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We investigate the relationships between the infinitely many characteristic zeros (or
modes) of linear systems subject to point delays and their delay-free counterparts based
on algebraic results and theory of analytic functions. The cases when the delay tends to
zero or to infinity are emphasized in the study. It is found that when the delay is arbitrar-
ily small, infinitely many of those zeros are located in the stable region with arbitrarily
large modulus, while their contribution to the system dynamics becomes irrelevant. The
remaining finite characteristic zeros converge to those of the delay-free nominal system.
When the delay tends to infinity, infinitely many zeros are close to the origin. Further-
more, there exist two auxiliary delay-free systems which describe the relevant dynamics
in both cases for zero and infinite delays. The maintenance of the delay-free system sta-
bility in the presence of sufficiently small delayed dynamics is also discussed in light of
H∞-theory. The main mathematical arguments used to derive the results are based on the
theory of analytic functions.

1. Introduction

The objective of this paper is to investigate the relationships between the infinitely many
modes of linear and time-invariant systems with point delays and their delay-free coun-
terparts based on algebraic basic results and theory of analytic functions [1, 2, 6, 9, 10,
12, 13, 17]. Special interest is devoted to the cases when either the delay or the delay-free
dynamics contribution tends to zero, and to the case when the delay tends to infinity. The
main technical problem in the above first two cases is that a transcendent characteristic
equation with infinitely many zeros tends to a polynomial with a finite number of zeros,
but that limit problem for the characteristic zeros has not been addressed in the litera-
ture [3, 4, 5, 8, 10, 11, 14, 15, 16]. The dynamic behavior of the system in those limit
cases approaches that of a delay-free system as is also deduced from intuition. A question
that immediately arises is what in fact happens with infinitely many characteristic modes
when the delay converges to zero so that the system becomes a delay-free one at the limit.
This is a gap that has not been covered in the existing literature. The basic results in this
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paper are useful to interpret what happens with infinitely many modes as the system ap-
proaches a delay-free one then being of finite dimension. Such results in fact corroborate
that the behavior is similar to that of the limit delay-free system since infinitely many
modes tend to the boundary of the stable region in the left half-plane, while only a fi-
nite number of results are relevant in the dynamics. Another interesting feature is that
a method based on perturbation theory is provided for calculating balls including the
relevant modes for any delays.

The basic result obtained is that infinitely many characteristic modes diverge within
the stable region as the delay tends to zero, while the relevant ones converge to those of
the resulting delay-free system. Another parallel obtained result is that as the delays tend
to infinity, infinitely many characteristic modes are located in small balls centered at zero.
The proof of those issues is made using tools from linear algebra and analytic functions
of complex variable. A complementary set of parallel results of stability “independent of”
and “dependent on” delay is also presented. Such results are based on H∞-theory for the
case when the delay-free system is stable. Finally, a perturbation method is presented to
calculate, up to any desired order of approximation, the characteristic roots of the sys-
tem. The calculation method is exact when the approximation order in the perturbation
calculation is infinite. A numerical example is presented to corroborate the obtained re-
sults. The paper is organized as follows. Section 2 is devoted to some previous results.
It is proved that infinitely many zeros cannot be close to those of the delay-free system
for zero delay, which is a key point for obtaining the remaining results. The main results
of the paper concerning stability delay-independent/delay-dependent results as well as
related properties for the cases when the delay tends to zero or to infinity are given in
Section 3. The perturbation method to calculate the characteristic zeros from those asso-
ciated with the delay-free system is presented in Section 4. Finally, an example related to
the application of the perturbation theory to compute the characteristic zeros is presented
in Section 5 and compared to Pade’s approximation, and conclusions end the paper.

Notation. (1) det, tr, Adj, and superscript T are notational abbreviations for determi-
nant, trace, adjoint, and matrix transpose of any real or complex matrix. I denotes the
identity matrix and ‖M‖2 = λ1/2

max(MTM) is the �2-norm of the M-matrix or vector, where
λmax(·) stands for the maximum eigenvalue of the (·)-matrix.

(2) P = PT > 0 stands for a real symmetric positive definite matrix P. A positive semi-
definite matrix is denoted by the nonstrict inequality “≥” while a negative definite (semi-
definite) matrix is denoted by “<” (“≤”).

(3) R and C are the sets of real and complex numbers, R+ is the set of positive real
numbers, R

+
0 = R+ ∪ {0}, C+ is the set of complex numbers of real part in R+, C

+
0 =

C+ ∪Cim with Cim = {s ∈ C : s = jω, ω ∈ R} is the set of purely imaginary complex
numbers, C− = {s∈C : Res < 0} is the stable region, and Ca = {s∈C : Res≥ a}.

(4) If f and g are any real or complex functions, f =O(g), in Landau’s notation, “ f is
Big-O of g,” if there are nonnegative bounded real constantsK1,2 such that | f | ≤ K1g +K2.
Also, f = o(g), in Landau’s notation, “ f is Small-o of g,” if f = O(g) and, in addition,
there exists limg→0 f /g = 0. This notation may be extended in a natural way to real or
complex vector functions. If the functions f and g grow at the same rate, that is, f =O(g)
and g =O( f ), the abbreviated notation f ≈ g is used.
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Consider the following linear and time-invariant system of state vector x(t) with de-
layed dynamics with a point delay h≥ 0:

ẋ(t)=Ax(t) + εA0x(t−h) (1.1)

under initial conditions given by the absolutely continuous n-vector real function ϕ :
[−h,0]→Rn, where A andA0 are square n-real matrices which represent, respectively, the
contributions of the delay-free and delayed dynamics. A real parameter ε is introduced to
quantify the contribution of the delayed dynamics for a givenA0-matrix. The ε-parameter
is only introduced for technical reasons to facilitate the stability study through a possible
modification of the amount of contribution of the delayed dynamics for a prescribed
A0-matrix. Note also that system (1.1) may be extended without difficulty to include the
presence of any set of distinct point delays. For the purposes of this paper, it is sufficient
to consider only one delay h with no loss in generality. The properties of the following
two delay-free systems are related to that of (1.1) as the delay tends to zero or to infinity
[4, 6, 9, 10, 11, 13, 15, 16]:

(i) delay-free system (h= 0):

ẋ(t)= (A+ εA0)x(t), (1.2a)

(ii) auxiliary delay-free system (h infinite and/or ε = 0):

ẋ(t)=Ax(t). (1.2b)

The three characteristic equations of interest in this paper are set as follows in order to be
related to each other for derivation of stability properties:

p(s,ε)= det
(
sI −A− εA0e

−hs)= 0,

pA+εA0 (s)= p0(s,ε)= det
(
sI −A− εA0

)= 0,

pA(s)= p(s,0)= det(sI −A)= 0.

(1.3)

They are, respectively, associated with the current delay system (1.1), the auxiliary delay-
free system obtained from (1.1) for zero delay ẋ(t) = (A + εA0)x(t), and the auxiliary
delay-free system ẋ(t) = Ax(t) obtained from (1.1) when ε = 0 and/or for the delay be-
ing infinite. Throughout the paper, the zeros of the characteristic equations are called
characteristic roots (or modes) of the corresponding dynamic system.

2. Preliminaries

Proposition 2.1. Assume that s0 is any of the zeros of p0(s,ε) of multiplicity ν0. Thus, only
ν0 of the infinitely many zeros of p(s,ε) converges to s0 as h→ 0 for any real nonzero ε, while
the remaining infinitely many ones converge to isolated limit points with σ = Res→−∞ as
|σ−1| = o(h); that is, |hσ| →∞ with Res→−∞. In the same way, assume that s0 is any of
the zeros of pA(s) = 0 of multiplicity ν0 ≤ n. Then, only one zero of p(s,ε) of multiplicity
ν0 converges to s0 as ε→ 0, for any finite or infinite delay h, while the remaining infinitely
many ones converge to limit isolated points with σ = Res→−∞ with |σ−1| = o(h); that is,
|hσ| →∞.
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Proof. First, note that p0(s0,ε) = lims→s0 [limh→0(p(s,ε))] since p0(s,ε) is an entire com-
plex function at any zero s0 of p0(s,ε) which has to be finite and of finite multiplicity ν0 ≤
n= deg(p0(s,ε)) since p0(s,ε) is a nonconstant polynomial, that is, a nonconstant entire
function which diverges as |s| → ∞ from Liouville’s theorem [12]. If p0(s0,ε) = 0, then
either there is a disc D(s0,r) of radius r, centered at s0, where p0(s,ε) 	= 0, for all s ( 	= s0)∈
D(s0,r), or there is a discD′(s0,r′) centered at s0 such that p0(s,ε)≡ 0, for all s∈D′(s0,r′).
The second possibility is impossible since p0(s,ε) is a nonconstant polynomial. Thus,
there is a disc D(s0,r), where the only zero of p0(s,ε) is s0. Since lims→s0 [limh→0(p(s,ε))]
contains, as a factor, p0(s0,ε), there is a disc Dε(s0,rε), centered at s0, which depends on ε
and contains an isolated zero of p(s,ε) for each real ε. Otherwise, there would exist a disc
centered at s0, where p(s,ε) is identically zero, which is also impossible [12]. Thus, for any
sufficiently small h, there exists a disc D�(s0,rε)⊂Dε(s0,rε)∩D(s0,r) which contains only
a zero, which is unique except for its multiplicity s01 = s01(ε) of p(s,ε). Since

lim
h→0

p
(
s01,ε

)= lim
s→s01

(
p(s,ε)

)= p0
(
s01,ε

)= lim
h→0

((
s− s01(ε)

)ν0ε p′0ε
(
s01
))

,

p
(
s0,ε

)= (s− s0
)ν0 p′0

(
s0,ε

)= 0 as h−→ 0,
(2.1)

with p′0(s0,ε) 	= 0 and p′0ε(s01) 	= 0, since the zeros s0 and s01(ε) are isolated finite zeros, then,
as h→ 0,

(
s− s01(ε)

)ν0ε p′0ε
(
s01(ε)

)−→ (
s− s0

)ν0 p′0
(
s0,ε

)= 0=⇒ (
s− s0

)ν0 p′0
(
s0,ε)= 0 (2.2)

so that s01(ε)→ s0 and its multiplicity ν0ε → ν0 as h→ 0 since p′0ε(s01) 	=0 and p′0(s0,ε) 	= 0.
Also, for h= 0 and s01(ε)= s0, it is a finite and isolated zero with finite multiplicity ν0ε =
ν0 ≤ n. It has been proved that p0(s0,ε) is a zero factor of multiplicity ν0 of p(s0,ε) for
h= 0, and since s0 is finite and arbitrary, all the finite zeros of p(s,ε) are those of p0(s,ε)
as h→ 0. However, since p(s,ε) possesses infinitely many zeros for all nonzero ε, it turns
out that, as h→ 0,

(a) p(s,ε)→ p0(s,ε) for all finite s and for σ = Res→−∞. In particular, lims→s0 p(s,ε)
→ p0(s0,ε)= 0 for all the (finite) arbitrary zeros of p0(s,ε);

(b) p(s,ε)→ p̄0(s,ε)=∏∞
i=1(s− si(ε))= 0 for infinitely many zeros s= si(ε) with arbi-

trary large stable abscissas σi = Resi→−∞with |σ−1
i | = o(h) which are all distinct

except for their multiplicity. The first part of the result has been proved. The sec-
ond part related to ε→ 0 follows by following similar technical steps by replacing
p0(s,ε) with pA(s) and in the comparisons with p(s,ε).

�

The classical root locus of system (1.1) is of interest in analyzing the classical behavior
when the delayed dynamics is arbitrarily large or small compared to the delay-free one
or when the sampling period tends to zero or to infinity. The subsequent simple example
illustrates this fact.



M. De La Sen and J. Jugo 343

Example 2.2. Consider the linear and time-invariant system ẋ(t)= ax(t) + εx(t−h) with
a point delay h≥ 0. The characteristic equation is

p(s,ε)= s− a− εe−hs

= (s− a)
(

1− ε

ehs(s− a)

)

= (s− a− ε)
(

1− ε
(

1− ehs

ehs

)
1

s− a− ε

)
,

(2.3)

the last two identities being applicable for s 	= a and s 	= a+ ε, respectively. Thus, from the
root locus theory, it turns out from the second identity that a characteristic zero of p(s,ε)
tends to s= a as ε→ 0 for any finite h (which is also a zero of pA(s)), while the remaining
infinitely many ones tend to points of abscissas σi = Resi →−∞ at a rate |σ−1

i | = o(h).
Also, there are no finite characteristic zeros as ε→±∞. Note that the first identity also
leads to the same conclusion since s→ a as ε → 0 and, furthermore, the zeros have to
fulfill that

lim
σ→−∞Re

(
p(s,ε)

)= lim
σ→−∞

(
σ − a− εe−hσ cos(hω)

)= 0,

lim
σ→−∞Im

(
p(s,ε)

)= lim
σ→−∞

(
ω+ εe−hσ sin(hω)

)= 0,
(2.4)

where σ = Res andω = Imswhich implyω = 0 and ε→ (σ − a)ehσ / coshω→ (σ − a)ehσ →
0 as σ →−∞ or when σ → a for ω→ 0. This holds for all h∈ [0,∞). For h→∞, the same
conclusion follows for σ → a and ω→ 0 or with σ < 0 (including, but not requiring, the
case σ →−∞). The third identity leads to the following conclusions.

For any complex s= σ + jω, |e−hs− 1| = |e−hσ(cosωh− j sinωh)− 1| → 0 implies ω =
kπ/h→ 0 for any integer k. Thus, ω → 0 with k = 0, which also implies that cosωh =
1 is the only valid case leading to |e−hs − 1| → 0 for all finite real ε as h→ 0. This, in
addition, implies that the root locus gain for the third identity ε|e−hs− 1| tends to 0 for
any finite real ε as h→ 0. Thus, one zero of p(s,ε) tends to s = a + ε and the infinitely
many remaining ones have diverging abscissas σ = Res→−∞, at a rate |σ−1| = o(h), as
h→ 0 for any finite real ε.

If h→∞ and a > 0, then one characteristic zero tends to s = a, while the remaining
ones tend to zero since |1/ehs| → 0, for Res ≥ 0, at a rate |σ| = o(h−1), which is quali-
tatively similar (also from the second identity and the root locus) to |ε| → ∞. This also
occurs for infinitely many zeros with Res < 0 and all real ε since |1/ehs| →∞, which leads
to the same conclusion as that obtained above for finite delay and |ε| →∞. Thus, infin-
itely many stable zeros tend to disappear and do not contribute in practice to the sys-
tem response. The remaining zero tends to s = a+ ε, for any real ε, which also satisfies
pa+ε(s) = p0(s,ε) = 0. If h→∞ and Res < 0 with |ε| <∞, or Res = 0 and ε→ 0, then a
zero tends to s= a+ ε.

The conclusions for the above example can also be obtained from Proposition 2.1.
Similarly, a reasoning based on the root locus may be given to obtain similar results as
those obtained in the above scalar example for the general system (1.1). The basic results
are as follows.
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(1) As 0 	= ε → 0, for any finite zero or nonzero delay h, n characteristic zeros (or
modes) of system (1.1) tend to those of ẋ(t) = Ax(t), while the remaining ones
have abscissas diverging through the stable region Res < 0.

(2) As 0 	= h→ 0, for any finite zero or nonzero ε, n modes of (1.1) tend to those of
ẋ(t) = (A+ εA0)x(t), while the remaining ones have abscissas diverging through
the stable region Res < 0. This also includes the above result as ε→ 0.

Theorem 3.1 deduces those results and then uses them in a stability context by com-
paring the current time-delay system (1.1) and its delay-free counterparts.

3. Main results

Theorem 3.1. The following items hold.
(i) Assume that ẋ(t)= Ax(t) has µ≤ n distinct eigenvalues si of multiplicities νi ≤ n, i=

1,2, . . . ,µ, with n=∑µ
i=1 νi. Thus, for any real r > 0, there is a real interval (−ε∗,ε∗), with

ε∗ being dependent on r, such that νi modes s(�)
i of (1.1) satisfy |s(�)

i − si| < r, j = 1,2, . . . ,νi,
i= 1,2, . . . ,µ, for any delay h∈ [0,∞) and all ε ∈ (−ε∗,ε∗). As 0 	= ε∗ → 0, infinitely many
modes of (1.1) are stable and diverge in the stable region with Res→−∞, while µ are ar-
bitrarily close to the si modes of ẋ(t) = Ax(t) (i = 1,2, . . . ,µ) with their respective multi-
plicities. If A is a stable (unstable) matrix, then (1.1) is globally asymptotically Lyapunov
stable—g.a.s.—(unstable) for all finite delay h ∈ [0,∞) and for all ε ∈ (−ε∗,ε∗) for some
sufficiently small ε∗.

(ii) If A + εA0 is a stable (unstable) matrix, then (1.1) is g.a.s. (unstable) for all finite
delay h∈ [0,∞) and for all ε ∈ (−ε∗,ε∗) for some sufficiently small ε∗.

(iii) If (1.1) is g.a.s. (unstable) for zero delay, that is, A + εA0 is stable (unstable) for
zero delay and a given ε, then there is a delay h∗ such that (1.1) is g.a.s. (unstable) for all
h∈ [0,h∗).

(iv) Define H∞-norms [11]

γ0 := ∥∥(sI −A)−1
∥∥∞

=Max

(
z ∈R

+
0 : M =

[
A z−1I
I −AT

]
has no imaginary eigenvalue

)
(3.1)

if A is stable so that γ0 ≤ Supω∈R
+
0
(‖( jωI −A)−1‖2) <∞, where R

+
0 =R+∪{0}, and

γ0ε :=
∥∥∥(sI −A− εA0

)−1
∥∥∥∞

=Max

(
z ∈R

+
0 : M =

[
A+ εA0 z−1I

I −(AT + εAT
0

)
]

has no imaginary eigenvalue

)

(3.2)

provided that A+ εA0 is stable so that γ0ε ≤ Supω∈R
+
0
(‖( jωI −A− εA0)−1‖2) <∞. Thus,

(1) system (1.1) is g.a.s. and independent of delay (i.e., for all finite delay h) if A is stable
and ‖A0‖2 < |ε−1|γ−1

0 ,
(2) system (1.1) is g.a.s. and independent of delay if A + εA0 is stable and ‖A0‖2 <

(1/2)|ε−1|γ−1
0ε∗ ,
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(3) system (1.1) is globally stable and independent of delay for all ε ∈ [−ε∗,ε∗] and any
ε∗ > 0 if A± ε∗A0 are both stable and ‖A0‖2<(1/ε∗)Max(1/γ0,1/2γ0ε∗).

(v) Assume that A± ε∗A0 are both stable, for any given real ε∗ > 0, with larger stability
abscissa at least (−ρ) < 0, namely, the largest real part of all the set of eigenvalues of A±
ε∗A0 is at most (−ρ). Thus, system (1.1) is g.a.s. for all ε ∈ [−ε∗,ε∗] and h ∈ [0,h∗] if,
furthermore,

∥∥A0
∥∥

2 <
e−h∗ρ

ε∗
Max

(
1− ργ0

γ0
,
1− 2ργ0ε∗

γ0ε∗
e−h

∗ρ
)

(3.3)

provided that γ0 < |ρ−1| and γ0ε∗ < 1/2ρ.

Proof. Note that the characteristic zeros of system (1.1) satisfy

p(s,ε)= det
(
sI −A− εA0e

−hs)= det(sI −A)det
(
I − ε(sI −A)−1A0e

−hs)= 0

⇐⇒ det
(
I − ε(sI −A)−1A0e

−hs)= 0
(3.4)

for all s ∈ C such that det(sI −A) 	= 0, that is, it is not an eigenvalue of A. Note that for
all nonzero ε, det(sI −A) 	= 0 for all s being a zero of p(s,ε). Note that (3.4) holds if and
only if

p(s,ε)= 0⇐⇒ 1− ε
tr
(

Adj(sI −A)A0
)

ehs det(sI −A)
+ o(ε)= 0, ∀ε 	= 0, (3.5)

after using expansion in the powers of ε. Thus, as 0 	= ε → 0, the root locus with re-
spect to the ε-parameter establishes, from (3.5), that the zeros of p(s,ε) are those in-
finitely many zeros of ehs, which are stable with infinite real parts in the stable region (see
Proposition 2.1) and are n zeros, possibly including some multiple roots which converge
to the zeros of det(sI −A) as ε→ 0. Note that the distinct roots of p(s,ε)= 0 are isolated
(Proposition 2.1) and they are continuous functions of ε, for all real ε, convergent to the
si zeros of det(sI −A) as ε→ 0 for all h ∈ [0,∞). Then, for any given real r > 0, there is
a set of µ ≤ n open neighborhoods |s− si| < r, each including νi (the multiplicity of si)
equal or distinct roots of p(s,ε) = 0 for some ε∗ > 0, dependent in general on r, and all
ε∈ (−ε∗,ε∗). If A is a stable matrix with stability abscissa (−ρ) < 0, ε∗ > 0 may be chosen
for r = ρ/2 so that the zeros of p(s,ε) are in the stable region. (i) has been proved. The
proofs of (ii) and (iii) follow directly under similar arguments by using

p(s,ε)= det
(
sI −A− εA0e

−hs)
= det

(
sI −A− εA0

)
det

(
I − ε

(
e−hs− 1

)(
sI −A− εA0

)−1
A0
)= 0

⇐⇒ 1− ε
(
e−hs− 1

) tr
(

Adj
(
sI −A− εA0

)
A0
)

det
(
sI −A− εA0

) + o(ε)= 0

(3.6)

and noting that as |ε(e−hs − 1)| → 0, which is the case as ε→ 0 and/or as h→ 0, n zeros,
accounted for with their possible multiplicities, of p(s,ε) converge to those of det(sI −
A− εA0), while the remaining ones tend to infinity in the stable region (Proposition 2.1).
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(iv) is proved as follows. Since A is a stable matrix, (sI −A) is nonsingular for all
s ∈ C−. Thus, p(s,ε) 	= 0 so that det(I − ε(sI − A)−1A0e−hs) 	= 0 for all s ∈ C− if 1 >
ε‖(sI −A)−1‖∞‖A0‖2, since |e− jωh| = 1 for all real ω, from Banach’s perturbation lemma
[1], and the continuity of the eigenvalues of a matrix with respect to any parameter, and
then (1.1) is g.a.s. This proves the first assertion of (iv). Now, if (A+ εA0) is a stable ma-
trix, then p(s,ε) 	= 0 for all s ∈ C− provided that 1 > 2ε‖(sI −A− εA0)−1‖∞‖A0‖2 since
det(sI −A−A0) 	= 0 for all s∈C−, again from Banach’s perturbation lemma, continuity
arguments, and the fact that |e− jωh − 1| ≤ 2 for all real ω. This proves the second asser-
tion of (iv). The third assertion of (iv) follows directly by taking, as a sufficient stability
condition, the less restrictive condition of the above two assertions.

(v) is proved as follows. First, note that the following Lyapunov matrix inequalities
hold for any prefixed real matrix P = PT > 0:

(
AT + ρI ± ε∗AT

0

)
P +P

(
A+ ρI ± ε∗A0

)
< 0, (3.7)

since the matrices (A± ε∗A0) both have stability abscissa of at least (−ρ) < 0. Summing
up both sides of the above matrix inequality, one gets (AT + ρI)P +P(A+ ρI) < 0 which
implies that (A+ ρI) is a stability matrix so that A is also stable with stability abscissa at
least (−ρ) < 0 as a result. Now, take the H∞ρ-norm (H∞0 ≡H∞), reached on the boundary
of the set C−ρ, of the matrix [7, 18]:

∥∥I − ε(sI −A)−1A0e
−hs∥∥∞ρ

= Max
s∈C−ρ

(∥∥I − ε
(
sI −A

)−1
A0e

−hs∥∥∞ρ

)

≤ 1
1−∥∥(sI −A)−1

∣∣e−hs∣∣∥∥∞ρ

∥∥A0
∥∥

2

≤ 1

1−Maxω∈R
+
0

(∥∥∥(− ρI + ( jωI −A)
)−1

∥∥∥)ehρ∥∥A0
∥∥

2

(3.8)

provided that the denominator is positive since ( jωI −A)−1 exists for all real ω, since A
is a stability matrix. Since

∥∥(− ρI + ( jωI −A)−1)∥∥
2 ≤

∥∥( jωI −A)−1
∥∥

2

∥∥I − ρ( jωI −A)−1
∥∥

2 ≤
γ0

1− ργ0
, (3.9)

if ρ < γ−1
0 , then (1.1) is g.a.s. for all h ∈ [0,h∗] if ‖A0‖2 < ((1− ργ0)/ε∗γ0)e−h∗ρ. Since

both (A± ε∗A0) are also stability matrices with stability abscissa of at least (−ρ) < 0,
a similar reasoning leads to ‖A0‖2 < ((1− 2ργ0ε∗)/ε∗γ0ε∗)e−2h∗ρ. Combining both con-
clusions, (i) follows. �

Note that Theorem 3.1(v) may also be established for any given A0 in terms of suf-
ficient smallness of ε∗. However, it turns out that it is more useful for applications as
stated since the gain γ0ε∗ depends, in general, on ε∗. The following result proves that all
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the unstable zeros are always finite for any finite delay but they are still finite even when
h→ 0 and when h→∞. In the same way, the stable zeros are finite for bounded delay.
However, they diverge on C− as h→ 0, as has also been proved in Proposition 2.1 and
Theorem 3.1(i).

Theorem 3.2. The following items hold.

(i) All the unstable zeros of p(s,ε), if any, are finite for all finite or unbounded delay h
and all finite ε including the case h→ 0.

(ii) All the stable zeros of p(s,ε), if any, are finite for all h∈ (0,∞) and all finite ε.
(iii) All the zeros of p(s,ε) are finite for all h∈ (0,∞) and all finite ε.
(iv) Assume that h→∞ and A has nu, 0 ≤ nu ≤ n, distinct strictly unstable zeros, that

is, si, that is, Resi > 0, i= 1,2, . . . ,n. Thus, for any r > 0, there is a nonnegative real
constant h∗(r) such that nu zeros of p(s,ε) are in nu open neighborhoods Bi(s,r) =
{s∈C : |s− si| < r}, for all h∈ [h∗,∞). The infinitely many remaining zeros are in
an open neighborhood B(0,r) of zero.

Proof. To prove (i), note that

∣∣p(s,ε)
∣∣=

∣∣∣∣∣
n∑
i=0

n∑
k=0

cik(ε)sie−khs
∣∣∣∣∣

=
∣∣∣∣∣

n∑
i=0

[
ci0 + ε

n∑
k=0

c′ik(ε)e−khs
]
si + o(ε)

∣∣∣∣∣
≤ ∣∣p0(s,ε)

∣∣+ |ε|∣∣c′ik(ε)sie−khs
∣∣+ o

(|ε|)

≤ (M0 + ε(n+ 1)M′
0 + o

(|ε|))
∣∣∣∣∣

n∑
i=1

si
∣∣∣∣∣+ |s|n,

∣∣p(s,0)
∣∣= ∣∣pA(s)

∣∣≤M0

∣∣∣∣∣
n∑
i=0

si
∣∣∣∣∣+

∣∣sn∣∣,

(3.10)

for all Res ≥ 0, since |e−khs| ≤ 1, and all the coefficients ci0 = c′i0 with |ci0| ≤M0, for all
i ≥ 0, and cik(ε) = εc′ik(ε), for k ≥ 1 and all i ≥ 0, in the expansion of (p(s,ε)− p(s,0))
in terms sie−khs, for k ≥ 1, involve powers ε� (� ≥ 1) provided that the above normal-
ized coefficients satisfy |c′ik| ≤M′

0 <∞, i= 0,1,2, . . . ,n, k = 0,1, . . . ,n. If |ε| ≤M0/M
′
0, then

|p(s,ε)| ≤ (n+ 2 + |o(ε)|)M0|
∑n

i=0 s
i|.

Now, from (3.10), one gets

∣∣p(s,0)
∣∣≥ |s|n

(
1−

n∑
i=1

M0

|s|i
)
> |s|n

(
1− M0

|s|− 1

)
> 0, (3.11)

for all s∈C, such that |s| >M′ =M0 + 1 since |ci0| ≤M0, i= 0,1,2, . . . ,n− 1, and

∣∣p(s,ε)
∣∣≥ |s|n

(
1−

n∑
i=1

M

|s|i
)
> |s|n

(
1− M

|s|− 1

)
> 0 (3.12)
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withM = (n+ 2 + |o(ε)|)M0 ≥M0 + ε(n+ 1)M′
0 + |o(ε)| for all s∈C, such that |s| >M + 1

since |cik| ≤M, i = 0,1,2, . . . ,n− 1, k = 0,1, . . . ,n. As a result, all the unstable zeros of
p(s,ε), if any, are finite for any finite or unbounded delay and any finite ε, and then (i) is
proved.

Alternative proof of (i). Proceed by contradiction. Assume that s0 = σ0 + jω0 is a zero of
p(s,ε), |s0|→∞, and h∈[0,∞). Then, from (3.12), |p(s0,ε)|≥|sn0|−

∑n−1
i=1 O(|si0|)O(|ε|)→

∞, as |s0| →∞, for any finite real ε. Thus, s0 is not a zero of p(s,ε). �

To prove (ii), first the following equivalent expansion of p(s,ε) in powers of e−hs be-
comes p(s,ε)=∑n

i=0 pi(e
−hs,ε)si:

pn(s,ε)= cnne
−nhs +

n−1∑
k=0

( n∑
i=0

cik(ε)

)
e−khs. (3.13)

Note that if |p(si,ε)| → ∞, then |p(si,ε)| → ∞ so that si cannot be a zero of p(s,ε). As a
result, any complex s which is a zero of p(s,ε) must satisfy

∞ >
∣∣pn(s,ε)

∣∣≥ ∣∣cnn∣∣enh|s|
∣∣∣∣1− f (s,ε)

eh|s| − 1

∣∣∣∣ > 0 (3.14)

for any bounded real ε, any bounded complex s, for all h∈ (0,∞) and s satisfying Res < 0,
and eh|s| > ( f (s,ε) − 1)/|cnn| with f (s,ε) = M0 + ε(n + 1)M ′

0|sn| + o(|ε|) for M0 =
Max(1,M0) and M ′

0 ≥Max0≤i≤n−1(Max0≤k≤n(|c′ik|)). Note that if h > 0 and |s| →∞, then
|p(s,ε)| →∞ for Res < 0, and then p(s,ε) cannot be upper-bounded or zero, and then s
cannot be a zero, so that all stable zeros, if any, are finite. (i) has been proved.

Remark on the proof of (ii). Note that if h→ 0 and |s| → ∞ with σ = Res < 0 at a rate
|σ−1|=o(h), that is, |σh|→∞, and eh|σ| and |σ| diverge at the same rate, then |p(s,ε)|→ 0
and its lower bound in (3.14) fails as it has been proved in Proposition 2.1 and Theorem
3.1(i). Note that eh|σ| and |σ| diverge at the same rate if h|σ| ≈ ln|σ|.

To prove (iii), note that condition (3.14) is guaranteed for all complex s = σ0 + jω0

that satisfies

√
σ2

0 +ω2
0

ln
(√

σ2
0 +ω2

0

) >
1
h

(
M0 + o

(|ε|))
ln
(√

σ2
0 +ω2

)(∣∣cnn∣∣−|ε|(n+ 1)M′
0

) > n

h
(3.15)

provided that |ε| < |cnn|(1/(n + 1)M′
0). Define σ̄0 = Min(σ0 ∈ C− : (3.14) holds). Thus,

all the zeros of p(s,ε) for all finite real ε and any delay h∈ (0,∞) are bounded and fulfill
−σ∗0 < |s| <M + 1 and −σ∗0 < Res <M + 1.

To prove (iv), first note that

p(s,ε)= det
(
sI −A− εA0e

−h∗s− ε
(
e(h∗−h)s− 1

)
e−h

∗sA0
)−→ p(s,0)= pA(s) (3.16)
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for all complex s which is not an eigenvalue of A and all finite ε 	= 0 since |εe−hs| → 0 for
Res > 0 as h→∞. Note that for ε 	= 0, a zero of p(s,ε) is not an eigenvalue of A; that is,
p(s,ε) 	= pA(s) for ε 	= 0. Furthermore,

p(s,ε)→ pA(s)det
(
I − ε(sI −A)−1A0e

−h∗s) (3.17)

as (h− h∗)→∞, for any complex s which is not an eigenvalue of A, if |εe−h∗s| → 0 since
|εe(h∗−h)s − 1| → 0. Thus, there are open neighborhoods Bi(s,r), i = 1,2, . . . ,nu, for any
given r > 0 and nonzero ε, which contain all the zeros of p(s,ε) for all h∈ [h∗,∞), some
h∗ = h∗(r) for each given ε, from the continuity of the roots. Now, note from the form of
p(s,ε) that |s0| ≈ |e−hs0| in order for s0 to be a zero of p(s,ε) as h→∞ unless |e−hs0| tends
to zero, which is the case discussed above for Res > 0. Thus, the infinitely many remaining
zeros have to satisfy |s| ≈ |e−hs| with σ = Res≤ 0 if ε 	= 0 (otherwise, eh|σ| would diverge
at a faster rate than |s|, and then s is not a zero of p(s,ε)). This implies that σ → 0 since
h≈ | lnσ/σ| →∞. Thus, it follows from the continuity of the roots that all the remaining
infinitely many zeros are in an open neighborhood of zero of any prescribed radius r > 0
for all sufficiently large delay depending on r and ε. �

Note that it follows from Proposition 2.1 and Theorems 3.1 and 3.2(iv) that if (1.1) is
stable and independent of delay, then the infinitely many zeros which converge to zero
are evolving with Res < 0 with Res→ −∞ from h→ 0 up to h→∞ through C−. It is
of interest to compare how close the infinitely many roots of the characteristic equation
of the delayed system (1.1), that is, the zeros of p(s,ε), are to those of p(s,0) = pA(s)
according to the size of the delayed dynamics in (1.1). The following result, whose proof
is omitted for space reasons, addresses this point.

Theorem 3.3. The following items hold for a given delay h.

(i) Consider the closed bounded rectangle C⊃C1 = {s∈C : |Res| ≤m1; |Ims| ≤m2}
of boundary ΓC1 which contains all the roots of p(s,0) = 0. Thus, for any given real
constant m > |p(s,0)| > 0 for all s ∈ C1, there is a real constant ε∗ > 0 such that
|p(s,ε)− p(s,0)| < m and |p(s,ε)| < 2m for all s ∈ C1 and all ε ∈ [−ε∗,ε∗]. In the
same way, for any given real constant m > |p(s,0)| > 0 for all s ∈ C1, there is a real
constant ε∗′ > 0 such that |p(s,ε)− pA+εB(s)| < m and |p(s,ε)| < 2m for all s ∈ C1

and all ε ∈ [−ε∗′ ,ε∗′].
(ii) For any given real constants m > 0 and 1/2 > λ > 0, there is a polynomial p̄0(s,ε) =

p(s,0) + ε
∑N

i=0 p̄iks
i, of sufficiently large degree N , such that

∣∣p(s,ε)− p̄0(s,ε)
∣∣ <m,

∣∣p(s,0)− p̄0(s,ε)
∣∣ < λm if |ε| <mMin

(
λ

2m′ ,2N+1
)
.

(3.18)

Note that Theorem 3.3(i) may be interpreted as a version of Runge’s theorem [12], for
approximation of analytic functions in the bounded perfect set C1 whose complementary
in the extended complex plane is an open connected set. In fact, for all s∈C1 and any real
m > 0, there is a real ε∗, which depends on m in general, such that for all ε ∈ [−ε∗,ε∗],
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there is a polynomial q(s) such that the uniform and locally analytic function p(s,ε) satis-
fies |p(s,ε)− q(s)| <m, for all s∈C1. In this case, q(s)= p(s,0)= pA(s) is the polynomial
which describes the system dynamics as the delayed dynamics vanishes. The second part
of Theorem 3.3(i) is developed in a similar way for q(s)= pA+εA0 (s) which describes the
system dynamics for zero delay. Thus, Theorem 3.3(i) quantifies how close the current
dynamics is to the delay-free dynamical systems ẋ(t) = Ax(t), that is, ε = 0 and/or in-
finite delay, and ẋ(t) = Ax(t) + εA0x(t), respectively. Theorem 3.3(ii) approximates the
behavior of the delayed dynamics closely to that of a delay-free system of sufficiently large
order since the characteristic quasipolynomial may be approximated, with any prescribed
accuracy degree, by a polynomial of sufficiently large degree over a relevant finite open
region. This may be considered as an ad hoc version of Montel’s theorem concerning
time-delay systems with point delays for the approximation of uniform locally analytic
functions by appropriate polynomials [12].

4. Calculation of the characteristic zeros from perturbation theory

Define A(s,ε) = A+ ε(s)A0 with ε(s) = εe−hs and consider A(s,ε) as a perturbed matrix
of A. The following simple preliminary result, which is concerned with the existence of a
simple factorization for the characteristic quasipolynomial of (1.1), holds.

Proposition 4.1. The characteristic quasipolynomial p(s,ε) of (1.1) may be factorized as
p(s,ε)=∏µε

i=1(s− λi(s,ε))νiε with 1≤ νiε ≤ µε ≤ n=∑µε
i=1 νiε, i= 1,2, . . . ,µε.

Proof. The proof is made constructively as follows. For each fixed complex s and real ε,
consider the square n-complex matrix Xsε = A + εe−hsA0 so that there is a nonsingular
square n-complex matrix Y such that XΛxsε = Y−1

sε XsεYsε is a Jordan diagonal matrix with
identical eigenvalues of identical multiplicities to those of Xsε. Consider, for each real ε,
a complex matrix function Tε : s ∈ C→ Cn×n defined by T(s,ε) := Tε(s) = Ysε, which is
trivially everywhere nonsingular. It turns out that Λ(s,ε) = T−1(s,ε)A(s,ε)T(s,ε) is the
image of a complex matrix function Λε : s∈C→Cn×n which is a complex diagonal ma-
trix for all s whose distinct eigenvalues are µ distinct complex functions of images λi(s,ε)
of multiplicities νiε satisfying

1≤ νiε ≤ Inf
s∈C

(
νi(s,ε)

)≤ µε = Inf
s∈C

(
µi(s,ε)

)≤ µ≤ n=
µε∑
i=1

νiε =
µ∑
i=1

νi. (4.1)

�

Note that, typically, n = µε and νi = 1 (i = 1,2, . . . ,n) despite the fact that eigenvalues
with multiplicities larger than unity can occur at particular values of the complex plane
since the λi(s,ε) are complex functions, as s takes values in C for each real ε whose partic-
ular values are the eigenvalues of the corresponding complex matrix A(s,ε). No particu-
lar characterization as complex functions is made for the λi(s,ε) and the entries of T(s,ε),
while we are only interested in the existence of such a factorization. Note also that if h= 0,
then ε(s)= ε and A= A+ εA0 is independent of s. Thus, the infinitely many eigenvalues
of A(s,ε) may be exactly calculated as a perturbation of the µ≤ n distinct eigenvalues of

A using Kato’s formula [1], as λi(A(s,ε))=∑∞
k=0 δ

(k)
i εk(s) with the following cases.
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Case 1 (all the eigenvalues λi of A are distinct).

λi
(

A(s,ε)
)= ∞∑

k=0

δ(k)
i εk(s),

δ(k)
i = (−1)kk−1 tr


 ∑
∑k

l=1 ki=k−1(ki≥0)

k∏
l=1

[
A0S

kl
i

]

 ,

(4.2)

for k ≥ 1 with δ(0)
i = λ(0)

i = λi (ith eigenvalue of A), where the Si are constant complex
matrices defined by Si =

∑n
k=1, i 	=k Ek/(λk − λi) with the Ek-matrices being the components

of A which are defined such that A=∑n
i=1 λiEi [1, 17]. From Proposition 4.1,

p(s,ε)= det
(
sI −A(s,ε)

)= n∏
i=1

[
s− λi(s,ε)

]
. (4.3)

All the zeros of p(s,ε) are got by zeroing each factor in that expression. Each of those

factors generates infinitely many zeros si = λ(0)
i = λi = σi + jωi, for any order of approxi-

mation k ≥ 1,

si− λi(s,ε)= σi + jωi−
∞∑
k=0

δ(i)
k εke−khσ(coskωh− j sinkωh)= 0 (4.4)

for i = 1,2, . . . ,n, with the above matrix product defined through expansion to the right
as l increases. From the above formula, it is easy to obtain low-order approximations.
For instance, the first-order approximation for the ith eigenvalue is stated as the infinitely
many solutions of the following equations:

σ (1)
i −Reλi− εe−hσi

(
Reλ(1)

i cosω(1)
i h+ Imλ(1)

i sinω(1)
i h

)
= 0,

ω(1)
i − Imλi + εe−hσi

(
Reλ(1)

i sinω(1)
i h− Imλ(1)

i cosω(1)
i h

)
= 0,

(4.5)

for i= 1,2, . . . ,n. The following result holds.

Theorem 4.2. The following items hold.

(i) The unstable eigenvalues of A(s,ε), if any, are inside the circles |λi(A(s,ε))− λi| ≤
Sup0≤k<∞(|δ(k)

i |)(ε/(1− ε)) independent of any finite delay h provided that |ε| < 1.
As a result, if A is a stability matrix with stability abscissa (−ρ0) < 0, then A(s,ε)

remains a stability matrix if |ε| < Min(1,ρ0/(ρ0 + Sup0≤k<∞(|δ(k)
i |))).

(ii) Any eigenvalues of A(s,ε) (including all the unstable ones) satisfying Res ≥ −ρ0, if

any, are inside circles |λi(A(s,ε))− λi| ≤ Sup0≤k<∞(|δ(k)
i |)(εehρ0 /(1− εehρ0 )) inde-

pendent of any finite delay h provided that |ε| < e−hρ0 .
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(iii) The kth approximations of the expressions for the eigenvalues of A(s,ε) of (i) and (ii)
are, respectively,

∣∣∣λ(k)
i

(
A(s,ε)

)− λi
∣∣∣≤ Sup

0≤l≤k

(∣∣∣δ(l)
i

∣∣∣) ε
(
1− εk

)
1− ε

if |ε| < 1,

∣∣∣λ(k)
i

(
A(s,ε)

)− λi
∣∣∣≤ Sup

0≤l≤k

(∣∣∣δ(l)
i

∣∣∣) εehρ0
(
1− εkekhρ0

)
1− εhρ0

if |ε| < e−hρ0 .

(4.6)

Proof. The proof of (ii) follows directly from the identity
∑∞

k=1 δ
(k)
i εk(s)=∑∞

k=0 δ
(k)
i εk(s)−

δ(0)
i since

∑∞
k=0 ε

k(s) converges for Res≥−ρ0 since |ε(s)| ≤ |εehρ0| < 1 for |ε| < e−hρ0 . The
proof of (ii) is similar to that of (i) for the particular case with Res≥ (−ρ0)≡ 0. The proof
of (iii) follows in the same way as those of (i) and (ii) after using

∣∣∣∣∣
k∑

�=1

δ(�)
i ε�(s)

∣∣∣∣∣=
∣∣∣∣∣
∞∑
l=1

δ(l)
i εk(s)−

∞∑
l=k+1

δ(l)
i εl(s)

∣∣∣∣∣≤ εehρ0
(
1− εkekhρ0

)
1− εhρ0

(4.7)

for Res≥−ρ0 if |ε| < e−hρ0 . �

In general, repeated eigenvalues in the A-matrix may not generate repeated eigenval-
ues in A(s,ε). The above method may be generalized for the case of eigenvalues with
multiplicities larger than one in two alternative ways as follows.

Case 2 (there exist some eigenvalues of A with multiplicity larger than unity). Note that
f (A)=∑µ

k=1

∑νk−1
l=0 f (l)(λk)Ekl for f being any analytic function at the eigenvalues λk of A

of multiplicity νk, k = 1,2, . . . ,µ, and Ekl, l = 0,1, . . . ,νk − 1, are the components of A [17].
If µ = n, all the multiplicities are unity, and then Ek0 = Ek (Case 1). Since A = f (A) for
the complex function f (λ)= λ, it follows that

A=
µ∑

k=1

(
λkEk0 +Ek1

)= n∑
k=1

λ′kE
′
k (4.8)

since f (1)(λ) = df (λ)/dλ = 1 for λ taking values at all the eigenvalues, E′i = Ei0 if λi = 0
and/or νi = 1, and E′k = Ei1/(νi− 1)λi if νi ≥ 2 with λ′k = λi for all i= 1,2, . . . ,µ and each νi
value for the integer k ∈ (

∑i−1
l=1 νl,

∑i
l=1 νl) that generates νi auxiliary components E′k for

the eigenvalue λi of A. Note that the total number of auxiliary components is n and that
the second identity in (4.8) is obtained constructively from the first one by repeating each
eigenvalue according to its multiplicity. Now, proceed as follows. First calculate Ei0, Ek,
and Sk (i= 1,2, . . . ,µ, k = 1,2, . . . ,n) satisfying [1, 17]

µ∑
k=1

Ei0 = I , E2
i0 = Ei0 (idempotent matrix),

EklEim = 0 ∀0≤ l ≤ νk − 1, 0≤m≤ νi− 1,

S′k =
n∑
l=1
l 	=k

E′l
λl − λk

(k = 1,2, . . . ,n).

(4.9)
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The eigenvalues of A(s,ε) are calculated as

λi
(

A(s,ε)
)= ∞∑

k=0

δ
′(k)
i εk(s), δ

′(0)
k = λl,

δ
′(k)
i = (−1)kk−1 tr


 ∑
∑k

i=1 ki=k−1(ki≥0)

[ k∏
l=1

A0S
′kl
i

] ,

(4.10)

with ε(s)= εe−hs for l = 1,2, . . . ,µ, i= 1,2, . . . ,n, k ∈ (
∑i−1

l=1 νl,
∑i

l=1 νl). In other words, the
method works in the same way as in the case of single eigenvalues by repeating each
eigenvalue of A according to its multiplicity to use it as a generator in the perturbation
calculation while using the set of n auxiliary components E′k of the A-matrix. Those com-
ponents are calculated from the standard ones Ek0 and Ek1 (k = 1,2, . . . ,µ) in such a way
that the identities in (4.8) hold.

5. Numerical example

Consider the system defined by the subsequent equations

ẋ(t)=
(

0 1
−3 −4

)
x(t) + ε

(
0 0
4 6

)
x(t−h). (5.1)

In order to determine the evolution in the complex plane of the poles depending on
the variation of the delay for two different values of the parameter ε, the third-order Pade
approximation is considered [14]. This approximate approach allows the approximate lo-
cation of a finite set of poles graphically. On the other hand, the first-order perturbations
method is applied for the determination of the stability of the system for the different val-
ues of the parameter ε. Comparing with the results obtained with Pade’s approximation,
the validity of the theoretical results proposed in this paper is tested. According to the
developments in Section 4, the first-order approximation for the characteristic equation
of the system is

(
s+ 1 + 6εe−hs

)(
s+ 3 + 6εe−hs

)= 0. (5.2)

Using this equation, depending on v, the stability results of the above sections can be used.
First, the case ε = 0.1, when the system is stable for delay h= 0, is considered. Figure 5.1
shows the evolution of the poles when the delay h takes values 0.1, 0.5, 1, and 5. From this
figure, the theoretical conclusions obtained are confirmed, since the poles introduced by
the delay are in the left half-plane, and the distance from the origin to those poles grows
to infinity when the delay goes to zero.

Note that this system is stable for any delay h ≥ 0. This property is observed from
Figure 5.2, which shows the maximal distance between the poles of the delay-free system
(s=−1 and s=−3) and the poles in the right half-plane for any delay. The approximate
characteristic equation (3.1) is used for such a purpose. The resulting region is inside the
left half-plane, where all the poles are stable and then the system is stable for any delay.
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Figure 5.1. Third-order Pade’s approximation: the arrows show the pole motion as the delay h in-
creases for ε = 0.1.
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Figure 5.2. Possible situation of the first-order approximation unstable poles around the eigenvalues
of A for ε = 0.1.

In Figure 5.3, the evolution of the poles is shown for ε = 1. In this case, the system
is unstable when h = 0 and also for any delay h > 0. As in the previous case, the same
conclusions about the evolution of the poles, which diverge within the left half-plane
when the delay goes to zero, are obtained. However, the absolute values of those poles in
the right half-plane go to zero asymptotically on increasing the delay, since the system is
unstable. This confirms the foreseen conclusions from the theoretical results in Section 3.
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Figure 5.3. Third-order Pade’s approximation: the arrows show the pole motion as the delay h in-
creases for ε = 1.
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Figure 5.4. Possible situation of the first-order approximation unstable poles around the eigenvalues
of A for ε = 1.

It follows from Figure 5.2 that for a first-order perturbation method, the approximate
delayed system is stable for ε = 0.1, as follows from Theorem 4.2(iii). For ε = 1, note that
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the radii of the circles centred at the poles of the delay-free part of the system intersect the
right half-plane, which indicates the potential possibility of existence of unstable poles,
as is shown in Figure 5.4.

6. Concluding remarks

This paper has mainly addressed an analytic study related to the behavior of the limit
zeros of time-invariant delay systems with point delays. Also, a computational method
based on perturbation theory via Kato’s formula has been given to calculate regions inside
which it is possible to locate the characteristic zeros, and an example has been given to
compare the computational efficiency with that obtained via Pade’s approximation. The
main obtained results are as follows.

(i) Infinitely many zeros of the delay system cannot be close to those of its delay-free
counterpart as the delay tends to zero.

(ii) When the delay tends to zero, infinitely many zeros are located in the stable region
with arbitrarily large absolute values, while the (finite) remaining ones converge
to those of the delay-free system.

(iii) As the delay tends to infinity, infinitely many zeros converge to a small region
around the origin.

(iv) All the unstable zeros are finite for all delays even if such a delay converges to zero
or tends to infinity.

(v) Some complementary stability results independent of and others dependent on
the delay size have been proved based on H∞ stability theory.

Acknowledgments

The authors are very grateful to MCyT for its partial support of this work via Project DPI
2003-0164, and to UPV for its support through Grant 1/UPV-EHU/I06.I06-15263/2003.
They are also grateful to the reviewers for their interesting comments that helped to im-
prove the original version of this paper.

References

[1] R. Bellman, Introduction to Matrix Analysis, Classics in Applied Mathematics, vol. 19, Society
for Industrial and Applied Mathematics, Pennsylvania, 1997.

[2] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional-Differential Equations,
Mathematics in Science and Engineering, vol. 178, Academic Press, Florida, 1985.

[3] Y. Y. Cao and Y. X. Sun, Robust stabilization of uncertain systems with time-varying multistate
delay, IEEE Trans. Automat. Control 43 (1998), no. 10, 1484–1488.

[4] M. De La Sen, On some structures of stabilizing control laws for linear and time-invariant systems
with bounded point delays and unmeasurable states, Internat. J. Control 59 (1994), no. 2,
529–541.

[5] , Adaptive controller for continuous systems with single internal and external delays, Dy-
nam. Control 6 (1996), no. 4, 387–403.

[6] , Allocation of poles of delayed systems related to those associated with their undelayed
counterparts, Electron. Lett. 36 (2000), no. 4, 373–374.

[7] , Preserving positive realness through discretization, Positivity 6 (2002), no. 1, 31–45.



M. De La Sen and J. Jugo 357

[8] M. De La Sen and J. Jugo, Robust direct adaptive control for a class of systems with delays, IMA J.
Math. Control Inform. 15 (1998), no. 1, 25–52.

[9] A. Feliachi and A. Thowsen, Memoryless stabilization of linear delay-differential systems, IEEE
Trans. Automat. Control 26 (1981), no. 2, 586–587.

[10] E. W. Kamen, P. P. Khargonekar, and A. Tannenbaum, Stabilization of time-delay systems using
finite-dimensional compensators, IEEE Trans. Automat. Control 30 (1985), no. 1, 75–78.

[11] J. H. Lee, S. W. Kim, and W. H. Kwon, Memoryless H∞ controllers for state delayed systems, IEEE
Trans. Automat. Control 39 (1994), no. 1, 159–162.

[12] A. Markushevich, Theory of Analytic Functions, MIR, Moscow, 1970.
[13] T. Mori, E. Noldus, and M. Kuwahara, A way to stabilize linear systems with delayed state, Auto-

matica J. IFAC 19 (1983), no. 5, 571–573.
[14] S. I. Niculescu, Delay Effects on Stability. A Robust Control Approach, Lecture Notes in Control

and Information Sciences, vol. 269, Springer-Verlag, London, 2001.
[15] S. I. Niculescu, J. M. Dion, and L. Dugard, Robust stabilization for uncertain time-delay systems

containing saturating actuators, IEEE Trans. Automat. Control 41 (1996), no. 5, 742–747.
[16] J. C. Shen, B. S. Chen, and F. C. Kung, Memoryless stabilization of uncertain dynamic delay

systems: Riccati equation approach, IEEE Trans. Automat. Control 36 (1991), no. 5, 638–
640.

[17] L. A. Zadeh and C. A. Desoer, Linear System Theory. The State Space Approach, McGraw-Hill,
New York, 1963.

[18] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice-Hall, New Jersey, 1998.

M. De La Sen: Instituto de Investigación y Desarrollo de Procesos (IIDP), Facultad de Ciencias,
Universidad del Pais Vasco, Leioa (Bizkaia), Aptdo. 644 de Bilbao, 48080 Bilbao, Spain

E-mail address: wepdepam@lg.ehu.es

J. Jugo: Instituto de Investigación y Desarrollo de Procesos (IIDP), Facultad de Ciencias, Universi-
dad del Pais Vasco, Leioa (Bizkaia), Aptdo. 644 de Bilbao, 48080 Bilbao, Spain

E-mail address: josu@we.lc.ehu.es

mailto:wepdepam@lg.ehu.es
mailto:josu@we.lc.ehu.es

