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We present the prevention of influenza pandemic by using multiple control functions. First, we
adjust the control functions in the pandemic model, then we show the existence of the optimal
control problem, and, by using both analytical and numerical techniques, we investigate cost-
effective control effects for the prevention of transmission of disease. To do this, we use four control
functions, the first one for increasing the effect of vaccination, the second one for the strategies
to isolate infected individuals, and the last two for the antiviral treatment to control clinically
infectious and hospitalization cases, respectively. We completely characterized the optimal control
and compute the numerical solution of the optimality system by using an iterative method.

1. Introduction

Influenza is a seasonal viral disease caused by influenza A virus (H1N1) which spreads
rapidly, and it costs the society a significant amount in terms of morbidity and mortality
with a typical flu epidemic. It is estimated that more than 30 million people have been
killed by human influenza, having a considerable impact on public health. The threat of
recent avian influenza epidemics is also causing a widespread public concern [1]. The direct
contact with poultry increased the number of avian flu cases in humans. The urgency to
develop pandemic preparedness worldwide is prompted in many regions of the world.
The international organizations are trying to implement a strategy to delay or minimize the
impact of onset of a pandemic [2]. Influenza viruses have historically been a cause of large
number of mortality [3]. It is estimated by WHO that from 5 to 15% of the world population
is effected each year by the seasonal influenza, causing from 250,000 to 500,000 deaths each
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year [2, 4, 5]. Due to the high rate of mortality, the preventive strategies attracted the attention
of the researchers [3]. After the announcement by WHO that the infectious diseases are
spreading faster than any time in the history, the pandemic influenza poses a severe threat to
public health. Vaccines are the leading recommendations to prevent infection and to control
the spread of the disease. Despite the public health vaccination programs and the availability
of the vaccination influenza inflicts a large number of mortality and remains a major problem
for public health because the protection conferred by current vaccines is dependent on the
immune status of the individual [6]. To control the spread of influenza, a strategic use of
partially effective vaccines is of great public health interest.

In the last decade, various studies of the influenza pandemic have been carried out.
Alexander et al. [6] explore the impact of immunization with a partially effective vaccine via
a mathematical model for the transmission dynamics of influenza. Therein they discussed
two cases; the first one is the case in which the population does not admit the inflow of
new infected individual and in second case the population does admit it. In their work,
the rate of vaccination is based on the rate of contact between the susceptible and infected
individuals leading to the infection and the duration of infectiousness. The aid of a partially
effective vaccine is very crucial for controlling the rapid spread of influenza. In 2006, Iwami
et al. [7] proposed a mathematical model for the spread of bird flu from the bird population
to the human population. They discussed that, to minimize the spread of the disease in
human population, someone must take the measures for the infected human with bird flu
to quarantine when mutant bird flu has already occurred. In order to evaluate the pandemic
flu preparedness plans of the Netherland, United Kingdom and United States., Nuño et al.
[8] analyzed a more complex mathematical model. Their results showed that antiviral and
vaccines give the most optimal results, but, due to the lack of medical facilities and limited
antiviral stockpiles, the developing countries must emphasize their use therapeutically.

Vaccination is the primary method for preventing influenza and its severe compli-
cations. The vaccination might prevent hospitalization and can reduce influenza-related
respiratory illness. The level of vaccination increased substantially in the last two decades
but still further improvements in vaccination levels are needed, especially among the aged
people. Although influenza vaccination remains the cornerstone for the control of influenza,
the production of vaccines particularly the new H1N1 vaccine that the world is eager, some
would say desperate to buy, raises concerns at multiple levels [9]. Antiviral medications can
also play a significant role in controlling the spread of influenza as the antiviral drugs are
thought to shorten duration of the infectious period, and to reduce transmission of the virus.
The supply of antiviral and demand does not meet in the developing countries. The people
in poor nations are unable to get the timely access to minimally adequate vaccine or drug
stockpiles.

In this paper, we focus to identify the optimal control strategies that minimize the
impact of influenza by minimizing the vaccine wanning, the judicious use of drug supply,
and isolating the clinically infectious patients. Vaccination coverage can be increased by
administering vaccines to individuals during hospitalization or routine health care visits
as well as pharmacies, grocery stores, work places, and other locations in the community
before the influenza season. The risk of the spread of influenza and subsequent influenza-
related complications can also be reduced by vaccinating the health care workers and other
persons in closed contact with persons at increased risk of severe influenza. The clinically
infectious patients can be isolated by reasonably effective ways to reduce the transmission
of influenza, like to educate them to cover their sneeze and cough, not to spit openly, to
avoid the closed contacts with others, and sanitizing the rooms or equipments occupied by
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the patients by using quaternary ammonium compounds and bleach. We can get the most
effective results if we use the vaccination, treatment, and isolation of the clinically infected
patients concurrently. For developing countries this model is very suitable as only a few
people can get vaccinated, some of the people may have access to the treatment, and in some
places the disease can be controlled by isolation.

Our paper is organized as follows. In Section 2, we introduced the control model
of the disease. In Section 3, we checked the existence of the control problem. In Section 4,
the numerical solution of the optimality system is computed by using semi-implicit finite
difference method. A short conclusion is given in Section 5.

2. Influenza Model with Controls

Themodel in this section presents the optimal control problem for the transmission dynamics
of influenza. Our main aim is to show that it is possible to implement the time-dependent
anti-influenza control techniques while minimizing the cost of such measures. In our
optimal control problem, we introduce four control functions u1, u2, u3, and u4. The control
u1 represents the successful efforts to minimize the immunity wanning by administering
vaccine to persons during hospitalization or routine health care visits as well as pharmacies,
workplaces, or other locations in the community before the season of influenza. u2 represents
the isolation of the clinically infected patients by covering coughs, sneezing, not to spit
openly, and avoiding the closed contacts with others. u3 and u4 represent the fraction of
clinically infected cases treated with antiviral per unit of time and the fraction of individuals
getting antiviral treatments at hospitals per unit of time, respectively. Note that the controls
are fully effective when ui = 1 for i = 1, 2, 3, 4, while there is no control if ui = 0. We divide
the total population into six distinct subclasses which are susceptible class S, vaccinated class
V , exposed class E, clinically ill and infectious class I, treated class T , and recovered class R.
Taking into account the assumptions above, the dynamics of the control problem is given by

dS

dt
= Λ + (1 − u1)kV − α1SE − (1 − u2)α2SI −

(
φ + μ

)
S + rR,

dV

dt
= φS − (1 − u1)kV − (1 − σ)α1VE − (1 − σ)α2V I − μV,

dE

dt
= α1SE + (1 − u2)α2SI + (1 − σ)V [α1E + α2I] −

(
α3 + μ

)
E,

dI

dt
= α3E − (

μ +w + ν + ε + u3
)
I,

dT

dt
= wI − [

β + μ + ν(1 − θ) + u4
]
T,

dR

dt
= εI + βT − (

r + μ
)
R + u3I + u4T,

(2.1)

with the initial conditions

S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0. (2.2)
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The population is recruited at a constant birth rate Λ. k is the rate at which the vaccination-
based immunity wanes, and α1 and α2 are effective contact rates between the susceptible
individuals and the infected and exposed individuals, respectively. φ is the rate at which
susceptible individuals are vaccinated, σ represents vaccine efficacy, σ ∈ [0, 1], the vaccine is
imperfect if 0 < σ < 1, the vaccine is perfect if σ = 1 and is useless if σ = 0, w is the rate at
which individuals transfer from exposed class to infected class, μ is natural death rate, and
ν is disease-induced death rate. θ is effectiveness of the treatment as a reduction factor in
disease-induced death of infected individuals (0 < θ ≤ 1), r1 is the rate of immunity loss,
r2 represents treatment rate, r3 is the natural recovery rate of infected individuals, and r4 is
recovery rate due to treatment.

The objective of our work is to minimize infected and hospitalized population and
the cost of implementing the control by using possible minimal control variables ui(t) for
i = 1, 2, 3, 4. We use the Lebesgue measurable control and define our objective functional as

J(u1, u2, u3, u4) =
∫ tend

0

(
A1I +A2T +

1
2

(
C1u

2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4

))
dt. (2.3)

The quantities A1, A2, and Ci, where i = 1, . . . , 4, represent a measure of the relative cost of
the interventions over [0, tend]. The objective of the optimal control problem is to seek optimal
control functions (u∗

1(t), u
∗
2(t), u

∗
3(t), u

∗
4(t)) such that

J
(
u∗
1, u

∗
2, u

∗
3, u

∗
4

)
= min

(u1,u2,u3,u4)∈U
{J(u1, u2, u3, u4) | (u1, u2, u3, u4) ∈ U}, (2.4)

where the control set is defined as

U =
{
u = (u1, u2, u3, u4) | ui is Lebesgue measurable on [0, 1],

0 ≤ ui(t) ≤ 1, t ∈ [0, tend], for i = 1, . . . , 4},
(2.5)

subject to the system (2.1) and for appropriate initial conditions. Pontryagin’s Maximum
Principle is used to solve this optimal control problem and the derivation of the necessary
conditions. First, we prove the existence of the control problem (2.1) and then derive the
optimality system.

3. Existence of Control Problem

In this section, we consider the control system (2.1) with initial conditions (2.2) to show the
existence of the control problem. Note that, for the bounded Lebesgue measurable controls
and nonnegative initial conditions, nonnegative bounded solutions to the state system exist
[10]. Let us go back to the optimal control problem (2.1)–(2.3). In order to find an optimal
solution, first we should find the Lagrangian and Hamiltonian for the optimal control
problem. The minimal value of the Lagrangian is given by

L = A1I +A2T +
1
2

(
C1u

2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4

)
. (3.1)
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We define the Hamiltonian H for the control problem, where λi, i = 1, 2, . . . , 6 are the adjoint
variables:

H = A1I +A2T +
1
2

(
C1u

2
1 + C2u

2
2 + C3u

2
3 + C4u

2
4

)

+ λ1
[
Λ + (1 − u1)kV − α1SE − (1 − u2)α2SI −

(
φ + μ

)
S + rR

]

+ λ2
[
φS − (1 − u1)kV − (1 − σ)α1VE − (1 − σ)α2V I − μV

]

+ λ3
[
α1SE + (1 − u2)α2SI + (1 − σ)α1VE + (1 − σ)α2V I

−(α3 + μ
)
E
]
+ λ4

[
α3E − (

μ +w + ν + ε + u3
)
I
]

+ λ5
[
wI − [

β + μ + ν(1 − θ) + u4
]
T
]

+ λ6
[
εI + βT − (

r + μ
)
R + u3I + u4T

]
.

(3.2)

For the existence of our control system (2.1), we state and prove the following theorem.

Theorem 3.1. There exists an optimal control u∗ = (u∗
1, u

∗
2, u∗

3, u
∗
4) ∈ U such that

J
(
u∗
1, u

∗
2, u

∗
3, u

∗
4

)
= min

(u1,u2,u3,u4)∈U
J(u1, u2, u3, u4), (3.3)

subject to the control system (2.1) with the initial conditions (2.2).

Proof. To prove the existence of an optimal control we use the result in [11–13]. Note that
the control and the state variables are nonnegative values. In this minimizing problem, the
necessary convexity of the objective functional in u1, u2, u3, and u4 is satisfied. The set of all
the control variables (u1, u2, u3, u4) ∈ U is also convex and closed by definition. The optimal
system is bounded which determines the compactness needed for the existence of an optimal
control. In addition the integrand in the functional (2.3),A1I +A2T +1/2(C1u

2
1+C2u

2
2+C3u

2
3+

C4u
2
4), is convex on the control set U. Also we can see that there exist a constant ρ > 1 and

positive numbers ω1, ω2 such that

J(u1, u2, u3, u4) ≥ ω1

(
|u1|2 + |u2|2 + |u3|2 + |u4|2

)ρ/2 −ω2 (3.4)

because the state variables are bounded, which completes the existence of an optimal control.
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In order to derive the necessary conditions, we use Pontryagin’s maximum principle
[14] as follows. If (x, u) is an optimal solution of an optimal control problem, then there exists
a nontrivial vector function λ = (λ1, λ2, . . . , λn) satisfying the following equations:

dx

dt
=

∂H(t, x, u, λ)
∂λ

,

0 =
∂H(t, x, u, λ)

∂u
,

dλ

dt
=

∂H(t, x, u, λ)
∂x

.

(3.5)

We now derive the necessary conditions that optimal control functions and corresponding
states must satisfy. In the following theorem, we present the adjoint system and control
characterization.

Theorem 3.2. Let S∗, V ∗, E∗, I∗, T ∗, and R∗ be optimal state solutions with associated optimal control
variables (u∗

1, u
∗
2, u

∗
3, u

∗
4) for the optimal control problem (2.1)–(2.3). Then there exist adjoint variables

λi, for i = 1, 2, . . . , 6 satisfying

dλ1
dt

= (λ1 − λ3)(α1E + (1 − u2)α2I) + (λ1 − λ2)φ + λ1μ,

dλ2
dt

= (1 − u1)(λ2 − λ1)k + (λ2 − λ3)(1 − σ)(α1E + α2I) + λ2μ,

dλ3
dt

= (λ1 − λ3)α1S + (λ2 − λ3)(1 − σ)α1V + (λ3 − λ4)α3 + λ3μ,

dλ4
dt

= (λ1 − λ3)(1 − u2)α2S + (λ2 − λ3)(1 − σ)α2V

+ (λ4 − λ6)(ε + u3) + (λ4 − λ5)w + λ4
(
ν + μ

) −A1,

dλ5
dt

= (λ5 − λ6)
(
β + u4

)
+ λ5

(
μ + ν(1 − θ)

) −A2,

dλ6
dt

= (λ6 − λ1)r + λ6μ

(3.6)

with transversality conditions

λi(tend) = 0, i = 1, . . . , 6. (3.7)

Furthermore the control functions u∗
1, u

∗
2, u

∗
3, and u∗

4 are given by

u∗
1 = max

{
min

{
(λ1 − λ2)kV ∗

c1
, 1
}
, 0
}
,
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u∗
2 = max

{
min

{
(λ3 − λ1)α2S

∗I∗

c2
, 1
}
, 0
}
,

u∗
3 = max

{
min

{
(λ4 − λ6)I∗

c3
, 1
}
, 0
}
,

u∗
4 = max

{
min

{
(λ5 − λ6)T ∗

c4
, 1
}
, 0
}
.

(3.8)

Proof. To determine the adjoint equations and the transversality conditions, we use the
HamiltonianH in (3.2). The adjoint system results from the Pontryagin’s Maximum Principle
[14]:

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂V

,
dλ3
dt

= −∂H
∂E

,
dλ4
dt

= −∂H
∂I

,
dλ5
dt

= −∂H
∂T

,
dλ6
dt

= −∂H
∂R
(3.9)

with λi(tend) = 0, i = 1, 2, . . . , 6.
To get the characterization of the optimal control given by (3.8), solving the equations,

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0,

∂H

∂u4
= 0, (3.10)

on the interior of the control set and setting the property of the control spaceU, we can derive
the desired characterization (3.8).

4. Numerical Results and Discussion

In this section, we present a semi-implicit finite difference method by discretizing the interval
[t0, tf] at the points ti = t0+il, (i = 0, 1, . . . , n), where l represents the time step such that tn = tf .
We define the state and adjoint variables S, V, E, I, T, R, λ1, λ2, λ3, λ4, λ5, λ6 and the controls
u1, u2, u3, u4 in terms of nodal points Si, V i, Ei, Ii, T i, Ri, λi1, λ

i
2, λ

i
3, λ

i
4, λ

i
5, λ

i
6, u

i
1, u

i
2, u

i
3, and ui

4.
By combination of forward and backward difference approximation, the method developed
by [15], to adopt it in our case is as following:

Si+1 + Si

l
= Λ +

(
1 − ui

1

)
kV i − α1S

i+1Ei −
(
1 − ui

2

)
α2S

i+1Ii − (
φ + μ

)
Si+1 + rRi,

V i+1 + V i

l
= φSi+1 −

(
1 − ui

1

)
kV i+1 − (1 − σ)α1V

i+1Ei − (1 − σ)α2V
i+1Ii − μV i+1,

Ei+1 + Ei

l
= α1S

i+1Ei +
(
1 − ui

2

)
α2S

i+1Ii + (1 − σ)α1V
i+1Ei+1

+ (1 − σ)α2V
i+1Ii − (

α3 + μ
)
Ei+1,
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Ii+1 + Ii

l
= α3E

i+1 −
(
μ +w + ν + ε + ui

3

)
Ii+1,

T i+1 + Ti

l
= wIi+1 −

[
β + μ + ν(1 − θ) + ui

4

]
Ti+1,

Ri+1 + Ri

l
= εIi+1 + βTi+1 − (

r + μ
)
Ri+1 + ui

3I
i+1 + ui

4T
i+1.

(4.1)

To approximate the time derivative of the adjoint variables by the first-ordered
backward difference, we use the appropriate scheme as follows:

λn−i1 − λn−i−11

l
=
(
λn−i−11 − λn−i3

)[
α1E

i+1 + α2

(
1 − ui

2

)
Ii+1

]
+
(
λn−i−11 − λn−i2

)
φ + λn−i−11 μ,

λn−i2 − λn−i−12

l
=
(
λn−i−12 − λn−i−11

)(
1 − ui

1

)
k +

(
λn−i−12 − λn−i3

)
(1 − σ)

[
α1E

i+1 + α2I
i+1

]
+ λn−i−12 μ,

λn−i3 − λn−i−13

l
=
(
λn−i−11 − λn−i−13

)
α1S

i+1 +
(
λn−i−12 − λn−i−13

)
(1 − σ)α1V

i+1

+ λn−i−13 μ +
(
λn−i−13 − λn−i4

)
α3,

λn−i4 − λn−i−14

l
=
(
λn−i−11 − λn−i−13

)(
1 − ui

2

)
α2S

i+1 +
(
λn−i−12 − λn−i−13

)
(1 − σ)α2V

i+1

+
(
λn−i−14 + λn−i5

)
w +

(
λn−i−14 + λn−i6

)(
ε + ui

3

)
+ λn−i−14

(
ν + μ

) −A1,

λn−i5 − λn−i−15

l
=
(
λn−i−15 − λn−i6

)(
β + ui

4

)
+ λn−i−15

[
μ + ν(1 − θ)

] −A2,

λn−i6 − λn−i−16

l
=
(
λn−i−16 − λn−i−11

)
r + λn−i−16 μ.

(4.2)

The algorithm that describes the approximation method for obtaining the optimal control is
as follows.

Algorithm 4.1

Step 1. S(0) = S0, V (0) = V0, E(0) = E0, I(0) = I0, T(0) = T0, R(0) = R0, u1(0) = u2(0) = u3(0) =
u4(0) = 0, λi(tf) = 0, i = 1, . . . , 6.

Step 2. For i = 1, . . . , n − 1, do the following:

Si+1 =
Si + l

[
Λ +

(
1 − ui

1

)
kV i + r1R

i
]

1 + l
[
φ + μ + α1Ei +

(
1 − ui

2

)
α2Ii

] ,

V i+1 =
V i + lφSi+1

1 + l
[(
1 − ui

1

)
k + (1 − σ)α1Ei + (1 − σ)α2Ii + μ

] ,
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Ei+1 =
Ei + l

[(
1 − ui

2

)
α2S

i+1Ii + (1 − σ)α2V
i+1Ii

]

1 + l
[
α3 + μ + (1 − σ)α1V i+1 − α1Si+1

] ,

Ii+1 =
Ii + lα3E

i+1

1 + l
[
μ +w + ν + ε + ui

3

] ,

T i+1 =
Ti + lwIi+1

1 + l
[
β + μ + ν(1 − θ) + ui

4

] ,

Ri+1 =
Ri + l

[
εIi+1 + βTi+1 + ui

3I
i+1 + ui

4T
i+1]

1 + l
[
r + μ

] ,

λn−i−11 =
λn−i1 + l

[
α1E

i+1λn−i3 +
(
1 − ui

2

)
α2I

i+1λn−i3 + φλn−i2

]

1 + l
[
φ + μ + α1Ei+1 +

(
1 − ui

2

)
α2Ii+1

] ,

λn−i−12 =
λn−i2 + l

[(
1 − ui

1

)
kλn−i−11 + (1 − σ)

[
α1E

i+1 + α2I
i+1]λn−i3

]

1 + l
[
1 + μ +

(
1 − ui

1

)
k + (1 − σ)

(
α1Ei+1 + α2Ii+1

)] ,

λn−i−13 =
λn−i3 + l

[
λn−i−11 α1S

i+1 + λn−i−12 (1 − σ)α1V
i+1 − λn−i4 α3

]

1 + l
[
α1Si+1 + (1 − σ)α1V i+1 − α3 − μ

] ,

λn−i−14 = (λn−i4 + l[
(
λn−i−13 − λn−i−11

)(
1 − ui

2

)
α2S

i+1 +
(
λn−i−12 − λn−i−13

)
(1 − σ)α2V

i+1

+λn−i6

(
ε + ui

3

)
+ λn−i5 w − λn−i4 μ +A1

])(
1 + l

[
ε +w + ν + μ + ui

3

])−1
,

λn−i−15 =
λn−i5 + l

[
λn−i6

(
β + ui

4

)
+A2

]

1 + l
[
β + μ + ν(1 − θ) + ui

4

] ,

λn−i−16 =
λn−i6 + lrλn−i−11

1 + l
[
r + μ

] ,

ui+1
1 = min

{

1,max

{(
λn−i−11 − λn−i−12

)
kV i+1

c1
, 0

}}

,

ui+1
2 = min

{

1,max

{(
λn−i−13 − λn−i−11

)
α2S

i+1Ii+1

c2
, 0

}}

,

ui+1
3 = min

{

1,max

{(
λn−i−14 − λn−i−16

)
Ii+1

c3
, 0

}}

,

ui+1
4 = min

{

1,max

{(
λn−i−15 − λn−i−16

)
Ti+1

c4
, 0

}}

(4.3)

end for.
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Figure 1: The plot represents the population of susceptible class with and without control.
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Figure 2: The plot represents the population of vaccinated class with and without control.

Step 3. For i = 1, . . . , n − 1, write S∗(ti) = Si, V ∗(ti) = V i, E∗(ti) = Ei, I∗(ti) = Ii, T ∗(ti) =
Ti, R∗(ti) = Ri, u∗

1(ti) = ui
1, u

∗
2(ti) = ui

2, u
∗
3(ti) = ui

3, u
∗
4(ti) = ui

4 end for.

We have plotted susceptible, vaccinated, exposed, infected, treated, and recovered
population with and without control by considering real parameter values given in
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Figure 3: The plot represents the population of exposed class with and without control.
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Figure 4: The plot represents the population of infected class with and without control.

Table 1, with initial values S(0) = 15, V (0) = 6, E(0) = 5, I(0) = 6, T(0) = 4, R(0) = 2.
In each of the given graphes the undashed and the dashed lines represent the individuals
without and with control, respectively. The weight constant of the objective functional is
A1 = 0.05, A2 = 0.09, c1 = 0.1, c2 = 1.1, c3 = 1.5, and c4 = 0.3. Figure 1 shows the population
of the susceptible individuals with and without control, Figure 2 represents the population
of the vaccinated individuals with and without control, and we see that the population of
the vaccinated individuals increased after control. Figure 3 represents the population of the
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Figure 5: The plot represents the population of treated class with and without control.
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Figure 6: The plot represents the population of recovered class with and without control.

exposed individuals with andwithout control. In Figure 4we see that the infected individuals
with control decreased more sharply than that of without control. Figure 5 shows that per
day clinically reported individuals decreased after control, and in Figure 6 we see that the
number of recovered individuals with control increased more sharply than that of without
control. Figure 7 shows the plots of control variables.
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Table 1: Parameter values used for numerical simulations.

Notation Parameters definition Value
Λ Recruitment rate 0.9/day
β Recovery rate due to treatment 0.14/day
α1 Effective contact rate between S an I 0.003/day
α2 Effective contact rate between S an E 0.145/day
α3 The rate at which individuals transfer from E to I 0.07/day
θ Treatment effectiveness as a reduction factor in disease-induced death 0.1/day
ε The natural recovery rate of infected individuals 0.14/day
μ Natural death rate 0.0009/day
ν Disease-induced death rate 0.002
r Rate of immunity loss 0.02/day
σ Vaccine efficacy 0.3
k Rate at which vaccine wanes 0.15
φ Vaccine uptake rate 0.35/day
ω Treatment rate 0.4

5. Conclusion

An optimal control problem of the transmission dynamics of the human influenza disease
has been presented. We sought to determine four types of control functions associated with
minimizing the wanning of vaccination, isolating the clinically infectious people and antiviral
treatment of the clinically infected people and the hospitalized people. Our control plots
indicated that the number of exposed, infected, and hospitalized people decreased in the
optimal system. We developed the necessary conditions for the existence of the optimal
control by using the Pontryagin’s Maximum Principle. Using the state and adjoint system
together with the characterization of the optimal control, we solved the problem numerically
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by an efficient numerical method based on optimal control with the estimated parameter
values based on influenza. The results showed that the control practices are very effective in
reducing the incidence of infectious population.
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