4629E -3 6.4558E - 5
04 3.894183E - 1 2.2245E -2 1.2666E — 2 9.9595E — 4
0.6 5.646425E — 1 7.6209E -2 45691E -2 4.8397E -3
0.8 7.173561E -1 1.8264E -1 1.1440E -1 14613E -2
1.0 8.414710E -1 3.5930E -1 2.3340E -1 3.3917E -2

solved. LDA method gives rapidly convergent successive approximations through the use of
recurrence relations. We believe that the efficiency of the LDA gives it a much wider appli-
cability.
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