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An analytic time series in the form of numerical solution (in an ap-
propriate finite time interval) of the Hodgkin-Huxley current clamped
(HHCC) system of four differential equations, well known in the neu-
rophysiology as an exact empirical model of excitation of a giant axon of
Loligo, is presented. Then we search for a second-order differential equa-
tion of generalized Fitzhugh-Nagumo (GFN) type, having as a solution
the given single component (action potential) of the numerical solution.
The given time series is used as a basis for reconstructing orders, powers,
and coefficients of the polynomial right-hand sides of GFN equation ap-
proximately governing the process of action potential. For this purpose,
a new geometrical method for determining phase space dimension of
the unknown dynamical system (GFN equation) and a specific modifi-
cation of least squares method for identifying unknown coefficients are
developed and applied.

1. Introduction

Here, we experimentally base our considerations on the well-known
mathematical model of nerve physiology as reported by Hodgkin and
Huxley. In a series of experiments, they fixed electrodes along the entire
length of a giant axon of Loligo, and the electrodes were used to measure
the voltage as it varied during a depolarization event [3, 4, 5, 6, 7]. This is
called the current clamped experimental system. Its behavior is governed
by a corresponding system of four differential equations proposed by
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Hodgkin and Huxley in the form

dV

dt
= −(50+ 36n4(V − 12)

)− 120m3h(V + 115)− 0.3(V + 10.613),

dn

dt
=

0.01(V + 10)(1−n)
exp
(
(V + 10)/10− 1

) − 0.125n · exp
(
V

80

)
,

dm

dt
=

0.1(V + 25)(1−m)
exp
(
(V + 25)/10− 1

) − 4m · exp
(
V

18

)
,

dh

dt
= 0.07(1−h)exp

(
V

20

)
− h

exp
(
(V + 30)/10+ 1

) ,

(1.1)

where t is a time measured in milliseconds; from the computational point
of view it is convenient to take V proportional to action potential pre-
sented in scores of millivolts; m, n, and h are empirical dimensionless
variables not having clear physical sense yet. All systems (with various
values of constants involved) of type (1.1) are also called Hodgkin-Huxley
current clamped (HHCC) model. The concrete numerical values of con-
stants in (1.1) are taken from [6], where they have been obtained as a
result of experimental measurements and computations. In the interval
t ∈ (0,30) and at initial conditions V = 0, m = 0.05, n = 0.3, and h = 0.06,
the system (1.1) has a solution whose first component V is presented in
Figure 1.1.

The computational neurobiology has a long history containing a huge
amount of extensive studies whose review needs a special investigation.
Some of them are closely related and even relevant to this work [1, 9, 12].
For example, in [9], a scheme for systematically reducing the number of
differential equations required for biophysically realistic neuron models
is presented. The techniques are general, are designed to be applicable
to a large set of such models, and retain in the reduced system as high a
degree of fidelity to the original system as possible.

In this paper, we pose the question whether or not it is possible to find
a second-order differential equation of a generalized Fitzhugh-Nagumo
(GFN) type

d2V

dt2
+Pe(V )

dV

dt
+Po(V ) + I = 0 (1.2)

having numerical solution, which is near enough to some part of the so-
lution presented in Figure 1.1. If so, then we can talk about both qual-
itative and quantitative correspondences between GFN equation and
HHCC model [2, 8, 10]. In (1.2), the functions Pe(V ) and Po(V ) are even
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Figure 1.1. Action potential obtained from HHCC model in the in-
terval t ∈ (0,30).

and odd polynomials, respectively. Under these conditions for Pe(V ) and
Po(V ), (1.2) could be considered as a generalized Lenard equation hav-
ing limit cycles in the phase-plane (V,V̇ ). The constant I is a membrane
electrical current. The well-known particular case of Fitzhugh-Nagumo
equation can be obtained from (1.2) by replacing in it the substitutions

Pe(V ) = −1+ bc+V 2, Po(V ) = c(1− b)V +
1
3
bcV 3, I = ac.

(1.3)

Here, the parameters a,b, and c are the constants a = 0.7, b = 0.8, and
c = 0.08. The virtue of the concrete equation is in elucidating the regions
of physiological behavior of axon response.

2. Determining phase space dimension of unknown equation
from a given solution

Recently, it has been proven (see [11]) that the following theorem is valid
for a given function V (t).

Theorem 2.1. Let V (t) be a real-valued and analytic function defined on in-
terval (a,b) such that for every t ∈ (a,b), the curve

�c(t) ≡
(
V (t),

dV (t)
dt

, . . . ,
dm−1V (t)
dtm−1

)
, m > 1, (2.1)
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is simple and regular. Then there exists a unique real-valued analytic function
Fc(V,dV/dt, . . . ,dm−1V/dtm−1) defined on the curve �c(t) such that V (t) is a
solution to

dmV

dtm
= Fc

(
V,

dV

dt
, . . . ,

dm−1V

dtm−1

)
. (2.2)

In Figure 2.1, a graph of the two-dimensional curve �c(t) ≡ {V (t),
dV (t)/dt} obtained by numerical differentiation of V (t) is plotted. There
are two points of self-intersection of the curve �c(t). This means that �c(t)
is not simple and the well-known Cauchy theorem is not valid in the
points of self-intersection. Thus �c(t) is not phase trajectory of a second-
order (m = 2) differential equation of type (2.2) or, in other words, for
m = 2, there does not exist an equation of type (2.2) having as a solution
the given function V (t).

In Figure 2.2, a part of the same function V (t), taken in the shorter
interval t ∈ (10,30), is presented. The corresponding phase plot �c2(t) ≡
{V (t),dV (t)/dt} is presented in Figure 2.3. This time, there is no point of
self-intersection, thus �c2(t) is a simple curve (even an elementary one).
Moreover, in the next figures (Figures 2.4 and 2.5), the graphs of first-
and second-time derivatives of V (t) are presented. It is seen that simul-
taneous vanishing of the two derivatives has no place. (For example, in
Figure 2.5, one of the points of self-intersection is under the abscissa. The
same can be shown for the other points of self-intersection.) This means
that the curve �c2(t) is both simple and regular in the interval (10,30).
Then, on the base of the above-formulated theorem, we can conclude
that, in the interval (10,30), the minimal order of equation of type (2.2),
having V (t) as a solution is m = 2.

3. Polynomial approximation of the right-hand side of the unknown
differential equation

Next, we want to approximate an unknown differential equation from
a given numerical solution y(t) that is near enough to the true analytic
solution V (t).

Here we propose an approximate procedure for determining unknown
polynomial right-hand side of the differential equation. The procedure is
based on the least squares method and the fact that we know with sufficient
precision the values of V (t) and its derivatives of an order equal to the
equation order already defined by applying the above-mentioned theo-
rems and classifications. In order to reconstruct (2.2), it can be written in
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Figure 2.1. Phase plot of the action potential and its first derivative.
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Figure 2.2. Action potential in the interval t ∈ (10,30).

the form

V̇ = V1,

V̇1 = V2,
...

V̇m−1 = Vm,

V̇m = Pk

(
V,V1,V2, . . . ,Vm−1

)
,

(3.1)
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Figure 2.3. Phase plot of the action potential V and its time-
derivative V̇ in the interval t ∈ (10,30).
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Figure 2.4. First V̇ and second V̈ derivatives of the action potential.

where Pk is a polynomial of sufficiently high power k and m is the un-
known order of highest derivative in the equation. (In our case m = 2).
In more detail, the polynomial Pk can be written in the form

Pk

(
V,V1, . . . ,Vm−1

)
=

k∑
l,l1,...,lm−1=0

ξl,l1,...,lm−1

m−1∏
j=1

V
lj
j ,

∑
lj ≤ k. (3.2)

Here ξl,l1,...,lm−1 are the unknown polynomial coefficients.
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Figure 2.5. First and second derivatives near a point of self-intersection.

The problem of reconstruction is to find these coefficients under the
condition that we know some time series {y(ti)} whose points are suffi-
ciently near the points of the analytic time series {V (ti)}. Thus, instead
of (3.1), we can write the system

ẏ = y1,

ẏ1 = y2,

...

ẏm−1 = ym,

ẏm = Pk

(
y,y1,y2, . . . ,ym−1

)
+ ε
(
y,y1,y2, . . . ,ym−1

)
,

(3.3)

where the polynomial Pk has the same coefficients as (3.2) and ε(y,y1,
y2, . . . ,ym−1) is a sufficiently small error function. Thus ẏ = ẏm is a ran-
dom variable. We can write a large number N of values ẏi (i = 1, . . . ,N) of
the random variable

ẏi = Pk

(
yi,y1i, . . . ,ym−1,i

)
+ εi =

k∑
l,l1,...,lm−1=0

ξl,l1,...,lm−1

m−1∏
j=1

y
lj
ji + εi, (3.4)

where εi(i = 1,2, . . . ,N) are sufficiently small random errors with normal
(Gaussian) distribution. Certainly, this requirement of computational (or
observational) noise is not necessary at all, but it is preferable. What is
of essential importance here is the requirement for sufficient precision
of the time series ẏi (i = 1,2, . . . ,N). This means it should be obtained
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by applying numerical differentiation (the well-known scheme of differ-
ence ratios) of an exact enough solution y(t).

The relations (3.4) can be written in the form

εi = ẏi −
k∑

l,l1,...,lm−1=0

ξl,l1,...,lm−1

m−1∏
j=1

y
lj
ji, i = 1,2, . . . ,N. (3.5)

In order to estimate the unknown coefficients ξl,l1,...,lm−1 , we minimize the
sum of error squares

S =
N∑
i=1

ε2
i (3.6)

with respect to ξl,l1,...,lm−1 . Conditionally, we denote by r the number of the
unknown coefficients. Then, to find the minimum of (3.6), we write r
equations in the form

∂S

∂ξl,l1,...,lm−1

= −2
∑(

ẏi −
k∑

l,l1,...,lm−1=0

ξl,l1,...,lm−1

m−1∏
j=1

y
lj
ji

)
= 0. (3.7)

The number of equations presented by (3.7) is equal to the number of
unknowns. Thus, in principle, we can calculate the coefficients. For con-
crete values of polynomial power k and order m of the differential equa-
tion, the system (3.7) of r linear algebraic equations for r unknown co-
efficients can be presented in a corresponding normal form as it is the
ordinary practice in the least squares method.

4. Quantitative identification of GFN equation from a numerical
solution of HHCC model

We take Fitzhugh-Nagumo equation in the following generalized form:

ẏ = y1,

ẏ1 =w1 +w2y +w3y
3 +w4y

5 +w5y
7 +w6y1 +w7y

2y1 +w8y
4y1

+w9y
6y1 +w10y

8y1 +w11y
10y1 +w12y

12y1 +w13y
14y1

+w14y
16y1 +w15y

18y1 +w16y
20y1 +w17y

22y1 +w18y
24y1

+w19y
26y1 +w20y

28y1 +w21y
30y1 +w22y

32y1 + ε
(
y,y1

)
.

(4.1)

Certainly, this is a particular case of the more general form (1.2). Apply-
ing the above-described least squares method to (4.1) for the given numeri-
cal data shown in Figures 2.2, 2.3, and 2.4, we obtain the following values
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Figure 4.1. Reconstructed (1) and original (2) solutions for the ac-
tion potential.

for the unknown coefficients wi (i = 1,2, . . . ,22) given consequently row
by row in a long numerical format:

−1.264775993898694e+ 000 −1.203737425127063e+ 000
4.346112120853091e− 001 −1.880289825835857e− 002
1.768445286164994e− 004 −3.099982789537563e+ 000
3.190076313652839e+ 000 −6.176045130223027e− 001

−5.228009601502203e− 002 3.196860016637852e− 002
−4.358331135826762e− 003 2.757592982480551e− 004
−7.151909501225488e− 006 −1.040097178573921e− 007

1.185781356187376e− 008 −2.653411136153012e− 010
−3.530187474014420e− 013 1.082689605526242e− 013
−1.462258253823620e− 015 −3.463614495001348e− 018

2.100520926807157e− 019 −1.239589912308053e− 021

After replacing these values for the coefficients in (4.1) and by solv-
ing (4.1) at the same initial conditions as they are in the original solu-
tion shown in Figure 2.2, we obtain a such named reconstructed solution
shown in Figure 4.1, together with the given solution playing the role of
an empirical one. It is seen that good enough fitting takes place between
the two solutions.

5. Conclusion

The obtained results show that the formulated theorem and least squares
method can be applied in principle to describe quantitatively action po-
tential solutions of the empirical HHCC model by two-dimensional GFN
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equation. More exactly, we can do that for some almost periodic part of
HHCC-potential solutions when the corresponding phase space reduces
from dimension m = 4 to lower dimension m = 2. Thus we can conclude
in this case that GFN equation is a quantitative and possibly a qualitative
analog of HHCC model. Nevertheless, there is a possibility of applying
a similar approach to enhance robustness of the identification. In other
words, parametric system identification from a piece of a single trajec-
tory for a single set of parameter values may not include enough infor-
mation about the vector field of the underlying dynamical system, and
the identification could fail in that case. This circumstance must be taken
into consideration for future, more detailed qualitative analysis of GFN
equations reconstructed quantitatively from experimental records of ac-
tion potentials.
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