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ABSTRACT. Here we prove that if xk, k 1,2,...,n + 2 are the zeros of (i x2)Tn(X)
where T (x) is the Tchebycheff polynomial of first kind of degree n, aj Bjn
j 1,2 n + 2 and yj, j 2,3 n + are any real numbers there does not exist

a unique polynomial Q3n+3(x) of degree < 3n + 3 satisfying the conditions:

Q3n+3(xj) aj, Q3n+3(xj) Bj, j 1,2 n + 2 and Q3n+3(xj) yj, j 2,3

n + 1. Similar result is also obtained by choosing the roots of (1 x2)Pn(X) as the

nodes of interpolation where P (x) is the Legendre polynomial of degree n.
n
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i. INTRODUCTION.

In [i] R.B. Saxena considered an interesting problem of (0,1,3) interpolation by

taking the roots of (i x2)Pn_2(x), where Pn_2(x) is the Legendre polynomial of

degree n 2, as the nodes of interpolation. By (0,1,3) interpolation, Saxena meant

that for the collections {aj}nl, {Bj}n-12 nand {Yj}I of real numbers and the zeros x
oj

(i x2)Pn_2(x arranged so thatof

-i Xn < Xn_l < < x2 < Xl
a polynomial R (x) of degree < 3n 3 can be constructed so that

n

R (x) a j 2 n,
n j j

R’(xj). Bj; j 2,3 n I,

and

R (x) =y j 12 n
n j j

Saxena proved that such a polynomial exists uniquely if n is even and for n odd

there does not exist a unique polynomial R (x) satisfying the above conditions.
n

Later Varma [2] obtained the following result in this direction:

THEOREM (VARMA). Given a positive integer n and real numbers ak(k 1,2

n + 2), Bk,Yk(k 2,3, n + I) there is, in general no polynomial, F3n+l(X) of

degree J 3n + such that F3n+l(Xk) ak; k 1,2 n + 2, F3n+1(xk)
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k 2,3 n + and F3n+l(Xk) k; k 2,3 n + provided XkS are the

zeros of (1 x2)Tn(X where T (x) is Tchebycheff polynomial of first kind and -if
n

there exists such a polynom+/-al then there is an -inf-in-ity of them,

2. MAIN RESULTS.

In connection with the above results we shall prove the following.

THEOREM 2. For any positive integer n, with I > 2 > > n+l > n+2
-i the zeros of (1 x2)Pn(X where P (x) is the Legendre polynomial of degreen

n, there is in general no polynomial R3n+l(X of degree 3n + such that, for

arbitrary real numbers {a.} n+2 { }n+l n+l
3 j 2 and {Yj}2 the conditions:

RBn+1(j) aj; j 1,2 n + l,n + 2, (2.1)

and

R3n+l(j) Bj; j 2,3 n + (2.2)

R3n+l(j) yj; j 2,3 n + (2.3)

are satisfied. If there does exist such a polynomial then there are infinitely many

of them.

We’also prove the following result for Tchebycheff nodes:

THEOREM 3. For any positive integer n, with x > x
2 > > x > x

n n+l
2> Xn+2 -i the zeros of (x) (I x )Tn(X there is in general no polynomialn

Q3n+3(x) of degree _< 3n + 3 such that for arbitrary real numbers {aj}+2-_ {j}n+21
and {yj}n+l2 the conditions:

Q3n+3(xj) aj; j 1,2 n + 1,n + 2, (2.4)

Q3n+3(xj) j; j 1,2 n + 1,n + 2 (2.5)

and

Q3n+B(Xj) yj; j 2,3 n + (2.6)

are satisfied. If there does exist such a polynomial then there are infinitely many

of them.

REMARK I. The comparison of our Theorem 2 with the above mentioned result of

Saxena shows that -if we do not prescribe the third derivative at +/- then there does

not exist a unique polynomial regardless whether n is even or odd. In an earlier

work [3] we have shown that along with the conditions (2.1), (2.2) and (2.3) if we also

prescribe the first derivative at +/- a unique polynomial of degree < 3n + 3 still

does not exist. It is also evident from Theorem 3 that even if we prescribe the first

derivative at +/- a unique polynomial of degree < 3n + 3 does not exist although

the nodes of interpolation are different from that of [3].
REMARK 2. We shall give here the proof of Theorem 3 only. The proof of Theorem

2 can be obtained along the same lines.

PROOF OF THEOREM 3. We will show that if all of

e. O; j 1,2 n + l,n + 2, (2.7)

j O; j 1,2 n + l,n + 2,

y. O; j 2,3 n +
3
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then there exists a polynomial Q3n+3(x) of degree _< 3n + 3 which is not identically

zero, but satisfies (2.4), (2.5) and (2.6). The desired result then follows immediately

from the theory of linear equations. From the definition of 0 (x) and conditions

(2.4), (2.5) and (2.6), together with the requirements (2.7), it is clear that the

desired polynomial must be of the form

Q3n+3(x) (I x2)2Tn2(X)n_1(x)
where An_l(X) is an unknown polynomial of degree <_ n i. Since we have also

required Q3n+3(xj) O; for j 2,3 n + 1, simple calculate_on prove.des

2
(i x )*n-l(x) 3Xn_l(X) CTn(X

for unknown real constant c. Letting x cos 0 and

(2.9)

we obtaln

n-i
(x) akcos kO

n-]
k=O

2
n-i

(i x )n_l(X) akk sin k0 sin 0.
k=l

Thus (2.9) becomes

n-i
c cos nO .[k sink0 sin 0- 3cos k@ cos 0].

k=O

From this, obtain on simplification

2 c cos nO
n-1. ak[(k- 3)cos(k- 1)0- (k + 3)cos (k + 1)0],
k=O

from which, by collecting the coefficients of cos kO, for k O,l,...,n, we may write

-2a (6a0 + a2)cosO- 4alcos20
n-2

+ {(k- 2)ak+ (k + 2)ak_l}COS k0
k=3

-(n + 1)an_2Cos(n I)0 (n + 2)an_iCOS n0

2c cos nO.

This, in turn, leads to the following system of equations

-2a 0

-(6a0 + a2) O,

-4a O,

(k 2)ak+ (k + 2)ak_ O; k 3,4 n 2,

-(n + l)an_2 O,

-(n + 2)an_ 2c.

If n is even, then

a0
a
2

a4
........ an_2 O; a 0
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but

an-l-2j n- 2
k=O

2- - for j 0, (n- 4)/2

is not necessarily zero.

If n is odd, then

while

a a
3

a
5 an_2 0,

-2c (=___n-ll/? 2k-
a2j -n- 2 II 2k + 3’ j 1,2

k=j

with the special case

a
0 -a2/6

which are not necessarily zero. Hence regardless whether n is even or odd, in general,

there does not exist a unique polynomial Q3n+3(x) of degree _< 3n + 3 satisfying

(2.4), (2.5) and (2.6) and there are infinitely many if they exist.

This completes the proof of Theorem 3. For a complete history on lacunary

interpolation we refer to a paper by J. Balzs [4].
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