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We tackle the problem of associating certainty equivalents with prefer-
ences over stochastic situations, which arises in a number of different
fields (e.g., the theory of risk attitudes or the analysis of stochastic coop-
erative games). We study the possibility of endowing such preferences
with certainty equivalence functionals that satisfy relevant requirements
(such as positive homogeneity, translation invariance, monotonicity with
respect to first-order stochastic dominance, and subadditivity). Unique-
ness of the functional is also addressed in fairly general conditions.

1. Introduction

This paper is devoted to a formal research into the problem of associating
certainty equivalents with preferences over stochastic situations, thus
formalizing a well-known and highly intuitive idea in decision with un-
certainty that seemed to have undergone studies. Indeed, the existence
of such assignements is relevant in a number of different fields, rang-
ing from the theory of risk attitudes (cf., e.g., Fishburn [6, Section 1.6]
and Kreps [7, Section 3.2]; also in a multiperiod context: cf. Epstein and
Zin [5], where certainty equivalents are used as functional forms for risk
preferences) to the analysis of stochastic cooperative games (cf. Suijs and
Borm [14]). The common assumption of such a concept is exemplified,
for example, in Luce [10], where a setting quite similar to ours (a prefer-
ence over uncertain outcomes plus a certainty equivalence functional on
it) is presumed as a prerequisite that permits to evaluate the joint receipt of
gambles. Unlike such position, we intend to gain insight as to when such
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functional assignement is feasible in terms of the less astringent concept
of preference over such uncertain situations. We here consider (a) the
existence of certainty equivalence functionals, and (b) the possibility of
imposing relevant properties on them, which will widen the range of ap-
plicability of that type of (nonlinear) utility assignements for the initial
risky prospects.

The possibility of assigning certainty equivalents is crucial for the pur-
pose of extending admitted models of choice behavior that depend upon
the “cardinality” of the items considered for the case where uncertain
alternatives (with or without knowledge or estimation of probabilities)
appear. In Luce’s words, what we need for the ground set is “its elements
being something for which judgements of preference make sense.” In ac-
cordance with the variety of situations where certainty equivalents have
played important roles, several axiomatizations of this concept have
been used in the literature. Thus, we will state our model and study some
relationships regarding other possible variations on it. The framework
will be that of an agent which has preferences on a certain collection of
nonnegative real random variables. We then present a uniqueness result
for certainty equivalents in fairly general conditions. Afterwards, we fo-
cus on the properties of the order under which existence is granted. Our
main aim will be to obtain necessary and sufficient conditions for that
unique endowment to fulfil a number of properties that are desirable in
particular contexts, namely, translation invariance, positive homogene-
ity, monotonicity with respect to first-order stochastic dominance (cf.
Whitmore and Findlay [17]), and subadditivity.

2. Notation and preliminaries

Throughout this paper, the following context will be assumed. We will be
concerned with a fixed collection K of nonnegative real random variables
(i.e., measurable real functions) on a given probability space (Ω,A,P). We
also assume that the collection K of all the nonnegative constant random
variables belongs to K. Given any real number λ � 0, the degenerate ran-
dom variable equal to λ will be denoted by λ̄.

Recall that a binary relation R on a set A is said to be a preorder if it
is reflexive and transitive. For every a ∈ A, define the upper contour set
of a as the set {b ∈ A : aRb}. The lower contour set of any element a ∈
A is defined analogously. If A is endowed with a topology, then R is
continuous whenever the upper and lower contour sets of every element
a ∈ A are closed. We will study the case of a complete preorder � on K.
Completeness of � means that for any pair X,Y ∈ K, either X � Y or
Y � X. The strict part ≺ and the symmetric part ∼ of � are defined in the
usual way. Under our assumptions, ∼ is a binary equivalence relation.
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Definition 2.1. A functional C : K → R is a certainty equivalence functional
for � if the following conditions are met:

(i) C is a utility functional for � (i.e., for every X,Y ∈ K, X � Y if and
only if C(X) � C(Y ));

(ii) C(λ̄) = λ for every nonnegative real number λ.

Obviously, condition (i) forces us to restrict our attention to complete
preorders.

Observe that conditions (i) and (ii) above imply the following condi-
tion:

(iii) X ∼ C(X) for every X ∈ K.

Condition (iii) means that C(X) is a certainty equivalent of X for every
X ∈ K. It is the numerical level such that the agent is indifferent when
receiving it with certainty and receiving a payoff determined by X. This
amount must be necessarily unique: observe that, for each λ ∈ R+ such
that X ∼ λ̄, C(X) = C(λ̄) by (i), and now (ii) entails C(X) = λ.

However, there is no guarantee that (ii) holds true under (i) plus (iii),
as the following example shows.

Example 2.2. Consider K = {λ̄ : λ ∈ R+} and the degenerate preorder ∼,
where all the elements in K are indifferent to each other. Define C(λ̄) = 0
for each λ̄ ∈ K. Now (i) and (iii) are fulfilled but (ii) is clearly false.

Our setting is a relevant (suitably modified) particular case of a more
general framework which has been exposed, for example, in Luce [10,
Section 2]. There, the ground set is required to include R, while we re-
quest that a copy of a part of R (the nonnegative constant random vari-
ables) belongs to that set. This prompts another difference in defining
what certainty equivalence means at “the numerical level”: if numbers
are involved, then certainty equivalents of quantities are declared as
themselves (Definition 1(2) in [10], which is adapted in the form of our
(ii) for constant random variables). However, these differences are ba-
sically superfluous or expository, and so virtually all the general results
hold for our particular setting, perhaps in an adapted form. For example,
Luce [10, Lemma 1(i)] is translated into (iii) above, and the necessary
condition in Luce [10, Lemma 1(iv)]—that the binary relation must be a
complete preorder—is specified as a redundant prerequisite here for the
sake of clarity.

Example 2.2 shows that a utility functional that assigns the certainty
equivalent to each random variable in K may fail to associate λ with
the sure stochastic payoff λ̄. One consequence is that, in general, (i) plus
(iii) do not provide a different axiomatization of our concept of certainty
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equivalence functional. In order to present natural situations where (iii)
entails (ii), we will need to introduce further axioms, for example, mono-
tonicity with respect to first-order stochastic dominance. This assumption is
fairly intuitive in many relevant situations, for example, when we are
concerned with risk attitudes and monetary outcomes (cf. Fishburn [6,
Section 1.6]). Recall that the first-order stochastic dominance relation �FSD

on K is the (not necessarily complete) preorder on K defined as follows:

X �FSD Y ⇔P({
ω ∈Ω : X(ω) � t

})
� P({

ω ∈Ω : Y (ω) � t
}) ∀t ∈ R+.

(2.1)

Whitmore and Findlay [17] display theory and applications of the con-
cept in bulk.

A complete preorder � on K is said to be monotonic with respect to first-
order stochastic dominance if, for every X,Y ∈ K, X �FSD Y implies X � Y ,
and X ≺FSD Y implies X ≺ Y . Now we have the following property.

Property 2.3. Under the monotonicity of the preorder � with respect to
first-order stochastic dominance, (iii) implies (ii).

Proof. By monotonicity of the preorder � with respect to first-order sto-
chastic dominance, λ < λ′ implies λ̄ ≺ λ̄′ for λ,λ′ ∈ R+. By (iii), for each
nonnegative real number λ, C(λ̄) is the only number satisfying λ̄ ∼ C(λ̄);
therefore λ = C(λ̄). �

However, we will not be bounded by that particular axiom along the
next sections.

Although uniqueness of the certainty equivalence functional is an im-
portant issue in the current context, we have not claimed it in our defi-
nition. We proceed to show that it is implicitly required by our model.

Lemma 2.4. Let � be a complete preorder on any collection K of nonnegative
real random variables on a common probability space (Ω,A,P), containing all
the nonnegative constants. If there exists a nonnegative certainty equivalence
functional for �, then it is unique.

Proof. By contradiction, assume that there exist two different certainty
equivalence functionals C and C∗ for �. Then there exists X ∈ K such
that C(X) 
= C∗(X). Without loss of generality, assume that C(X) < C∗(X),
and consider any positive real number λ with C(X) < λ < C∗(X). Then
C(X) < C(λ̄) = λ = C∗(λ̄) < C∗(X), and this is contradictory since C and
C∗ are both utility functionals for �. So the proof is complete. �
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3. Existence of certainty equivalents that satisfy continuity or
translation invariance

We will be concerned with the existence of different types of (unique)
continuous certainty equivalence functionals in the rest of the paper. The
key fact is expressed by Theorem 3.3, where we characterize the exis-
tence of a (unique) continuous certainty equivalence functional in terms
of representability of the order and also of assumptions on �. In order to
achieve this latter aim, we need some definitions on preordered sets.

Definition 3.1. Let R be a preorder on a set A and denote by P its strict
part. We say that R is order separable (in the sense of Debreu) if there exists a
countable subset Z of A such that if aPb, then there is z ∈ Z with aRzRb.

It is well known that there are alternative versions of this property
(see, e.g., Bridges and Mehta [3, Proposition 1.4.4]).

Besides, as certainty equivalents are a good possibility for substituting
uncertain alternatives (e.g., gambles or any other stochastic situation) by
a “measure” of them in suitable models (see, e.g., Luce [10]), it is there-
fore relevant to know when certainty equivalents exist satisfying transla-
tion invariance (often called the axiom of monotonicity). We analyze such
behavior in that same statement. By translation invariance we mean that
C(X + λ̄) = C(X) + λ whenever X ∈ K and λ ∈ R+, satisfying X + λ̄ ∈ K.
This property admits a characterization in the following terms.

Lemma 3.2. Let � be a complete preorder on any collection K of nonnegative
real random variables on a common probability space (Ω,A,P), containing all
the nonnegative constants.

A nonnegative certainty equivalence functional C for � is translation in-
variant if and only if X + λ̄ ∼ Y + λ̄ for all X ∼ Y in K and λ ∈ R+ with X + λ̄,
Y + λ̄ ∈ K.

Proof. Suppose that C is translation invariant. If X ∼ Y , since C is a utility
on K then C(X) = C(Y ), so C(X) +λ = C(Y ) +λ, which now means C(X +
λ̄) = C(Y + λ̄). The fact that C is a utility yields X + λ̄ ∼ Y + λ̄.

Conversely, if X + λ̄ ∼ Y + λ̄ for all X ∼ Y in K and λ ∈ R+ with X + λ̄,
Y + λ̄ ∈ K, then for any X ∈ K and λ ∈ R+, we deduce that C(X + λ̄) =
C(X) + λ. Indeed, now X + λ̄ ∼ C(X) + λ̄ (since X ∼ C(X) because C is a
certainty equivalent), so these elements have the same certainty equiva-
lent under C. But, because C(X) + λ̄ = C(X) +λ by definition, then C(X +
λ̄) = C(X) +λ using (ii) in the definition of certainty equivalent. �

Theorem 3.3. Let � be a complete preorder on any collection K of nonnegative
real random variables on a common probability space (Ω,A,P), containing all
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the nonnegative constants, and let τK be any topology on K for which scalar
multiplication is continuous (e.g., a vector topology). Assume that 0̄ � X for
every X ∈ K. Then the following conditions are equivalent:

(i) there exists a unique nonnegative continuous (resp., translation invari-
ant) certainty equivalence functional C for �;

(ii) the following conditions are verified:
(a) � is representable by a continuous utility functional C′,
(b) λ1 < λ2 ⇒ λ̄1 ≺ λ̄2 for all λ1,λ2 ∈ R+,
(c) for every X ∈ K, there exists λ ∈ R+ such that X ∼ λ̄ (resp., (c ′)

X + λ̄ ∼ Y + λ̄ for all X ∼ Y in K and λ ∈ R+ with X + λ̄,Y + λ̄ ∈
K);

(iii) the following conditions are verified:
(d) � is separable and continuous,
(e) λ1 < λ2 ⇒ λ̄1 ≺ λ̄2 for every λ1,λ2 ∈ R+,
(f) for every X ∈ K, there exists λ ∈ R+ such that X ∼ λ̄ (resp., (f ′)

X + λ̄ ∼ Y + λ̄ for all X ∼ Y in K and λ ∈ R+ with X + λ̄, Y + λ̄ ∈
K).

Proof. It is clear that (i) implies (ii). Observe that X ∼ C(X) for every
X ∈ K, by (iii) following the definition of certainty equivalent, which
yields (c). If the additional property C(X + λ̄) = C(X) + λ for all X ∈ K
and λ ∈ R+ holds, then (c’) must also hold by Lemma 3.2.

Now, we show that (ii) implies (i). Uniqueness holds by Lemma 2.4.
Furthermore, by our assumptions, there exists a nonnegative continuous
utility functional C′ for �. Without loss of generality, we can assume that
C′(0̄) = 0 so that C′ is nonnegative. Define the bijection I : K → [0,∞[ by

I
(
λ̄
)
= λ

(
λ ∈ R+

)
, (3.1)

which is continuous by the continuity of scalar multiplication under τK.
Further, define the function φ : R+ → R+ by

φ := C′|K ◦ I−1. (3.2)

Observe that, by condition (b), φ is strictly increasing since C′ is a utility
functional for �. Then φ−1 exists and it is strictly increasing and contin-
uous. Indeed, φ−1 is the inverse of a strictly increasing continuous real-
valued function defined on R+. We claim that the functional C = φ−1 ◦ C′

on K is a nonnegative continuous certainty equivalence functional for �.
First observe that C is well defined since the image set φ(R+) (the domain
of φ−1) is equal to the image set C′(K) by condition (c). It is clear that C
is nonnegative and continuous (recall that C′ is continuous). Further, C
is a utility functional for � since it is a strictly increasing transformation
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of the utility functional C′. Finally, for every λ ∈ R+, it is

C(λ̄) = I ◦C′−1
|K ◦C′(λ̄) = I

(
λ̄
)
= λ. (3.3)

If, additionally, (c’) holds, for any X ∈ K and λ ∈ R+, we deduce that
C(X + λ̄) = C(X) +λ using Lemma 3.2.

The equivalence of (ii) and (iii) is well known. We address the reader
to Bridges and Mehta [3, Theorem 3.2.9] in order to check that (a) is
equivalent to (d). �

Because we are only concerned with continuous certainty equivalence
functionals, we have not made explicit the result parallel to Theorem 3.3,
where “continuous” is dropped elsewhere. Nonetheless, that develop-
ment is analogous to ours. If the continuity assumption is ommited, the
topology on K becomes irrelevant.

Remark 3.4. Theorem 3.3(b) holds when the complete preorder � on K
is monotonic with respect to first-order stochastic dominance. Indeed,
when this happens, we have that

λ1 < λ2 =⇒ λ̄1 ≺FSD λ̄2 =⇒ λ̄1 ≺ λ̄2 ∀λ1,λ2 ∈ R+. (3.4)

In the following example, we show that there exists a continuously
representable complete preorder satisfying Theorem 3.3(b) which does
not admit a (continuous) certainty equivalence functional.

Example 3.5. Let K be the real convex cone of nonnegative real random
variables on a common probability space (Ω,A,P) which is generated
by a nonnegative and nondegenerate real random variable Z and the
constant 1̄. Therefore, a random variable X belongs to K if and only if
there exist two nonnegative real numbers λ and µ such that X = λZ + µ̄.
Consider the positive real-valued function U on K defined by U(X) =
U(λZ + µ̄) = λ+ 1− e−µ and let � be the complete preorder on K defined
by

X � Y ⇐⇒U(X) � U(Y ). (3.5)

Then � satisfies Theorem 3.3(a) and (b). Nevertheless, a nondegener-
ate random variable λZ does not admit a certainty equivalent if λ is
greater than one. Indeed, if λ is a real number greater than one, then
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λZ is strictly preferred to every constant since we have that U(λZ) = λ >
1− e−µ =U(µ̄) for every constant µ̄.

4. Existence of a continuous and positively homogeneous
certainty equivalent

In this section, we consider positively homogeneous certainty equivalence
functionals: these are functionals C : K → R+ for which C(λX) = λC(X)
for every positive real number λ. When dealing with risk aversion, some
authors refer to as constant relative risk aversion instead (see, e.g., Epstein
and Zin [5]). Now we are able to apply the representability result of Bosi
et al. [2] in order to characterize the existence of a continuous certainty
equivalence functional that also satisfies this property. We will provide a
solution in terms of the following homotheticity condition as applied to
the preference over stochastic situations.

Definition 4.1. A preorder R on a real cone A in a real vector space V is
said to be homothetic if, for every x,y ∈ A and λ ∈ R++, xRy is equivalent
to λxRλy.

It is noted that homotheticity keeps being an important issue in other
different realms, including both production (cf. Varian [16], Silva and
Stefanou [12]) and demand analysis (cf. Varian [15], Liu and Wong [9]),
as well as macroeconomics (cf. Lewbel [8]) or general equilibrium mod-
els (cf. Préchac [11]).

Proposition 4.2. Let � be a complete preorder on a real cone K in a topological
vector space X of nonnegative real random variables on a common probability
space (Ω,A,P). Assume that K contains all the nonnegative constants, it is
endowed with the induced topology τK, and 0̄ � X for every X ∈ K. Then the
following assertions are equivalent:

(i) there exists a unique nonnegative, positively homogeneous, and con-
tinuous certainty equivalence functional C for �;

(ii) there exists a nonnegative, positively homogeneous, and continuous
utility functional C′ for �, and C′(1̄) 
= 0;

(iii) the following conditions are verified:
(a) � is homothetic,
(b) � is continuous,
(c) 0̄ ≺ 1̄.

Proof. It is clear that (i) implies (ii) and (ii) implies (iii). We prove that
(iii) implies (i). By conditions (a) and (b), we have that the complete pre-
order � is representable by a nonnegative, positively homogeneous, and
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continuous utility functional C′ (see the corollary in Bosi et al. [2]). By
condition (c), we have that C′(1̄) 
= 0. Define a real-valued functional C on
K by C(·) = (1/C′(1̄))C′(·). It is immediate to check that C is a nonnega-
tive, positively homogeneous, and continuous certainty equivalence
functional for �. Obviously, uniqueness is guaranteed by Lemma 2.4.

�

Remark 4.3. We stress that condition (c) is essential in the previous propo-
sition. Should we drop it, the statement becomes false, as the degenerate
preorder � defined by X ∼ Y for every X,Y ∈ K proves. This preorder has
a unique positively homogeneous utility functional C′ ≡ 0 which hap-
pens to be continuous and nonnegative, but it does not admit a certainty
equivalence functional because of condition (b) in Theorem 3.3.

Remark 4.4. The separability condition that is needed in Theorem 3.3 is
obviously implicit in the requirements of Proposition 4.2. That is, under
Proposition 4.2(iii), the order must also be separable. Similar issues were
already made apparent in Bosi [1] and Bosi et al. [2].

5. Existence of certainty equivalents that are monotonic with respect to
first-order stochastic dominance

We now consider another property of certainty equivalence functionals
that is desirable in some interesting frameworks: monotonicity with re-
spect to first-order stochastic dominance. For example, in decision the-
ory under uncertainty, this property arises quite naturally in the most
classical linear utility model: the expected utility theory of von Neumann
and Morgenstern. A functional C : K → R+ is said to be monotonic with
respect to first-order stochastic dominance if, for every X,Y ∈ K, X �FSD Y
implies C(X) � C(Y ), and X ≺FSD Y implies C(X) < C(Y ).

Corollary 5.1. Let � be a complete preorder on a real cone K in a topological
vector space X of nonnegative real random variables on a common probability
space (Ω,A,P). Assume that K contains all the nonnegative constants and
endow it with the induced topology τK. Then the following assertions are equiv-
alent:

(i) there exists a unique nonnegative, positively homogeneous, and contin-
uous certainty equivalence functional C for � that is monotonic with
respect to first-order stochastic dominance;

(ii) there exists a unique nonnegative, positively homogeneous, and con-
tinuous utility functional C′ for � that is monotonic with respect to
first-order stochastic dominance, and C′(1̄) 
= 0;

(iii) the following conditions are verified:
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(a) � is homothetic,
(b) � is continuous,
(c) � is monotonic with respect to first-order stochastic dominance.

Proof. Observe that first-order stochastic dominance monotonicity of the
preorder � implies the condition 0̄ � X for every X ∈ K, as well as 0̄ ≺ 1̄.
The thesis now follows immediately from Proposition 4.2. �

6. A characterization of subadditive certainty equivalents

Our study will end with the analysis of subadditivity. We recall that a
real-valued functional C on a real convex cone A in a real vector space
V is said to be subadditive if C(x +y) � C(x) +C(y) for all x,y ∈ A. Then
the following proposition characterizes certainty equivalence function-
als which are subadditive.

Proposition 6.1. Let � be a complete preorder on a real convex cone K in
a topological vector space X of nonnegative real random variables on a com-
mon probability space (Ω,A,P). Assume that K contains all the nonnegative
constants, and 0̄ � X for every X ∈ K. If there exists a nonnegative certainty
equivalence functional C for �, then C is subadditive if and only the following
property holds for all X,Y ∈ K and λ,µ ∈ R++:

(i) X � λ̄, Y � µ̄ imply X +Y � λ+µ.

Proof. Let C be a subadditive certainty equivalence functional for �.
Then for every X,Y ∈ K and λ,µ ∈ R++ such that X � λ̄ and Y � µ̄, we
have that C(X +Y ) � C(X) +C(Y ) � λ+ µ = C(λ+µ), which implies X +
Y � λ+µ. Hence, condition (i) holds. Conversely, assume that condition
(i) holds and that C is a nonnegative certainty equivalence functional for
�. We show that C must be also subadditive. By contradiction, assume
that there exist X,Y ∈ K such that C(X) + C(Y ) < C(X + Y ). Since C is
nonnegative, we may consider two positive real numbers λ,µ such that
C(X) < λ, C(Y ) < µ, and λ + µ < C(X + Y ). Then we have that X ≺ λ̄ and
Y ≺ µ̄, but λ+µ ≺ X + Y , and this contradicts condition (i) above. This
consideration ends the proof. �

The concept of a subadditive certainty equivalence functional is
closely linked to the concept of a risk loving complete preorder. This is
a complete preorder � on a collection K of nonnegative real random
variables with finite expectations on a probability space (Ω,A,P) such
that E(X) � X for all X ∈ K, where E(·) is the expectation operator on K.
In this case any stochastic payoff X is weakly preferred to its expectation
(see, e.g., Suijs [13]).
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We conclude this paper by presenting an example of a continuous,
positively homogeneous, translation invariant, and subadditive certain-
ty equivalence functional for a risk loving complete preorder.

Example 6.2. Let � be a complete preorder on a real convex cone K
of nonnegative real random variables on a common probability space
(Ω,A,P) containing all the nonnegative constants. Assume that there
exists a concave probability distortion g (i.e., a nondecreasing, concave,
and continuous function g : [0,1]→ [0,1] such that g(0) = 0 and g(1) = 1)
such that the Choquet integral

∫
Ω
Xdg ◦P =

∫∞

0
g ◦P({X ≥ t})dt (6.1)

is finite for all X ∈ K and the real-valued functional C on K defined by
C(X) =

∫
ΩXdg ◦ P for all X ∈ K is a utility functional for �. Then C is

a positively homogeneous, translation invariant, and subadditive cer-
tainty equivalence functional for the complete preorder � (see, e.g., Den-
neberg [4]), which is risk loving since g(p) ≥ p for all p ∈ [0,1]. Further,
C is continuous with respect to the norm topology corresponding to the
norm ‖X‖ = ∫

ΩXdg ◦P on K (see again Denneberg [4, Proposition 9.4]).
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