
A REVIEW OF COSTAS ARRAYS

KONSTANTINOS DRAKAKIS

Received 15 March 2005; Revised 13 January 2006; Accepted 5 March 2006

Costas arrays are not only useful in radar engineering, but they also present many in-
teresting, and still open, mathematical problems. This work collects in it all important
knowledge about them available today: some history of the subjects, density results, con-
struction methods, construction algorithms with full proofs, and open questions. At the
same time all the necessary mathematical background is offered in the simplest possible
format and terms, so that this work can play the role of a reference for mathematicians
and mathematically inclined engineers interested in the field.
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der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Costas arrays are a topic unique from some aspects: they are useful to engineers and fas-
cinating to mathematicians interested in discrete mathematics, because of the many still
open problems they present; furthermore, the effort devoted in their study resulted in
new contributions in algebra, in the theory of finite fields [8, 14, 15, 22, 24]. But the
researcher who would like to undertake research in the field will have first of all to over-
come the hurdles posed by the fact that the literature on the topic spans two very broad
fields (engineering and mathematics) and four decades, with all the consequences this
may have. For example, some of the papers seem too practical for mathematicians, some
too mathematical for engineers, while some, too old to make it to the era of electronic
journals, are simply too hard to find.

The purpose of this review is to collect all main mathematical facts about Costas arrays,
and to provide the background needed, in the simplest possible terms, to understand and
prove them. In particular, this review will provide:

(1) a survey of our knowledge on Costas arrays today,
(2) an account of the different methods available today for their construction,
(3) proofs for the construction algorithms and the density results available today.
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This review, on the contrary, will not mention results or provide proofs of results that
require mathematical tools that are too advanced or are too complicated compared to the
results’ usefulness.

To sum up, this review is addressed to mathematically inclined engineers and mathe-
maticians who would like to know (almost) all about Costas arrays; it is the result of the
notes kept by an applied mathematician who wanted to know and understand (almost)
all about Costas arrays.

2. Definition of Costas arrays and notation

In this paper the following notation will be used.
(i) {0,1}n×n, n ∈N∗: the set of all square matrices of dimension n whose elements

can only take the two values 0 and 1.
(ii) �n, n∈N: the set of permutation matrices of dimension n, that is, those square

matrices of dimension n that contain exactly one element equal to 1 per row and
per column, their remaining elements being 0. Obviously �n ⊂ {0,1}n×n.

(iii) �n, n∈N: the set of Costas arrays of dimension n.
(iv) Let A∈�n; if ai j = 1, set f ( j)= i, with i, j ∈ {1, . . . ,n}. In plain words, f ( j)= i

expresses the fact that the element of column j that is equal to 1 lies at the ith po-
sition of the column. Observe that, since each column has a unique element equal
to 1, the others being 0, f is a bijection, hence f −1 is a function too: f −1(i)= j.
Note that f characterizes A unambiguously.

Definition 2.1. Let A ∈ �n; then A is a Costas array (of dimension or order n) if and
only if the following condition is satisfied: for all i1, i2, i3, i4 ∈ {1, . . . ,n}, i1 ≤ i2, i3 ≤ i4 :
(i1− i2, f (i1)− f (i2))= (i3− i4, f (i3)− f (i4))⇒ i1 = i2, i3 = i4. In other words, all vectors
of the form (i1− i2, f (i1)− f (i2)), i1, i2 ∈ {1, . . . ,n}, i1 < i2 are distinct.

This definition can be rephrased to make it easier to visualize and grasp, by collecting
vectors together according to their first coordinate. The vectors at hand are as many as
the possible choices of i1, i2 ∈ {1, . . . ,n} with i1 < i2, that is, n(n− 1)/2 in total, and, out
of these vectors, exactly n− k have their first coordinate equal to k, for k = 1, . . . ,n (to be
specific, it is those vectors that correspond to i1 = i, i2 = i+ k for i = 1, . . . ,n− k); these
vectors can be collected in a set, say Sk. Within each Sk a vector can be represented only
by its second coordinate, as the first is the same for all members of this set.

Consider now two vectors v1 ∈ Sk1 and v2 ∈ Sk2 . In the context of the definition of a
Costas array, we need not worry whether the two vectors are equal if k1 �= k2, and if k1 = k2

we only need to check the second coordinate of the vectors to make sure. So, we can list
the second coordinates of the vectors of Sk in a row, and make sure that within this row
no number appears twice. If we order the rows one on top of the other, left adjusted or
centered, the row corresponding to S1 being the topmost, and the row corresponding to
Sn−1 being the bottommost, we will obtain a triangular structure: we call this the difference
triangle of a permutation matrix.

It will also be simpler, at least sometimes, to represent a permutation matrix not as a
matrix, but rather by means of its corresponding permutation: if A∈�n corresponds to
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the function f , its corresponding permutation is p(A) = f (1)··· f (n); in other words,
we establish a bijection between permutations and permutation matrices, according to
which the ith element of the permutation corresponding to a permutation matrix is f (i),
the position of the nonzero element of the ith column within this column.

In the following we will not distinguish between A and p(A).

Definition 2.2. Let A ∈ �n; the difference triangle of A, T , or T(A), when A needs to
appear explicitly, is a triangular structure of n− 1 rows that has the entries ti j = f ( j)−
f ( j + i), i= 1, . . . ,n− 1, j = 1, . . . ,n− i.

Theorem 2.3. Let A∈�n; it is a Costas array if and only if no number appears twice in a
row of T(A).

Proof. It follows from the above discussion that this statement is equivalent to the defini-
tion of a Costas array. �

Theorem 2.4. Let A ∈�n, n ≥ 2; then T(A) contains exactly n− i elements equal to i in
absolute value, i= 1, . . . ,n− 1.

Proof. We will use induction.
(i) n= 2 : p(A) contains only one element that equals 1 or −1, hence the statement

is true.

(ii) Assume the statement is true for n ≤ s, and let n = s + 1; comparing s + 1 with
the remaining elements of T(A) accounts for s entries of T(A); for every i =
1, . . . ,s, exactly one of them is in absolute value equal to i; remove s+ 1 from p(A)
thus constructing p(A′) for some A′ ∈�s, whose difference triangle satisfies the
proposition to be proved by induction: it contains s− i entries equal to i in abso-
lute value, i= 1, . . . ,s− 1. Adjoin now, the elements corresponding to s+ 1 : T(A)
will contain s− i+ 1 = (s+ 1)− i entries equal to i, i = 1, . . . ,s− 1, plus one new
entry equals to s.

This completes the proof. �

A very useful observation about Costas arrays is the following.

Theorem 2.5. Let the permutation P = f (1)··· f (n), n ∈ N∗, correspond to a Costas
array; then, for any 1 ≤ s < t ≤ n, the part P′ = f (s)··· f (t) of the permutation has the
Costas property; if it so happens that the numbers in P′ are consecutive integers, that is,
that { f (i)}ti=s = {a,a + 1, . . . ,a + t − s− 1} for some a ∈ N, then the permutation P′′ =
f (s)− a+ 1, . . . , f (t)− a+ 1 represents a Costas array of lesser order than P.

Proof. P′ has the Costas property because each row of its difference triangle is a subset
of the corresponding row of the difference triangle of P. Moreover, the Costas property
depends not on the values of the elements of the permutation, but on their differences
only; hence, if P′ contains consecutive integers, we can subtract from each of its elements
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an integer in order to make the smallest of them equal to 1, without affecting the dif-
ference triangle and hence the Costas property; P′′, the product of this subtraction, will
correspond to a Costas array. �

It will be useful occasionally to think of Costas arrays as permutation matrices whose
0 elements are replaced with nothing, that is, they are left blank, and whose 1 elements
are replaced with “dots”. We will call this the dot representation of a Costas array.

3. History of Costas arrays

Costas arrays arise in sonar and radar applications: both of these devices are used to
identify the position and velocity of an object, the target. In order to accomplish this task,
they emit pulses at some frequency or frequencies, and they receive the signals that result
from the reflection of these pulses on the target. The time difference between emission
and reception provides the distance of the target from the device, while the frequency
difference between the two, as the Doppler effect stipulates, gives an indication of the
speed of the target.

Imagine that we operate our radar or sonar by emitting pulses sequentially at frequen-
cies fi, i= 1, . . . ,n, at times ti, i= 1, . . . ,n, assumed from now on to be integers between 1
and n, for some n, and by repeating this pattern periodically in time. This technique of
varying the emission frequency through time is known as frequency hopping and it gives
us the opportunity to make our device robust to noise. We will see below that the best
results are obtained when no two fis are equal.

Let us first describe the operation of a device such as the one just described in a noise-
less environment: under the assumption that the target moves at a speed that can be
considered to be constant throughout the emission cycle of the n pulses, and much less
than the propagation speed of the pulses, all pulses will experience almost the same delay
and the same frequency shift, so that the set of received pulses will be identical to the set
of transmitted pulses, except that it will be shifted in time and frequency. By calculating
then the cross-correlation between the transmitted and the received set of pulses we can
determine these shifts, and therefore determine the distance and speed of the target.

In order to see this more mathematically, let E be the emitted signal such that E =
{ f (i)}∞i=−∞, where each f (i) can either be an integer from 1 to n, or a silence X ; assume
also that the integer values, which model the emission frequencies, appear consecutively;
without loss of generality, assume that f (i)=X , i < 1, i > n, so E=···X f (1)··· f (n)X .. ..
Let also R= { f ′(i)}∞i=−∞ denote the received signal. Ideally, in the absence of noise, as we
described above, there will be two integers τ and f so that f ′(i) = f (i− τ) + f for all
i∈ Z, that is, R will be a version of E shifted in time and frequency, due to reflection from
the target and its speed. We proceed to calculate CE,R(v,h)=∑i∈Z[ f (i)= f ′(i+ v)−h]=
CE,E(v− τ, f − h), v,h ∈ Z, where we define X = X to be false; at v = τ, h = f , CE,R will
be maximal, namely CE,R(τ, f )= n= CE,E(0,0).

We just saw that the autocorrelation of E has a maximum of n at (0,0) = (n,n); but
what are the values of CE,E away of this point? In particular, what is the maximum of
these values max(v,h) �=(0,0)CE,E(v,h)? If we consider any two frequencies f (i) and f ( j) not
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equal to X , by choosing v = i− j and f = f ( j)− f (i), we can bring them to coincide, so
it is always the case that max(v,h) �=(0,0)CE,E(v,h)≥ 1.

What happens though when noise is present? Assuming that the noise is going to af-
fect both time and frequency, by introducing time delays and frequency shifts, it will
prevent R from completely matching E, so that CE,R(τ, f ) < n in general. It is now that
the exact pattern used for E becomes crucial: if the maximum of E is not unique and well
pronounced, we risk computing wrong τ and f , thus calculating wrong distances and
speeds, and maybe even spurious targets. The solution to this is to make the maximum of
the autocorrelation of E as pronounced as possible, by keeping all other values as low as
possible. The best we can do then is to arrange things so that max(v,h) �=(0,0)CE,E(v,h)= 1,
that is, whenever we choose v and h so that two frequencies coincide, none of the remain-
ing ones will. But this is precisely the definition of the Costas array!

Finally, if f (i) = f ( j), for i < j, a simple time delay will result in a positive autocor-
relation for v = i− j. As time delays are in practice very frequent, this would be most
undesirable. Hence, no two f (i)s should be equal. Another way to express that is that en-
ergy should be maximized for any given time and frequency to facilitate detection, which
means that at a given time no more than one frequency should be used, and that a given
frequency should not be used more than once.

The preceding explanation for the creation of Costas arrays is a (quite liberal) adap-
tation of the ideas of Costas [5, 6], the inventor of these arrays, whose name they bear.
Costas was able to find by hand examples of Costas arrays up to order 12 [18]; unable to
find one of size 13, he contacted Prof. Golomb, who provided construction algorithms
based on the theory of finite fields [9, 12], which we will analyze a bit later.

4. Some counting results on Costas arrays

Even before any explicit construction of Costas arrays takes place, the definition itself
allows us to derive and state some interesting properties.

4.1. Symmetry

Theorem 4.1. Let A∈�n, for n∈N∗; if A= AT , 3 more Costas arrays can be constructed,
so that all 4 are distinct; if A �= AT , 7 more Costas arrays can be constructed, so that all 8 are
distinct. The sets of Costas arrays so constructed are disjoint; hence, Costas arrays come in
sets of 4 or 8.

Proof. We can carry out the proof by thinking of Costas arrays either as arrays or permu-
tations.

(i) We can flip a Costas array vertically, and this clearly does not affect its Costas prop-
erty, as the only result of the flip on the vectors between nonzero elements is to change the
sign of their second coordinate; equivalently, from the permutation f (1)··· f (n) we pro-
duce n+ 1− f (1), . . . ,n+ 1− f (n), whose difference triangle is the same as of the original,
but with opposite entry signs.

(ii) We can flip a Costas array horizontally, and this clearly does not affect its Costas
property, as the only result of the flip on the vectors between nonzero elements is to
change the sign of their first coordinate; equivalently, from the permutation f (1)··· f (n)
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we produce f (n)··· f (1), whose difference triangle is the same as of the original, but with
opposite entry signs, and horizontally flipped rows.

(iii) We can flip the array around its main diagonal; the resulting matrix will be dif-
ferent if the original is not symmetric, but the Costas property is not affected, as the only
result of the flip on the vectors between nonzero elements is to swap the coordinates.

Let us denote the three flips by V , H , T , respectively. In algebraic terms, they generate
a group, whose constraining relations are V 2 =H2 = T2 = I (I is the identity), and that
V = THT . This is the group of symmetries of the square, which has 8 elements that can
be denoted by I , V , H , VH , T , VT , HT , VHT . Define now S(A)= {A, VA, HA, VHA,
TA, VTA, HTA, VHTA}, which has 8 elements, or 4 if A = TA; this is the orbit of A
under the action of the group, and we know by algebra that two orbits either coincide
or are disjoint. Equivalently, the relation A ∼ B ⇔ B ∈ S(A) is an equivalence relation,
which divides �n into the equivalence classes S(A), A∈�n, among which any two either
coincide or are disjoint. �

4.2. Density. A rather weak result about the density of Costas arrays appears in [13].

Theorem 4.2. |�n|/n!→ 0; the density of the Costas arrays tends to 0.

Proof. The proof is rather long but has a very clear structure. It will be presented in steps.
(1) Let us consider the permutation P = f (1)··· f (n), n ∈ N∗, and let us consider

the points (i, f (i)), i= 1, . . . ,n, on the plane. If three of them lie equally spaced on a line,
P does not correspond to a Costas array; let us call such a configuration of three of the
above points lying equally spaced on a line an L3 configuration.

(2) The probability for a permutation of order n to be a Costas array is by definition
|�n|/n!. Let X be the random variable denoting the number of L3 configurations in P,
and suppose its mean is μ and its variance is σ2. Then

∣
∣�n

∣
∣

n!
= P(P is Costas)≤ P(X = 0)≤ P(|X −μ| ≥ μ

)≤ σ2

μ2
. (4.1)

The last equality follows by the application of Chebychev’s inequality. So, all that is needed
now is the computation of μ and σ2.

(3) How many L3 configurations can a permutation of order n contain? We only need
to count the number ln of different ways in which we can choose its endpoints, as then its
midpoint is uniquely defined. Suppose then the endpoints are (i, f (i)= j) and (i′, f (i′)=
j′); following the square bracket notation, according to which [Q] is 1 if Q is true and 0
if it is false, and using x | y to denote that x divides y, we can write

ln =
n∑

i=1

n∑

j=1

n∑

i′=1

n∑

j′=1

[
2 | i− i′

][
2 | j− j′

][
i < i′

][
j �= j′

]

=
n∑

i=1

n∑

j=1

n∑

i′=1

n∑

j′=1

∑

k

∑

k′

[
i′ = 2k+ i

][
j′ = 2k′ + j

][
i < i′

][
j �= j′

]
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=
n∑

i=1

n∑

j=1

∑

k>0

∑

k′ �=0

[1≤ 2k+ i≤ n]
[
1≤ 2k′ + j ≤ n

]

=
n∑

i=1

n∑

j=1

∑

k>0

∑

k′ �=0

[1≤ 2k+ i < n+ 1]
[
1≤ 2k′ + j < n+ 1

]

=
n∑

i=1

n∑

j=1

∑

k>0

∑

k′ �=0

[
1− i

2
≤ k <

n+ 1− i

2

][
1− j

2
≤ k′ <

n+ 1− j

2

]

=
n∑

i=1

(⌈
n+ 1− i

2

⌉

− 1
) n∑

j=1

(⌈
n+ 1− j

2

⌉

−
⌈

1− j

2

⌉

− 1
)

.

(4.2)

The final formula can be further simplified into

ln =
n∑

i=1

(⌈
i

2

⌉

− 1
) n∑

j=1

(⌈
n+ 1− j

2

⌉

−
⌈

1− j

2

⌉

− 1
)

. (4.3)

In order to advance further we need to distinguish cases according to whether n is even
or odd.

(i) If n= 2m+ 1 for m∈N we get

ln =
2m+1∑

i=1

(⌈
i

2

⌉

− 1
)2m+1∑

j=1

(

m+
⌈

− j

2

⌉

−
⌈

1− j

2

⌉)

=
2m+1∑

i=1

(⌈
i

2

⌉

− 1
)2m+1∑

j=1

(

m−
⌊
j

2

⌋

+
⌊
j− 1

2

⌋)

= [2(0 + 1 + ···+m− 1) +m
][

(2m+ 1)m−m
]

= 2m2[m+m(m− 1)
]= 2m4 = (n− 1)4

8
.

(4.4)

(ii) If n= 2m for m∈N we get

ln =
2m∑

i=1

(⌈
i

2

⌉

− 1
) 2m∑

j=1

(

m− 1 +
⌈

1− j

2

⌉

−
⌈

1− j

2

⌉)

=
2m∑

i=1

(⌈
i

2

⌉

− 1
) 2m∑

j=1

(m− 1)

= 2(0 + 1 + ···+m− 1)2m(m− 1)=m(m− 1)2m(m− 1)

= 2m2(m− 1)2 = n2(n− 2)2

8
.

(4.5)
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(4) Now we are ready to compute μ and σ . By L3 ⊂ P we denote the fact that the
particular L3 configuration appears in P. For n≥ 3,

μ= 1
n!

∑

P∈�n

X(P)= 1
n!

∑

P∈�n

∑

L3⊂P
1= 1

n!

∑

L3

∑

{P∈�n|P⊃L3}
1= 1

n!

∑

L3

(n− 3)!= ln
n(n− 1)(n− 2)

,

(4.6)

whence we get that μ≈ n/8:

E
(
X2)= 1

n!

∑

P∈�n

(
X(P)

)2 = 1
n!

∑

P∈�n

(
∑

L3⊂P
1

)2

= 1
n!

∑

P∈�n

∑

(L3,L′3)⊂P
1= 1

n!

∑

(L3,L′3)

∑

{P∈�n|P⊃(L3,L′3)}
1

= 1
n!

[
m3(n− 3)! +m2(n− 4)! +m1(n− 5)! +m0(n− 6)!

]
.

(4.7)

The notation (L3, L′3) ⊂ P stands for the fact that the configurations L3 and L′3 belong
both to P, their order being important. mi, i = 3, 2,1, 0, in the formula stands for the
number of ordered pairs of L3 configurations which have precisely i points in common;
we proceed now to find their values, or at least estimates of them.

(i) m3 = ln.
(ii) m2 ≤ 4ln, as two L3 configurations can intersect in two points in exactly 4 ways.

If we denote the 2 configurations by 123 and 1’2’3’, and we denote their common
points by X , the 4 possible intersections at question are 1XX3′, 1′XX3, X2X3′,
and X2′X3.

(iii) In order to estimate m1, we think as follows: we can pick L3 in ln ways, and the
point in common of the two in 3 ways. If this common point is an endpoint of
L′3, we can choose its other endpoint, and therefore L′3, in n2/4 ways at most (as
both the horizontal and the vertical distance between the endpoints need to be
even); if the common point is the midpoint of L′3, we can choose an endpoint,
and hence L′3, in at most n2/2 ways. Hence m1 ≤ 3ln(n2/2 +n2/4)= (9/4)n2ln.

(iv) Finally, m0 ≤ l2n.
To sum up,

E
(
X2)≤ 1

n!

[

ln(n− 3)! + 4ln(n− 4)! +
9
4
n2ln(n− 5)! + l2n(n− 6)!

]

≤ μ
[

1 +
4

n− 3
+

9n2

4(n− 3)(n− 4)

]

+
l2n

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

≤ 5μ+
l2n

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
(4.8)

for n sufficiently large.
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Therefore,

σ2 = E(X2)−μ2 ≤ 5μ+
l2n

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
− l2n
n2(n− 1)2(n− 2)2

= 5μ+
[

n(n− 1)(n− 2)
(n− 3)(n− 4)(n− 5)

− 1
]

μ2.

(4.9)

(5)
∣
∣�n

∣
∣

n!
≤ σ2

μ2
≤ 5

μ
+

9n2− 45n+ 60
(n− 3)(n− 4)(n− 5)

≤ C

n
(4.10)

for sufficiently large n, and therefore the statement holds. �

The finishing sentence of [13] is that “it would be interesting to have better bounds on
[�n], but this will require more sophisticated arguments than [those] used here.” Indeed,
a more sophisticated argument was used later in [20], and produced a formula for the
probability pn = |�n|/n!; in contrast to the formula in [13], though, this one is partly
heuristic, as its final form results from an “educated guess,” and it contains an unspec-
ified parameter that needs to be be evaluated through fitting to the actual probabilities
computed (and available for n≤ 25 today [1]). It is worth taking a detailed look at it, as
the argument it is based upon is rather important, while the original paper [20], due to
its brevity, offers no detailed proof neither of the argument nor of the formula.

Theorem 4.3. Let P ∈�n, n∈N∗; if the first k < n− 1 rows of T(P) are free of repetitions,
then no repetitions on row k+ 1 can be closer than k places apart.

Proof. Let P = f (1)··· f (n), and suppose that ∃1 ≤ i1 < i2 < i3 < i4 ≤ n so that f (i1)−
f (i3)= f (i2)− f (i4) and i3− i1 = i4− i2 = k + 1, while i2− i1 = s < k. It follows that i4−
i3 = i2 − i1 = s and f (i1)− f (i2) = f (i3)− f (i4) as well, which implies that a repetition
exists on a previous row, contrary to our hypothesis. Therefore, s ≥ k and the proof is
complete. �

This is a very important result, because it reduces the number of pairs of the elements
of the difference triangle we need to check in order to assert that a particular permutation
corresponds to a Costas array. The proof offered above is an adaptation of the original
proof [4].

Theorem 4.4. The total number of pairs of T(P), with P ∈�n, n ∈N∗, that needs to be
checked in order to ascertain that P ∈�n is

(i) TP(n)= n(n− 1)(n− 2)/6, if Theorem 4.3 is not taken into account,
(ii) (1) IP(n)= n(n− 2)(2n+ 1)/24, n even,

(2) IP(n)= (n+ 1)(n− 1)(2n− 3)/24, n odd,
if it is.

TP stands for total pairs, and IP for independent pairs.

Proof. Row i of the difference triangle has n− i elements, i= 1, . . . ,n− 2, hence the total
number of pairs per row is (n− i)(n− i− 1)/2, and the total number of pairs that needs to
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be checked is
∑n−2

i=1 (n− i)(n− i− 1)/2 =∑n−2
i=1 (i+ 1)i/2 =∑n−2

i=0 (i+ 1)i/2 = 1/2
∑n−1

0 (i+
1)2 = (i+ 1)3/6 |n−1

0 = n(n− 1)(n− 2)/6.
If, on the other hand, we take Theorem 4.3 into account, we actually need to check less

pairs: checking element 1 of row i will require comparing it to all elements at i+ 1, . . . ,n−
i, as the elements at 2, . . . , i are certainly different from it; similarly, element j of row i
will be compared only to i+ j, . . . ,n− i, i = 1, . . . ,n, j = 1, . . . ,n− 2i. In total then, row i

will require
∑n−2i

j=1 (n− 2i− j + 1)=∑n−2i
j=1 j = (n− 2i)(n− 2i+ 1)/2 checks, hence the total

number of checks for all rows will be
∑n−2

i=1 max((n− 2i)(n− 2i+ 1)/2,0)= 1/2
∑�n/2�

i=1 (n−
2i)(n− 2i+ 1).

(i) For n = 2m, m ∈N∗, this becomes
∑m

i=1(m− i)(2m− 2i+ 1) =∑m−1
i=0 i(2i+ 1) =

∑m−1
i=0 i+ 2

∑m−1
i=0 i2 =m(m− 1)/2 + 2m(m− 1)(2m− 1)/6 =m(m− 1)(4m+ 1)/6

= n(n− 2)(2n+ 1)/24.
(ii) For n = 2m+ 1, m ∈N∗, this becomes

∑m
i=1(m− i+ 1)(2m− 2i+ 1) =∑m−1

i=0 (i+
1)(2i+ 1)= 3

∑m−1
i=0 i+ 2

∑m−1
i=0 i2 +m = 3m(m− 1)/2 + 2m(m− 1)(2m− 1)/6 +m

=m(m− 1)(4m− 1)/6= (n+ 1)(n− 1)(2n− 3)/24.
This completes the proof. �

We proceed now to make the simplifying assumption that all independent (in the sense
of the previous theorem) pairs of entries in the rows of T(P) are actually independent,
that is, that the entries of one are independent of the entries of the others; we can assume
then that the entries of such a pair will be equal with probability PR(n), and therefore that
the expression pn = (1−PR(n))IP(n) approximates the probability that a permutation is a
Costas array. Namely, we expect that

∣
∣�n

∣
∣

n!
≈ (1−PR(n)

)IP(n)
. (4.11)

We still need to find PR(n). Let us assume that the pair we are looking at contains the
two entries A and B. We can work as follows:

PR(n)= P(A= B)= P(|A| = |B|)P(AB > 0 | |A| = |B|). (4.12)

According to Theorem 2.4, T(P) will contain n− i entries of i in absolute value, i =
1, . . . ,n− 1. If we want both entries to equal i, we will be able to choose them in (1/2)(n−
i)(n− i− 1) ways, while the total number of ways we could choose them is (1/2)(n(n−
1)/2)((n(n− 1)/2)− 1). Hence

P
(|A| = |B|)=

n−1∑

i=1

P
(|A| = |B| = i

)=
n−1∑

i=1

(n− i)(n− i− 1)
(
n(n− 1)/2

)((
n(n− 1)/2

)− 1
)

= n(n− 1)(n− 2)/6
(
n(n− 1)/2

)(
n(n− 1)/2− 1

) = 2
3(n+ 1)

.

(4.13)

P(AB > 0||A| = |B|) is the probability that A and B are of the same sign given they
are equal in absolute value. We will assume that this is a constant (independent of n)
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probability p. Then, the formula becomes

∣
∣�n

∣
∣

n!
≈
(

1− K

n+ 1

)IP(n)

, K = 2p
3
. (4.14)

In [20] K is treated as a simple proportionality constant, not connected to any other
quantities, and it gets determined by fitting the equation to the known values of the prob-
ability that a permutation of order n has the Costas property. At the time, this was known
for n ≤ 17, but later the experiment was repeated for n ≤ 25 (see [1]): in all cases the
fitting process gives K ≈ 1.1, which clearly violates the assumption that p = (3/2)K is a
probability; nevertheless, this formula remains a valuable tool, as the fitting is remarkably
successful, and as it is still the best estimate of the Costas array probability we have.

5. Currently known results

All proofs for the existence of Costas arrays hitherto presented are
(i) constructive: existence is shown by explicit construction or a construction algo-

rithm;
(ii) dimension specific: it has been shown that �n �= ∅ for n in a genuine subset ofN∗.

The Costas arrays we know of today have been generated by one of the following meth-
ods.

(1) Exhaustive search of �n: it has yielded all Costas arrays up to n≤ 26 [1, 2, 19].
(2) Construction algorithms: they produce Costas arrays of dimensions equal to or a

bit less than primes or powers of primes [9, 12].
(3) A trial and error approach presented in [18] which yielded 4 previously unknown

Costas arrays.
Let us review these three methods one by one.

6. Exhaustive search

The method of exhaustive search is straightforward: for a given n∈N∗, we examine every
A ∈�n and decide whether or not it is a Costas array; thus, we get all Costas arrays of
order n. The computational complexity of the method is of the order n3n!: there are
n! permutations of order n, and testing each one requires n(n− 1)/2 subtractions (to
find the difference between all possible pairs of elements of the permutation), and then
∑n−1

k=1 k(k− 1)/2 = n(n− 1)(n− 2)/6 comparisons (all pairs of elements within a row of
the difference triangle, for each row).

The situation can be improved considerably by recognizing that
(1) the symmetry explained in Section 4.1 reduces the number of necessary tests ide-

ally by 8;
(2) not all of the difference triangle needs to be computed in most cases: at the very

least, we can use Theorem 4.3; at best, once a repetition is detected, there is no
reason to continue working on that specific permutation;

(3) permutations share parts of their difference triangles.
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Table 6.1. Number of Costas arrays per order found by exhaustive search.

Order Number Order Number Order Number

1 1 10 2160 19 10240

2 2 11 4368 20 6464

3 4 12 7852 21 3536

4 12 13 12828 22 2052

5 40 14 12752 23 872

6 116 15 19612 24 200

7 200 16 21104 25 88

8 444 17 18276 26 56

9 760 18 15096 27 ?

Whether one is able to incorporate all of these improvements in one’s code is, of
course, a different matter. The best exhaustive search results available today are due to
the efforts of J. K. Beard and his associates, who used code written in assembly and par-
allel programming techniques over a Beowulf cluster, raising the dimension for which all
Costas arrays have been tabulated to 26 [1, 2, 19]. Regarding 26 in particular, the com-
putation was completed independently by two groups, namely Beard’s and Rickard’s, al-
though it is clear that the former group finished earlier; their results were identical [19].

The reports of Beard’s group mention nothing about the difficulty of their task; the
author of this paper, wanting to get a first hand experience of the difficulty involved,
wrote a program in Java and ran it on an Acer Aspire 1714SMi laptop (with an Intel
Pentium 4 3.4 GHz processor and 1 GB of RAM): the search for Costas arrays of order 16
took about a day to complete.

The total number of Costas arrays for orders up to and including 26 are shown in
Table 6.1.

7. Construction algorithms

There are essentially two construction algorithms: the Welch construction and the Golomb
construction. Both of them admit several variations/modifications that increase the num-
ber of Costas arrays they can construct; and both of them are based on the theory of finite
(Galois) fields, which we are going to review before embarking on the relevant theorems
and proofs.

The constructions will be labeled in the form letter/number, where the letter denotes
the category of the construction (W for Welch, G for Golomb, L for Lempel, and T for
Taylor), while the number denotes how much smaller the order of the Costas array is
compared to the size of the finite field used in its construction (all these concepts will be
clarified below). This nomenclature of the construction algorithms is the same as the one
used in [1, 12].



Konstantinos Drakakis 13

7.1. Elements of Galois (finite) fields

7.1.1. The modulo function

Definition 7.1. Let x ∈ Z, y ∈N∗. Then, x modulo y, x mod y, is defined to be the unique
r ∈N that satisfies the following conditions:

(1) ∃m∈ Z : x = ym+ r,
(2) 0≤ r < y.

An immediate consequence of the definition is that for all k ∈ Z : (x+ky) mod y=
x mod y.

Theorem 7.2. For all u,v ∈ Z, y ∈N∗,

(1) (u+ v) mod y = (u mod y + v mod y) mod y,
(2) (uv) mod y = ((u mod y)(v mod y)) mod y.

Proof. Let u mod y = ru and v mod y = rv, that is, u =muy + ru, u =mvy + rv for some
mu,mv ∈ Z:

(1) (u+ v) mod y = (muy + ru +mvy + rv) mod y = (ru + rv) mod y and the proof is
complete;

(2) (uv) mod y= ((muy+ru)(mvy + rv)) mod y = (rurv + y(mumvy+murv+mvru))
mod y=(rurv) mod y and the proof is complete. �

We will occasionally use different symbols for addition and multiplication modulo n
than for their usual counterparts, so we can tell them easily apart: x⊕ y = (x+ y)modn,
x� y = (x− y)modn, and x� y = (xy)modn; n will always be clear from the context.

7.1.2. Definition of a field

Definition 7.3. Let S be a set, and let two functions ⊕ : S× S→ S and � : S× S→ S be
defined on it. Then S will be called a field if and only if the following conditions hold:

(1) S is a commutative group with respect to ⊕:
(a) for all x, y ∈ S, x⊕ y = y⊕ x (commutativity),
(b) for all x, y,z ∈ S, x⊕ (y⊕ z)= (x⊕ y)⊕ z (associativity),
(c) ∃0∈ S: for all x ∈ S x⊕ 0= x (neutral element of addition),
(d) for all x ∈ S ∃(−x)∈ S : x⊕ (−x)= 0 (negative element);

(2) S−{0} is a commutative group with respect to �:
(a) for all x, y ∈ S, x� y = y� x (commutativity),
(b) for all x, y,z ∈ S, x� (y� z)= (x� y)� z (associativity),
(c) ∃1∈ S: for all x ∈ S x� 1= x (neutral element of multiplication),
(d) for all x ∈ S−{0}∃x−1 ∈ S : x� x−1 = 1 (inverse element);

(3) for all x, y,z ∈ S : x� (y⊕ z)= x� y⊕ x� z (distributivity);
S is an additive group; S−{0} is a multiplicative group.

In plain words, a field is a set in which addition and multiplication are not only de-
fined, but also have the same familiar properties they have in R, the set (field) of the real
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numbers. A useful observation is this: by plugging y = z = 0 in the distributivity formula,
since 0⊕ 0= 0, we obtain for all x ∈ S, 0� x = 0.

From now on we will follow the familiar convention when there is no danger of con-
fusion: drop � completely, x� y = xy, and write x⊕ y as x + y; we also use powers nor-
mally: x� x = x2, and so forth.

Notice that we avoided calling the elements of finite fields “numbers”; we will see why
a bit later.

7.1.3. Properties of fields

Theorem 7.4. 0 and 1 are unique.

Proof. Suppose there are two neutral elements for addition, 0 and 0’; then 0 + 0′ = 0, as
0′ is neutral, and 0 + 0′ = 0′, as 0 is neutral; hence 0= 0′. Similarly, 1 · 1′ = 1= 1′. �

Theorem 7.5 (cancellation law). xy = 0⇒ x = 0∨ y = 0.

Proof. Suppose x �= 0; then x−1 exists, and x−1(xy)= x−10= 0= (x−1x)y = 1y = y⇒ y =
0. �

7.1.4. A family of finite fields

Definition 7.6. A field S is finite if and only if it has a finite number of elements: |S| <∞.

Definition 7.7. Define Fn, n ∈ N∗, n ≥ 2, to be the set {0,1, . . . ,n− 1}, and define on it
addition and multiplication in the usual way as in R, but modulo n.

Theorem 7.8. Consider Fn, n ∈ N∗, n ≥ 2; it is a field if and only if n = p, where p is a
prime number.

Proof. We need to check the defining properties of a field, but associativity, commuta-
tivity, and distributivity follow by the usual definition of addition and multiplication in
R and Theorem 7.2; moreover, 0 and 1 keep their roles as neutral elements, again by
Theorem 7.2; and, finally, by the same theorem, x + y = 0⇒ x⊕ y = 0, so that the exis-
tence of the negative element for all x ∈ Fn is guaranteed.

It is the existence of the multiplicative inverses that requires some attention; we will
prove that they exist when n is a prime, and that they do not (always) exist when it is not.

(1) Let n = pq, with p,q ∈ Fn. Then, (pq) mod n = p� q = n mod n = 0, so that
the product of two nonzero elements of Fn is 0, contradicting Theorem 7.5, and
therefore Fn is not a field.

(2) Let n be a prime p: n= p. Then, consider x ∈ Fn, x �= 0, and consider the numbers
(ix) mod p = i� x, i= 1, . . . , p− 1. No two of them are equal, for if i� x = j � x,
it follows that (i− j)� x = 0, so that p divides either i− j or x; but 0 < x < p and
0 < |i− j| < p, so that both alternatives are impossible. For the same reason, none
of these numbers is 0.

It follows that the numbers i� x, i = 1, . . . , p− 1, correspond bijectively to the num-
bers 1, . . . , p− 1; in particular, there exists an i∈ Fn: i� x = 1⇒ i= x−1, and the proof is
complete. �
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7.1.5. Fermat’s little theorem

Theorem 7.9 (Fermat’s little theorem). Let x∈Fp, x>1, with p prime. Then, (xp−1)mod p
= 1.

Proof. Consider the numbers (ix)mod p = i� x, i= 1, . . . , p− 1; as in the proof of Theo-
rem 7.8, we can demonstrate that they are all nonzero and distinct, and, hence, that there
is a bijection between them and the numbers 1, . . . , p − 1. It follows that [(1� x)(2�
x)···((p− 1)� x)] = (p− 1)!⇒ (1x2x ···(p− 1)x)mod p = [(p− 1)!]mod p = [(p−
1)!xp−1]mod p⇒ [(p− 1)!(xp−1− 1)]mod p = 0. This implies that p divides either (p−
1)!, which is impossible, or xp−1− 1, which is necessarily true. Hence, (xp−1)mod p = 1,
and the proof is complete. �

7.1.6. Primitive roots of finite fields. Theorem 7.9 does not prove that p− 1 is the least
positive integer with this property: it may still be the case that for a particular x ∃0 < a <
p− 1 so that xa mod p = 1. Divide p− 1 by a : p− 1=ma+ r for some m∈N and 0≤ r <
a. But then xr mod p = xp−1−ma mod p = (xp−1 mod p)� (xa mod p)−m mod p = 1� 1m =
1; if r > 0 we obtain a contradiction, since a was assumed to be the least positive integer
with this property, and now we proved that r has it too; therefore, the only alternative is
that r = 0. We have just proved.

Theorem 7.10. Let x ∈ Fp, x > 1, with p prime. Then, for all x ∈ Fp −{0}, there exists a
smallest positive integer a(x) for which xa(x) mod p = 1; also, a(x) divides p− 1.

Definition 7.11. A multiplicative group C is cyclic if and only if ∃x ∈ C : C = {1,x,x2, . . . ,
xn−1}, with |C| = n∈N∗.

Definition 7.12. Let F be a finite field; x ∈ F is called a primitive root of F if F= {0,1,x, . . . ,
xn−2}, with |F| = n∈N∗; in other words, x is a primitive root of F if and only if the cyclic
group of x equals the multiplicative group of F.

In the context of Theorem 7.10, x will be a primitive root of Fp, p prime, if and only
if a(x)= p− 1. But at this point it is not even clear that finite fields have primitive roots.
This is indeed the case, as the following theorem demonstrates.

Theorem 7.13. Any finite field F has primitive roots, that is, its multiplicative group is cyclic.

Proof. Let y ∈ F, n= |F|, and consider all polynomials of the form yr − 1 with 0 < r ≤ n−
1. Consider now a specific y ∈ F and consider the cyclic multiplicative group it produces:
C(y) = {yi | i ∈ N}. C(y) can of course have at most n− 1 elements, as many as the
nonzero elements of the field are. Hence, as we start forming the powers y0, y1, y2, . . .,
according to the multiplication law of the field, we will necessarily find two powers r1 < r2

for which yr1 = yr2 ⇒ yr2−r1 = 1. Therefore, for every y ∈ F−{0} there exists a smallest
positive r(y) for which yr(y) = 1.

Set now r =max{r(y)|y ∈ F−{0}}. Then
(i) as all cyclic groups are contained in the multiplicative group of the field, it follows

that r ≤ n− 1;
(ii) if ∃z ∈ F that does not satisfy zr = 1, but rather zr

′ = 1, with r′ < r, there are two
possibilities:
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(1) either r′ divides r, in which case zr = (zr
′
)r/r

′ = 1r/r
′ = 1, a contradiction,

(2) or it does not. Consider then yz ∈ F; what is the smallest positive q for which
(yz)q = 1? Since yqzq = (yz)q, then q must be a multiple of r and r′, so the
smallest possible value of q is the least common multiple of r′ and r, which
is strictly larger than r, as we assumed that r′ does not divide r. Therefore
we get a contradiction, because we chose r to be maximal.

The only alternative then is that for all y ∈ F− {0}, yr = 1, which means that
for all y ∈ F−{0} the polynomial Yr − 1 is divisible by Y − y. It follows that the
degree of Yr − 1, that is, r, is at least n− 1 : r ≥ n− 1.

Combining the two results we get that ∃y ∈ F : yn−1 = 1 and yi �= 1,0 < i < n− 1, so that
the multiplicative group of the field is cyclic. �

This theorem proves an important result, but not in the best possible way, for it gives us
no information at all about how to find the primitive roots of a field. This is indeed a dif-
ficult problem, and efforts towards its solution [14, 15, 22, 24] were partly associated with
the work on Costas arrays. Still, the best approach is to test some elements until we find
one; we include an example a bit later. It should be noted, though, that which primitive
root we use to express the finite field is not important: if x and y are two primitive roots
of F, which has n elements, we can write F= {0,1,x, . . . ,xn−2} = {0,1, y, . . . , yn−2}, and the
bijection f (xi)= yi, i= 0, . . . ,n− 2, f (0)= 0, with the property that f (xix j)= f (xi) f (x j)
is an isomorphism, hence the two representations of the field are the same.

How many primitive roots does a field F have? A quite simple argument allows us
to establish their number, as well as to provide an “algorithm” for their determination,
which suffers from the slight defect that we need one of them to determine all the others.

Definition 7.14. Let n∈N; the Euler function φ(n) denotes how many numbers in 1, . . . ,n
have no common factor with n.

Theorem 7.15. Let F be a finite field with |F| = n∈N∗; then the number of primitive roots
it has is φ(n− 1). Moreover, if f ∈ F, is a primitive root, then f i, i = 2, . . . ,n− 2, is also a
primitive root if and only if i has no common factor with n− 1.

Proof. According to Theorem 7.13, F has at least one primitive root f , so that all of the
nonzero elements of F can be expressed by means of its powers: F = {0,1, f , . . . , f n−2}.
Consider now the element f i, i = 2, . . . ,n− 2; it will also be a primitive root if and only
if the powers ( f i) j = f i j , j = 0, . . . ,n− 2, span all the nonzero elements of F; notice that
( f i)0 = f 0 = 1 and that ( f i)n−1 = f i(n−1) = ( f n−1)i = 1i = 1.

As these powers are already as many as the nonzero elements of F, it is enough to show
that no two of them are equal: supposing that ( f i) j1 = ( f i) j2 , we obtain f i( j1− j2) = 1,
whence it follows that n− 1 divides i( j1− j2), since f is a primitive root.

(i) If i has no common factor with n− 1, it follows that n− 1 divides j1 − j2; given
the range of values of j1 and j2, 0 ≤ | j1 − j2| < n− 1, so the only possibility is
j1 = j2 and therefore all powers are indeed distinct, making f i a primitive root.

(ii) If i has a common factor with n− 1, say s, then setting j1 − j2 = (n− 1)/s we
obtain that i( j1 − j2) = i((n− 1)/s) is a multiple of n− 1; therefore, the powers
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with, say, j1 = 0, j2 = (n− 1)/s < n− 1, are not distinct, hence f i is not a primitive
root.

The number of primitive roots of F, then, is the number of i, i = 1, . . . ,n− 2, without
common factors with n− 1; but this is precisely φ(n− 1). This concludes the proof. �

In view of this theorem, it would be useful to have a tool to evaluate the Euler function.
The following two theorems will provide exactly that.

Theorem 7.16. Let n = uv ∈ N, where u and v have no factors in common; then φ(n) =
φ(u)φ(v).

Proof. There are exactly uv−φ(uv), u−φ(u), v−φ(v), numbers having common factors
with uv = n, u, and v, respectively, by the definition of φ. But a number can have a com-
mon factor with n if and only if it has a common factor with either u or v. Therefore, the
numbers with common factors with n are exactly as many as those with a common factor
with u plus those with a common factor with v minus those with a common factor with
both, which we have counted twice. How many are in each category?

(i) A number from 1 up to and including n can have common factors with both u
and v if and only if it can be written as i j, where i has common factors with u and
j has common factors with v; this is because u and v have no factor in common.
Hence, there are (u−φ(u))(v−φ(v)) such numbers.

(ii) A number can have common factors with u and be not greater than uv if it can be
written as ku+ i, where i has common factors with u and k takes the values from
0 to v− 1 inclusive; there are v(u−φ(u)) numbers.

(iii) Similarly, u(v−φ(v)) numbers from 1 to n inclusive have common factors with
v.

Therefore, uv− φ(uv) = v(u− φ(u)) + u(v− φ(v))− (u− φ(u))(v− φ(v))⇔ φ(uv) =
φ(u)φ(v), and the proof is complete. �

Theorem 7.17. Let p be a prime; then φ(pm)= pm(1− 1/p), m ∈N∗, and φ(p) = p− 1
as a special case.

Proof. A number can have a common factor with pm if and only if it is divisible by p,
hence of the form ip, i = 1, . . . , pm−1; therefore, there are exactly pm−1 such numbers,
which leaves φ(pm)= pm− pm−1 = pm(1− 1/p). Setting m= 1, φ(p)= p− 1. �

Application 7.18. (i) φ(33)= φ(3)φ(11)= 2 · 10= 20.
(ii) F17 has φ(16)= 23 = 8 primitive roots.
(iii) F29 has φ(28)= φ(4)φ(7)= 6 · 2= 12 primitive roots.

7.1.7. Logarithms on finite fields. The existence of primitive roots allows us to define log-
arithms on finite fields.

Definition 7.19. Let F be a finite field and x a primitive root. Then for all y ∈ F− {0},
u= logx(y)∈ {0, . . . ,|F|− 2} ⇔ xu = y.
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This definition is sound: the set of powers {xu | u= 0, . . . ,|F| − 2} is equal to F−{0},
as x is a primitive root of F, which means that every element y can be written as a power
xu for exactly one u in the stated range of values.

7.1.8. Another family of finite fields. Are there more finite fields than Fp with p prime?
We proved that there are not, as long as we insist on looking for them among the sets
{1, . . . ,n}, n ∈N∗, with the usual definition of addition and multiplication. However, if
the rules of the game change, we can find more indeed.

Definition 7.20. Let Fmn = {
∑m−1

i=0 aixi | for all i ∈ {0, . . . ,m− 1}ai ∈ Fn}, with m,n∈N∗.
This is the set of all polynomials of degree up to, but not including, m, with coeffi-
cients in Fn. Define the sum of a(x)=∑m−1

i=0 aixi,b(x)=∑m−1
i=0 bixi ∈ Fmn to be (a+ b)(x)=

∑m−1
i=0 ((ai + bi)modn)xi, and also define ca(x)=∑m−1

i=0 ((cai)modn)xi.

Apparently F1
n = Fn. Observe that Fm1

n ⊂ Fm2
n if m2 >m1. The elements of these sets are

polynomials, not numbers; this is the reason we avoided calling the elements of finite
fields “numbers” whenever we discussed properties of finite fields in general: there exist,
as we are about to see, finite fields whose elements are not numbers!

Definition 7.21. F∞n =
⋃∞

m=0F
m
n .

Theorem 7.22. Fmn is a vector space.

Proof. If f (x),g(x)∈ Fmn , then for all a,b ∈ Fn : a f (x) + bg(x)∈ Fmn . �

This implies that it is a group under addition. The definition of the multiplication is a
bit more involved, and it is based on the extension of the modulo function for polynomi-
als.

Definition 7.23. Let f (x) ∈ Fmn , g(x) ∈ F∞n . Then, f (x) modulo g(x), f (x)modg(x), is
defined to be the unique r(x)∈ Fmn that satisfies the following conditions:

(1) ∃h(x)∈ F∞n : f (x)= h(x)g(x) + r(x),
(2) 0≤ degree (r(x)) < degree (g(x)).

Once more, we obtain that for all h(x)∈ F∞n , ( f (x)+h(x)g(x))modg(x)= f (x)modg(x)
as an immediate consequence of the definition. Theorem 7.2 also has a counterpart.

Theorem 7.24. For all u(x),v(x)∈ Fmn , g(x)∈ F∞n ,
(1) (u(x) + v(x))modg(x)= (u(x)modg(x) +u(x)modg(x))modg(x),
(2) (u(x)v(x))modg(x)= ((u(x)modg(x))(v(x)modg(x)))modg(x).

Under what circumstances can Fmn be a field? If n is not a prime, it certainly is not,
for if n= pq, then p,q ∈ Fmn and the modulo n multiplication implies that (pq)modn=
nmodn= 0, so that the product of two nonzero elements is 0, a contradiction. So n needs
to be a prime.

If n is a prime, say n= p, we can prove that Fmp can be turned into a field, by defining
the multiplication modulo a suitable polynomial.

Definition 7.25. The product of u(x),v(x)∈ Fmp is defined to be

(uv)(x)= (u(x)v(x)
)

modg(x), (7.1)



Konstantinos Drakakis 19

where g(x) is a polynomial in Fm+1
p of degree m, that is, with a nonzero highest power

coefficient, which is taken to be 1.

If there exist two polynomials g1(x), g2(x) with coefficients in Fp and positive degrees
so that g1(x)g2(x) = g(x), then g1(x),g2(x) ∈ Fmp and (g1g2)(x) = g(x)modg(x) = 0, so
that the product of two nonzero elements is 0, a contradiction. Let us summarize.

Theorem 7.26. If Fmn is a field, then n is a prime and the polynomial g(x) that defines the
multiplication is irreducible, that is, it cannot be written as the product of polynomials of
smaller positive degree with coefficients in Fn.

But if we do obey these restrictions, do we obtain a field? The answer is yes. First, we
prove a preliminary result.

Theorem 7.27. Let f (x),g(x) ∈ F∞n , for some n ∈ N∗; consider the set ,S( f ,g) =
{u(x) f (x) + v(x)g(x)|u(x), v(x) ∈ F∞p }, then, S( f ,g) = {u(x)h(x)|u(x) ∈ F∞p }, where
h(x) is the greatest common divisor of f (x), g(x) with leading coefficient 1.

Proof. If s(x) ∈ S( f ,g), then h(x) divides s(x). Consider the polynomial of least degree
with leading coefficient 1 in S( f ,g), say t(x) (it is unique); its degree is larger than or equal
to the degree of h(x), so we can divide them: t(x)= h(x)d(x) + r(x) for some d(x)∈ F∞n .
But h(x) divides t(x), so it has to divide r(x) as well, a contradiction since r(x) has lower
degree than h(x). So, r(x) = 0 and t(x) = d(x)h(x). But f (x),g(x) ∈ S( f ,g) themselves,
so we can divide them by t(x): f (x) = d f (x)t(x) + r f (x) and g(x) = dg(x)t(x) + rg(x);
if r f and rg are not 0, we obtain members of S( f ,g) with degrees less than the degree
of t, a contradiction. Hence, t(x) divides f (x) and g(x), and therefore it is a common
divisor of these two polynomials; so it divides the greatest common divisor h(x). As these
polynomials divide each other, they are equal h(x)= t(x). So, every member of S( f ,g) is
a multiple of h(x) and the proof is complete. �

Theorem 7.28. Fmp , with p prime, can be turned into a field by defining the multiplication
of the polynomials that belongs in it modulo an irreducible polynomial g(x).

Proof. We have already proved all the defining properties of the field except the usual
hard to get, the existence of multiplicative inverses. Let then f (x) ∈ Fmp , and consider
the greatest common divisor of the two polynomials f (x),g(x): as g(x) has no divisors,
being irreducible, the greatest common divisor in question is 1, and Theorem 7.27 guar-
antees the existence of two polynomials u(x),v(x)∈ F∞p so that u(x) f (x) + v(x)g(x)= 1,
implying that [u(x) f (x)]modg(x) = 1, that is, that u(x) = ( f (x))−1, and the proof is
complete. �

Fmp has exactly pm elements: its polynomials have m coefficients, each of which can
take p different values. It should be added that determining which ones among these
elements are the primitive roots is a difficult problem (see an earlier note on that), as is
the determination of an irreducible polynomial g(x) to be used in the definition of the
finite field (see [8] for a solution that was clearly associated with the ongoing at the time
work on the algebraic construction of Costas arrays). Fortunately, for given p prime and
m, both the irreducible polynomials of degree m over Fp and the primitive roots of Fmp
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can be looked up in tables or in mathematical software, such as Matlab (we will see an
example later).

7.2. Summary of results on finite fields.
(i) A field F is a set of elements along with two operations, addition and multipli-

cation, defined on them, that obey the same familiar laws they obey on R; in
particular, it contains 0 and 1, and every element of the field other than 0 has a
multiplicative inverse: for all x ∈ F, x �= 0, ∃y ∈ F : xy = 1.

(ii) The set Fn = 0,1, . . . ,n− 1 with addition and multiplication defined as usual but
modulo n is a field if and only if n is prime.

(iii) The set Fmn = {
∑m−1

i=0 aixi | for all i∈ {0, . . . ,m− 1}ai ∈ Fn}, with m,n∈N∗, that
is, the set of all polynomials of degree up to m with coefficients in Fn, is a field
if and only if n is prime and the polynomial modulo which the multiplication is
defined is irreducible.

(iv) In both cases the finite field F can be written as {0,1,x, . . . ,x|F|−2}, where x is an
element of the field called a primitive root. All finite fields have primitive roots.

(v) For any field F, any primitive root x, and any nonzero element y, there exists
one number in {0, . . . ,|F|− 2} called the logarithm of y with respect to x logx(y),
which is the power of x producing y: xlogx(y) = y.

7.3. The Welch construction. Welch found this algorithm of constructing Costas arrays
heuristically; the correctness proof was published later by Golomb [9].

Theorem 7.29 (W1). Let x ∈ Fp −{0,1}, p prime, be a primitive root; then, for any s ∈
{0, . . . , p− 2}, the permutation f (s,1)··· f (s, p− 1) with f (s, i) = xi−1+s mod p, i = 1, . . . ,
p− 1, corresponds to a Costas array of order p− 1.

Proof. Let us take a look at two entries tki and tk j on the same row of the difference
triangle of the permutation: tki = xi+s−1 mod p− xi+k+s−1 mod p and tk j = x j+s−1 mod p−
x j+k+s−1 mod p, with 1≤ i < i+ k ≤ p− 1, 1≤ j < j + k ≤ p− 1, and j ≥ i:

tki = tk j ⇐⇒ xi−1+s mod p− xi+k−1+s mod p

= x j−1+s mod p− x j+k−1+s mod p =⇒ (xi−1+s p− xi+k−1+s)mod p

= (x j−1+s− x j+k−1+s)mod p⇐⇒ (xi−1+s− xi+k+s−1− x j−1+s + x j+k+s−1)mod p

= 0⇐⇒ (xs−1(xi− x j
)(

1− xk
))

mod p = 0=⇒ ((xi− x j
)(

1− xk
))

mod p = 0.

(7.2)

It follows that p divides either xk − 1 or xi− x j ; but the former case leads to xk mod p = 1
with 1≤ k < p− 1, which contradicts our assumption that x is a primitive root, and hence
the second alternative must hold:

(
xi− x j

)
mod p = 0= [xi(1− x j−i)]mod p =⇒ (1− x j−i)mod p = 0⇐⇒ x j−i mod p = 1.

(7.3)
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If j > i, then 1≤ j − i < p− 1 and once more our assumption that x is a primitive root is
contradicted; hence, j = i, and the proof is complete. �

Remark here that s is a rotation parameter: f (s,1)··· f (s, p− 1)= f (0,s)··· f (0, p−
1) f (0,1)··· f (0,s− 1). Based on this construction we obtain some more for free, by
using Theorem 2.5.

Theorem 7.30 (W2). Let x ∈ Fp−{0,1} with p prime; then the permutation f (2)− 1, . . . ,
f (p− 1)− 1 with f (i)= xi−1 mod p, i= 2, . . . , p− 1, corresponds to a Costas array of order
p− 2.

Proof. All constructions of W1 with s= 0 start with 1; just remove it, and the remaining
permutation is a Costas array, except that it contains the numbers 2 to p − 1. As the
Costas property does not depend on the numbers themselves but on their differences, we
can redefine the permutation to contain the numbers 1 to p− 2 by subtracting 1 from
each of them. This completes the proof. �

Theorem 7.31 (W3). Consider Fp − {0,1} with p prime; if 2 is a primitive root of Fp,
then the permutation f (3)− 2, . . . , f (p − 1)− 2 with f (i) = 2i−1 mod p, i = 3, . . . , p − 1,
corresponds to a Costas array of order p− 3.

Proof. Apply W1 with x = 2 and s = 0; then f (0,1) = 1 and f (0,2) = 2. We just remove
these two entries, and the remaining permutation is a Costas array, except that it contains
the numbers 3 to p− 1. As the Costas property does not depend on the numbers them-
selves but on their differences, we can redefine the permutation to contain the numbers 1
to p− 3 by subtracting 2 from each of them. This completes the proof. �

There exists one last construction based on W1, which works “sporadically” [12].

Theorem 7.32 (W0). Consider Fp−{0,1} with p prime; then, it is possible that there exists
s∈ {0, . . . , p− 2} and a primitive root x so that the permutation 0 f (s,1)··· f (s, p− 1) with
f (s, i)= xi−1+s mod p, i= 1, . . . , p− 1, corresponds to a Costas array of order p.

Proof. By checking all possible cases we can prove that the method works for orders 19
and 31; in fact, the only Costas arrays produced by means of the construction algorithms
in these orders are due to W0. �

7.4. The Golomb construction. The Golomb construction works in the general finite
fields Fmp , p prime, m∈N∗.

7.4.1. Golomb methods

Theorem 7.33 (G2). Let a, b be two primitive roots, not necessarily distinct, of the field Fmp .
Set q = pm and construct the permutation f (1)··· f (q− 2) by setting f (i)= j if and only
if ai + bj = 1, i, j = 1, . . . ,q− 2; this permutation corresponds to a Costas array.

Proof. Let us verify the result in steps. We will use the circled symbols for the field oper-
ations, to distinguish them from the usual real operations.
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(i) For every i∈ {1, . . . ,q− 2} we can find a unique j satisfying the defining equality
ai⊕ bj = 1⇒ j = logb(1� ai), and j cannot be 0 or else 1� ai would be 1, and ai

would be 0, which is impossible; so j ∈ {1, . . . ,q− 2} as well.
(ii) Let j1 = logb(1� ai1 ), j2 = logb(1� ai2 ), with i1 ≥ i2. If j1 = j2, then 1� ai1 =

1� ai2 ⇒ ai1−i2 = 1⇒ i1− i2 = 0, as 0≤ i1− i2 ≤ q− 2. This proves that we cannot
obtain the same j for two different i’s.

(iii) Finally, we need to check the Costas property: consider the two entries tki, tk j ,
which lie on the same row of the difference triangle of the permutation. More pre-
cisely, tki = logb(1� ai)− logb(1� ai+k) and tk j = logb(1� aj)− logb(1� aj+k),
k = 1, . . . ,q− 3, 1 ≤ i ≤ j ≤ q− 2, 1 ≤ i+ k ≤ j + k ≤ q− 2. tki = tk j is equivalent
to saying that

logb
(
1� ai

)− logb
(
1� ai+k

)

= logb
(
1� aj

)− logb
(
1� aj+k)⇐⇒ logb

(
1� ai

)
+logb

(
1� aj+k)

= logb
(
1� aj

)
+ logb

(
1� ai+k

)⇐⇒ (1� ai
)(

1� aj+k)

= (1� aj
)(

1� ai+k
)=⇒ (1� ai

)� (1� aj+k)

= (1� aj
)� (1� ai+k

)⇐⇒ 1� ai� aj+k ⊕ aj+k+i

= 1� aj � ai+k ⊕ aj+k+i⇐⇒ ai⊕ aj+k

= aj ⊕ ai+k ⇐⇒ (1� ak
)� (ai� aj

)= 0.

(7.4)

This means that either ak = 1 or ai = aj ⇔ aj−i = 1; the former implies that k =
q− 1, which is impossible, whereas the latter means that j − i= 0, as 0≤ j − i <
q− 2.

This completes the proof. �

As in the Welch construction, we get some more constructions for free, using Theorem
2.5.

Theorem 7.34 (G3). Let a,b be two primitive roots, not necessarily distinct, of the field
Fmp , with a+ b = 1. Set q = pm, and construct the permutation f (1)··· f (q− 3) by setting
f (i)= j if and only if ai+1 + bj+1 = 1; this permutation corresponds to a Costas array.

Proof. Applying G2 with the two primitive roots a,b : a+ b = 1 means that f (1)= 1. Dis-
card this entry, renumber f (2)··· f (q− 2) as f (1)··· f (q− 3), and subtract 1 from each
remaining entry. The result is a Costas array of order q− 3. �

Note that G3 can always be applied if q > 3, for it can be shown that every such Fq
contains primitive roots a and b such that a+ b= 1 [10].

Theorem 7.35 (G4). Let a,b be two primitive roots, not necessarily distinct, of the field
Fm2 , with a+ b = 1. Set q = 2m, and construct the permutation f (1)··· f (q− 4) by setting
f (i)= j if and only if ai+2 + bj+2 = 1; this permutation corresponds to a Costas array.

Proof. Applying G2 with the two primitive roots a,b : a + b = 1 means that f (1) = 1;
moreover, as the arithmetic is modulo 2, (a+ b)2 = 12 = 1 = a2 + b2 + ab+ ab = a2 + b2,
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so f (2)= 2. Discard these entries, renumber f (3)··· f (q− 2) as f (1)··· f (q− 4), and
subtract 2 from each remaining entry. The result is a Costas array of order q− 4. �

Theorem 7.36 (G∗4 ). Let a, b be two primitive roots, not necessarily distinct, of the field Fmp ,
with a+ b = 1, a2 + b−1 = 1. Set q = pm, and construct the permutation f (1)··· f (q− 4)
by setting f (i) = j if and only if ai+2 + bj+1 = 1; this permutation corresponds to a Costas
array.

Proof. Applying G2 with the two primitive roots a,b : a + b = 1 means that f (1) = 1;
moreover, b−1 = bq−2 since bq−1 = 1, which implies that f (2) = q− 2. Discard these en-
tries, renumber f (3)··· f (q− 2) as f (1)··· f (q− 4), and subtract 1 from each remain-
ing entry. The result is a Costas array of order q− 4. �

Note that the values of q for which G∗4 occurs are either 4, 5, and 9, or those primes p
for which T4 occurs (see below) and which satisfy pmod20= 1 or 9 [10].

Theorem 7.37 (G∗5 ). Let a, b be two primitive roots, not necessarily distinct, of the field Fmp ,
with a+ b = 1, a2 + b−1 = 1. Set q = pm, and construct the permutation f (1)··· f (q− 5)
by setting f (i) = j if and only if ai+2 + bj+2 = 1; this permutation corresponds to a Costas
array.

Proof. Applying G2 with the two primitive roots a,b : a + b = 1 means that f (1) = 1;
moreover, b−1 = bq−2 since bq−1 = 1, which implies that f (2)= q− 2.

What is more, b2 + a−1 = 1. In order to see this, multiply the two relations on a, b to
get (a+ b)(a2 + b−1)= 1 · 1= 1= a3 + ba2 + ab−1 + 1⇒ a2 + b−1 =−ab, whence it follows
that ab = −1. Then, a+ b = 1⇒ 1 + ba−1 = a−1 = 1 + b2(ab)−1 = 1− b2 ⇒ a−1 + b2 = 1.
This proves that f (q− 2)= 2.

Discard these three entries in the order listed, renumber f (3)··· f (q− 3) as f (1)···
f (q− 5), and subtract 2 from each remaining entry. The result is a Costas array of order
q− 5. �

7.4.2. Lempel methods. Historically, the special case of G2 with a= b was first discovered
heuristically by A. Lempel, and therefore it bears the name of the Lempel construction.
Lempel constructions have the property that they lead to symmetric Costas arrays.

Theorem 7.38 (L2). Let a be a primitive root of the field Fmp . Set q = pm, and construct the
permutation f (1)··· f (q− 2) by setting f (i)= j if and only if ai + aj = 1; this permutation
corresponds to a Costas array.

Theorem 7.39 (L3). Suppose 2−1 is a primitive root of the field Fmp . Set q = pm, and con-

struct the permutation f (1)··· f (q− 3) by setting f (i)= j if and only if 2−(i+1) + 2−( j+1) =
1; this permutation corresponds to a Costas array.

Proof. Apply L2 with a = 2−1. Observe that 2−1 + 2−1 = 1, hence f (1) = 1. Discard this
entry, renumber f (2)··· f (q− 2) as f (1)··· f (q− 3), and subtract 1 from each remain-
ing entry. The result is a Costas array of order q− 3. �

7.4.3. Taylor methods. The Taylor constructions are based on the Welch and Lempel con-
structions, and are due to Taylor [10, 12].
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Theorem 7.40 (T4). Let a be a primitive root of the field Fmp , with the property that a2 + a=
1. Set q = pm, and construct the permutation f (1)··· f (q− 4) by setting f (i) = j if and
only if ai+2 + aj+2 = 1; this permutation corresponds to a Costas array.

Proof. Apply L2 with a; the property of a implies that f (1) = 2 and f (2) = 1. Discard
these entries, renumber f (3)··· f (q− 2) as f (1)··· f (q− 4), and subtract 2 from each
remaining entry. The result is a Costas array of order q− 4. �

Note that it is shown in [10] that a necessary condition for T4 to work is that q be
either 4, 5, or 9, or a prime p so that pmod10=±1.

Let P = f (1)··· f (q− 2), q = pm, p prime, be constructed according to G2 with prim-
itive roots a and b. We would like to investigate under which circumstances it is possible to
add an f (0) or an f (q− 1). Our first observation already is that the value of this addition
will need to be either 0 or q− 1, hence we end up with 4 possible different cases.

(1) The addition of f (0)= 0 will fail if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2} so that
f (x1)= y1, f (x2)= y2, x1 + x2 < q− 1, and f (0)− f (x1)= f (x2)− f (x1 + x2)⇔ 0− y1 =
y2− f (x1 + x2)⇔ f (x1 + x2)= y1 + y2 < q− 1. The relations defining the construction of
G2 give ax1 + by1 = 1, ax2 + by2 = 1, and ax1+x2 + by1+y2 = 1. By multiplying the first two
and subtracting the third, we get ax1by2 + ax2by1 = 0⇔ ax1−x2 + by1−y2 = 0.

(2) The addition of f (0) = q− 1 will fail if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2}
so that f (x1) = y1, f (x2) = y2, x1 + x2 < q− 1, and f (0)− f (x1) = f (x2)− f (x1 + x2)⇔
q − 1− y1 = y2 − f (x1 + x2) ⇔ f (x1 + x2) = y1 + y2 + 1− q. The relations defining the
construction of G2 give ax1 + by1 = 1, ax2 + by2 = 1, and ax1+x2 + by1+y2+1−q = 1 = ax1+x2 +
by1+y2 , because bq−1 = 1. By multiplying the first two and subtracting the third, we get
ax1by2 + ax2by1 = 0 ⇔ ax1−x2 + by1−y2 = 0. Finally, 0 < y1 + y2 + 1− q < q− 1 ⇔ q ≤ y1 +
y2 < 2(q− 1).

(3) The addition of f (q− 1) = 0 will fail if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2}
so that f (q− 1− x1) = q− 1− y1, f (q− 1− x2)= q− 1− y2, x1 + x2 < q− 1, and f (q−
1− x1− x2)− f (q− 1− x2)= f (q− 1− x1)− f (q− 1)⇔ f (q− 1− x1− x2)= 2(q− 1)−
y1− y2. The relations defining the construction of G2 give aq−1−x1 + bq−1−y1 = 1= a−x1 +
b−y1 , aq−1−x2 + bq−1−y2 = 1 = a−x2 + b−y2 , and aq−1−x1−x2 + b2(q−1)−y1−y2 = 1 = a−(x1+x2) +
b−(y1+y2), because bq−1 = 1. By multiplying the first two and subtracting the third, we
get a−x1b−y2 + a−x2b−y1 = 0⇔ ax2−x1 + by2−y1 = 0. Finally, 0 < 2(q− 1)− y1− y2 < q− 1⇔
q ≤ y1 + y2 < 2(q− 1).

(4) The addition of f (q− 1)= q− 1 will fail if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2}
so that f (q− 1− x1) = q− 1− y1, f (q− 1− x2)= q− 1− y2, x1 + x2 < q− 1, and f (q−
1− x1 − x2)− f (q− 1− x2) = f (q− 1− x1)− f (q− 1) ⇔ f (q− 1− x1 − x2) = q− 1−
y1− y2. The relations defining the construction of G2 give aq−1−x1 + bq−1−y1 = 1= a−x1 +
b−y1 , aq−1−x2 + bq−1−y2 = 1 = a−x2 + b−y2 , and aq−1−x1−x2 + bq−1−y1−y2 = 1 = a−(x1+x2) +
b−(y1+y2), because bq−1 = 1. By multiplying the first two and subtracting the third, we
get a−x1b−y2 + a−x2b−y1 = 0⇔ ax2−x1 + by2−y1 = 0. Finally, 0 < (q− 1)− y1− y2 < q− 1⇔
1≤ y1 + y2 < q− 1.

Since a is a primitive root of Fmp , there exists a k<p−1 so that b=ak. The final equations

of the 4 steps above can be written in the form aΔx+bΔy=0⇔aΔx=−akΔy=akΔy±(q−1)/2,
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because 2 divides q− 1, (a(q−1)/2)2 = aq−1 = 1, and (q− 1)/2 �= 0, so necessarily a(q−1)/2 =
−1. Therefore,

(
x1− x2

)
mod(q− 1)=

[

k
(
y1− y2

)
+
q− 1

2

]

mod(q− 1). (7.5)

Moreover, because b is a primitive root too and b = ak, k cannot have common factors
with q− 1 (they need to be coprime); otherwise, if the greatest common divisors of b
and q − 1 were d > 1, then b(q−1)/d = ak(q−1)/d = (aq−1)k/d = 1 and (q− 1)/d < q− 1, a
contradiction.

We have proved the following theorem.

Theorem 7.41 (Corner conditions). Let P = f (1)··· f (q− 2), q = pm, p prime, be const-
ructed according to G2 with primitive roots a and b. Then

(1) the permutation f (0) f (1)··· f (q− 2) with f (0) = 0 will not be a Costas array if
and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2} so that f (x1) = y1, f (x2) = y2, x1 + x2 <
q− 1, f (x1 + x2)= y1 + y2, y1 + y2 < q− 1, and (7.5) holds;

(2) the permutation f (0) f (1)··· f (q− 2) with f (0)= q− 1 will not be a Costas array
if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2} so that f (x1)= y1, f (x2)= y2, x1 + x2 <
q− 1, f (x1 + x2)= y1 + y2− q+ 1, q ≤ y1 + y2 < 2(q− 1), and (7.5) holds;

(3) the permutation f (1)··· f (q− 2) f (q− 1) with f (q− 1) = 0 will not be a Costas
array if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2} so that f (q− 1− x1)= q− 1− y1,
f (q− 1− x2)= q− 1− y2, x1 + x2 < q− 1, f (q− 1− x1− x2)= 2(q− 1)− y1− y2,
q ≤ y1 + y2 < 2(q− 1), and (7.5) holds;

(4) the permutation f (1)··· f (q− 2) f (q− 1) with f (q− 1)= q− 1 will not be a Costas
array if and only if ∃x1,x2, y1, y2 ∈ {1, . . . , p− 2} so that f (q− 1− x1)= q− 1− y1,
f (q− 1− x2) = q− 1− y2, x1 + x2 < q− 1, f (q− 1− x1 − x2) = q− 1− y1 − y2,
1≤ y1 + y2 < q− 1, and (7.5) holds.

The name of the theorem derives from the dot representation of a permutation: a
dot exists at ( j, i) if and only if f (i) = j, and therefore the extensions mentioned in the
theorem correspond to adding a dot at one of the four corners of the array.

We have now proved T1.

Theorem 7.42 (T1). If f (1)··· f (q− 2) is generated by the application of G2, then it is
possible to obtain a Costas array of order q− 1 by setting one of the following: f (0) = 0 or
f (0)= q− 1 or f (q− 1)= 0 or f (q− 1)= q− 1, unless the corner conditions prevent it.

Two dots may also be added occasionally.

Theorem 7.43 (T0). If f (1)··· f (q− 2) is generated by the application of G2, then it is
possible to obtain a Costas array of order q by setting one of the following pairs: f (0)= 0 and
f (q− 1)= q− 1, or f (q− 1)= 0 and f (0)= q− 1, as long as the corner conditions do not
prevent it.

Proof. The possibility is proved by the fact that it works for q = 47 [12]. �
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Table 7.1

i xi i xi i xi

0 1 5 x2 + x 10 x2 + x+ 1

1 x 6 x3 + x2 11 x3 + x2 + x

2 x2 7 x3 + x+ 1 12 x3 + x2 + x+ 1

3 x3 8 x2 + 1 13 x3 + x2 + 1

4 x+ 1 9 x3 + x 14 x3 + 1

Numerous other results are offered in [12, 23], which investigate the applicability of
the various constructions that are not unconditionally applicable, such as T0 and T1

above, for specific families of numbers. As the proofs are quite technical and the results
are of limited practical value they will not be reproduced here.

7.5. Construction examples. Let us apply here the basic methods W1 and L2 to construct
two Costas arrays. We will use p = 17 and q = 24 = 16, respectively, so that W1 will yield
a Costas array of order 16, and L2 one of order 14.

In order to apply W1 we need to find a primitive root of F17; we test 2 and it fails,
as the order of the cyclic group generated by 2 turns out to be 8; then we test 3 and it
succeeds, because the powers f (i)= 3i−1 mod17, i= 1, . . . ,16, are all different. The Costas
array generated by W1 is 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 .

The application of L2 is a bit more involved.
(i) First of all, we need to find an irreducible polynomial of F4

2: such polynomials are
well tabulated in books and software; for example, Matlab has the command “gfprimfd”
for this purpose, which yields all irreducible polynomials over a finite field. If we run it,
we find that P(x)= x4 + x+ 1 is such a polynomial.

(ii) Now we need a primitive root of the field: a good idea is to test x as a start, as it
is the simplest possible polynomial. It turns out to be a primitive root. The computation
of the powers follows the recursion x0 = 1, and xi = (xxi−1 mod(x4 + x+ 1)), i= 1, . . . ,14;
in practice this means that we find xi as the product xx−1, and then we substitute x4,
if it appears, by x + 1. Table 7.1 is the full table, which can equally well be used as the
logarithm table.

We need to solve the equation xi + x j = 1, j = f (i) for i= 1, . . . ,14, to find the L2 con-
struction of a Costas array of order 14; fortunately, we need only 7 calculations, as L2

generates symmetric Costas arrays:
(1) x+ x j = 1⇔ x j = 1 + x⇔ j = 4,
(2) x2 + x j = 1⇔ x j = 1 + x2 ⇔ j = 8,
(3) x3 + x j = 1⇔ x j = 1 + x3 ⇔ j = 14,
(4) x5 + x j = 1= x2 + x+ x j ⇔ x j = 1 + x+ x2 ⇔ j = 10,
(5) x6 + x j = 1= x3 + x2 + x j ⇔ x j = 1 + x2 + x3 ⇔ j = 13,
(6) x7 + x j = 1= x3 + x+ 1 + x j ⇔ x j = x3 + x⇔ j = 9,
(7) x11 + x j = 1= x3 + x2 + x+ x j ⇔,x j = x3 + x2 + x+ 1⇔ j = 12.
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The Costas array generated is then 4 8 14 1 10 13 9 2 7 5 12 11 6 3 .

8. Trial and error: 1-Gap augmentation [18]

Assume that P = f (1)··· f (n), f : {1, . . . ,n} → {1, . . . ,n}, f a bijection, corresponds to a
Costas array; we can attempt to create a P′ = g(1)···g(n+ 1), g a bijection, that corre-
sponds to a Costas array of one order higher by the following process.

(1) Apply the following steps to all Pi = fi(1)··· fi(n), i=0,1, . . . ,n− 1, where fi(k)=
(k+ i− 1)modn+ 1.

(2) Apply the following step for all j = 1, . . . ,n+ 1.
(3) (a) For every k, if fi(k)≥ j set g(k)= fi(k) + 1, otherwise set g(k)= fi(k).

(b) Set g(n + 1) = j, and test whether the P′ = g(1)···g(n + 1) so defined is
Costas; then test whether P′′ = g(n+ 1)g(1)···g(n) is Costas.

In terms of the dot representation of the permutation, these operations amount to
“rolling” or shifting the array dots in the vertical direction, then “cutting” the matrix
horizontally to introduce one more row, and finally appending one more column to the
left or to the right, with its dot lying on the new row.

Let us demonstrate the process with an example: the permutation P = 4213 is Costas,
as one can easily check. Consider P1 = 1324, which results from P by rolling its dots one
position upwards; it is not Costas, but it does not matter. Create a new permutation by
increasing all entries larger than or equal to 2 by 1: 1435, that is, by choosing j = 2 in
step 3 of the algorithm above. Finally, append 2 once on the left and once on the right
to obtain P′ = 21435 and P′′ = 14352. After testing, we discover that the former is not
Costas, while the latter is.

This method has yielded 4 new Costas arrays of order up to and including 100, the
definition of new being that they had not been obtained before through exhaustive search
or the construction algorithms: 2 of order 29, 1 of 36, and 1 of 42. These constructions
are shown below.

3 21 23 22 8 15 26 6 16 11 28 5 2 18 10 14 12 13 27 20 9 29 19 24 7 1 4 17 25

4 12 25 28 22 5 10 29 20 9 2 16 17 15 19 11 27 24 1 18 13 23 3 14 21 7 6 8 26

2 29 33 19 21 27 32 9 1 30 17 36 16 23 14 12 24 5 31 6 26 15 18 28 22 7 25 3 11 20 8 4 35 34 13 10

3 6 29 34 36 27 13 30 2 40 14 41 39 22 19 31 4 28 18 7 8 1 12 21 20 26 42 24 37 15 25 33 17 35 23 10 5 9 16 38 32 11

The theoretical justification of these manipulations is the following theorem, for which
more details can be found in [18].

Theorem 8.1. Let P be a Costas array generated according to W1 or G2; then the sequence
of numbers produced at the end of Step (3)(a) above satisfies the Costas property.

Even without this theorem, though, one would be totally justified to use the algorithm
above as a “clever brute force” method to search for Costas arrays: it is clear that all the
operations involved in the algorithm preserve more or less the Costas structure, namely
a low number of repetitions of entries in the rows of the difference triangle, which occa-
sionally may be 0 so that a Costas array is produced. In other words, instead of searching
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“blindly” for Costas arrays, as in the exhaustive search, it may be more efficient to start
with constructions that are “almost” Costas, such as the ones produced by the algorithm
above, and test only them.

9. Open questions

During the past decades many conjectures were formulated on Costas arrays. Some of
them were subsequently proved or disproved, but it would be no exaggeration to say that
most of them, and, among them, the most important ones, remain still open.

(1) For all n∈N∗, n≥ 2, �n �= ∅; or in the form of a question: are there Costs arrays
for all orders?

The issue arises because the orders for which, according to the construction algo-
rithms, Costas arrays can be constructed contain some “gaps”. Actually, this is rather the
picture for “small” orders, say less than 100; because for large orders, as primes and pow-
ers of primes are sparse within the integers, it would probably be more accurate to say that
in general the algorithms do not work, but that occasionally there are small “islands” of
consecutive integers for which they do. An invaluable table of which constructions work
at which orders, for orders up to 360, is given in [12]: we promptly learn that for or-
ders n≤ 100, the algorithms yield nothing at n= 32, 33, 43, 48, 49, 54, 63, 73, 74, 83–85,
89–93, 97. We reproduce this table up to order 50 here, as Table 9.1.

The case of n = 53 deserves a special mention, due to its peculiar history. Originally
[12] included it in the list above, although this is clearly a mistake: W0 does yield a Costas
array for n = 53; this fact was discovered by Carbonera, a student of Moreno’s, before
1986 [3, 17], but apparently it was not immediately published, as the the first mention of
this construction in the literature that we can trace of appears in [25], dating 1995 and
written in Chinese; it is only in 2003 that it appears again in [16], in the western literature
this time, but Carbonera’s name is not explicitly mentioned.

32 is tantalizingly close to 25, today’s bound of successful exhaustive search, so one
might be tempted to think that by pushing exhaustive search a bit, the answer to the great
mystery of whether Costas arrays exist for all orders could be revealed. Unfortunately, the
factorial increase in complexity of exhaustive search, much faster than the exponential
increase of Moore’s Law for the increase of speed of our computer resources [1], does not
allow us to be very optimistic that order 32 will be tackled soon (although members of
Beard’s group do have expressed some optimism on this point).

In the meantime, both sides seem to keep their hopes up: the author of [13], after
listing the orders below 100 for which constructions do not work, proceeds to state that
“[o]ur goal is to fill these gaps”, which can be construed to presuppose the optimistic
view that this is indeed possible; at the same time period, the author of [1] conjectures
that there are infinitely many orders for which Costas arrays fail to exist, which is clearly
pessimistic.

(2) Are there other construction algorithms, perhaps not based on finite field techniques?
Some incidents seem to suggest that very often the construction algorithms seem to

capture a very small fraction of the total number of Costas arrays for a given order. For
example, the construction table in [12] shows that for orders 19 and 31 the only known
examples of Costas arrays originating from the algorithms result from the “sporadic” W0.
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Table 9.1. Constructions that successfully produce Costas arrays for order ≤ 50 (copied from [12]).

Order Working constructions Order Working constructions

— — 26 W3, L3, G3

— — 27 W2, L2, T4, G2

3 T1, W2, L2, G2 28 T1, W1, G3, G4

4 T1, W1, G3, G4, G∗5 29 T0, W2, L2, G2, G3

5 T0, W2, L2, T4, G2, G3, G∗4 30 W1, L2, G2

6 T1, W1, L2, G2, G3 31 W0

7 W0, L2, T4, G2 32 —

8 T1, W3, L3, G3 33 —

9 W2, L2, G2 34 W3, L3, G3

10 T2, W1, W3, L3, G3 35 W2, L2, G2

11 T0, W2, L2, G2 36 W1, G∗5

12 W1, G4 37 T4, G∗4

13 W0, G3 38 G3

14 L2, G2, G3 39 W2, L2, G2

15 W2, L2, T4, G2 40 W1, G3

16 T1, W1, W3, L3, G3 41 W2, L2, G2

17 T0, W2, L2, G2 42 W1

18 W1 43 —

19 W0 44 G3

20 G3 45 W2, L2, G2

21 W2, L2, G2 46 T1, W1, G3

22 T1, W1, G3 47 T0, L2, G2

23 T0, L2, G2 48 —

24 G3 49 —

25 L2, G2 50 W3, L3, G3

Today, the example for 31 is still the only known Costas array for that order, modulo the
symmetry; but 19 has been covered by the exhaustive search, which yielded 10240 Costas
arrays at that order! Where did all the others come from?

In particular, all algorithms for Costas arrays published today, with the exception of
the 1-Gap augmentation, seem to be polarized at the two extremes: on the brute force
side lies the exhaustive search, while on the purely mathematical side lie the construction
algorithms. No attempt of a “clever” search has been published, for example.
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(3) Is it the case that for sufficiently large orders the only existing Costas arrays are the
ones produced by the construction algorithms?

A simple counting argument reveals the reason for this question: a Costas array of
order n is defined by the n numbers 1, . . . ,n, the order of which needs to obey O(n3) re-
strictions, according to Theorem 4.3. As the number of restrictions rises much faster than
the number of available integers, higher-order Costas arrays are much more constrained
than lower-order ones. Therefore, all lower-order Costas arrays not produced by the al-
gorithms can be treated as “accidentals,” for which there is no room in higher orders.

1-Gap augmentation proves that, if this conjecture is true, then the sufficiently large
orders start above order 42.

(4) Is there a closed formula for |�n|?
(5) Is there a simple way to determine whether there exist Costas arrays for a particular

order?

10. Conclusion

Costas arrays can be truly fascinating objects for a mathematician interested in discrete
mathematics, as, on the one hand, their theory involves interesting mathematics, and,
on the other, the fundamental problems of existence and construction are still not fully
solved. Moreover, they are also appealing to engineers, because of their applications in
radar and sonar engineering, which actually where they originated from. As no new
method of construction has emerged in the last 20 years, except 1-Gap augmentation
with its limited success in low orders, and as our capability for exhaustive search seems
to have saturated, it seems now reasonable to try to adopt alternative approaches, such as
“clever brute force” methods or randomized methods.

It should be noted that Costas arrays have not been studied out of the wider context of
positioning problems in discrete mathematics: connections have been found with non-
attacking Kings, Queens [12], and Rooks [23] in chess, Vatican and Florentine arrays [21],
Tuscan arrays [7, 11], and so forth, through which important contributions have been
made to Costas arrays themselves. We can expect that such connections will contribute
to answering the still unanswered questions on them.

In the meantime, we can only hope that this article has successfully achieved its goal,
which was the presentation of (almost) everything basic we know today on Costas arrays,
these elusive beasts of the mathematical kingdom.
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