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ABSTRACT. This paper describes some new finite difference methods for the approxi-

mation of eigenvalues of a two point boundary value problem associated with a fourth

order linear differential equation of the type (py’) (q y’) + (r s)y O.

The smallest positive eigenvalue of some typical eigensystems is computed to demon-

strate the practical usefulness of the numerical techniques developed.
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I. INTRODUCTION. In this paper we will consider the fourth order linear differential

equation

Ly [p(x)y’(x)] [q(x)y’(x)]’ + [r(x) %s(x)]y(x) O.

a x b, associated with one of the following pairs of homogeneous boundary condi-

tlons

y(a) y"(a) y(b) y’(b) 0

y(a) y’(a) y(b) y’(b) 0

(1.2)

Boundary value problems of the type (I.I)-(I.2) and/or (I.I)-(l.3) together with some

of their modifications occur frequently in applied mathematics, modern physics and

electrical engineering, see [5, 7, 8, 12]. In (I.I), we assne that the real-valued

functions p(x), r(x) and s(x) are continuous on [a,b] and satisfy the conditions



568 R.A. USMANI and M. ISA

p(x) C C2 [a,b], q(x) CC’[a,b] and p(x), q(x), s(x) > O, r(x) > 0, x [a,b

Recently, numerical techniques of order 2 and 4 have been developed for computing

approximate values of % for the boundary value problem (1.1-(1.3) with p(x) l,

q(x) E O, see [1,2]. In the fourth order method, the problem is dlscretlzed to yield

a generalized seven-band symmetric matrix elgenvalue problem of the form

AY Ah BY (1.5)

where A is an approximate value of % with elgenvector Y and B is a diagonal

matrix depending on the function s(x). Consequently, the eigenvalue problem (1.5)

can be converted to the usual standard problem of the type MY AY without any

excessive amount of computational effort. There are at present several areas of

research activity surrounding the development and analysis of numerical methods for

approximating A satisfying the generalized matrix elgenproblems of the type (1.5),

see [4, 9, I0, 11, 13].

Usmanl has developed [14] some new finite difference methods of order 2 and 4 for

computing elgenvalues of the differential system (I.I) with p(x) E I, q(x) 0

(for p(x) 0, q(x) E I, see [15]) associated with the boundary conditions

y(a) y’(a) y"(b) y’"(b) O. (1.6)

The purpose of this work is to present some new finite difference methods for

computing approximate values of % for the boundary value problems (1.1)-(1.2) and

(1.1)-(1.3). These methods lead to generalized elgenvalue problems of the form (1.5)

where A is a flve-band or seven-band matrix and B is a diagonal positive definite

matrix. We preface the numerical methods by some analytical properties of the

elgenvalues and elgenfunctions of the boundary value problems under discussion.

2. PROPERTIES OF EIGENVALUES AND EIGENFUNCTIONS.

Let stand for any of the two boundary value problems (1.1)-(1.2) and (I.I)-

(1.3).

THEOREM 2.1.

If %1 and %2 are two distinct eigenvalues of the problem I[ aand Yl(X),

Y2(X) are the corresponding eigenfunctions, then

b
s(x) yl(x) y2(x) dx 0.

a

PROOF. The proof is a direct consequence of Green’s identity (see [3], p. 86)

and the boundary conditions (1.2) and (1.3).

LEMMA 2.2. If y(x) is an elgenfunction belonging to the elgenvalue % of the

boundary value problem , then y(x) is an eigenfunction belonging to the eigenvalue

PROOF. The proof is trivial and follows from LY 0.
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THEOREM 2.3.

The eigenvalues of the boundary value problem , together with ([.4), are

real. In fact

b
[p(y..)2 + q(y,)2 + r ]dx

a
b > 0. (2.2)

s y2dx
a

PROOF. Let + i, , C R, be an eigenvalue of the problem I[ with

eigenfunction y(x) u(x) + iv(x) where u(x) and v(x) are real-valued functions.

From Lemma 2.2, it follows that is also an eigenvalue of the problem I with

respect to the eigenfunction y(x) u(x) iv(x). Now, from Theorem 2.1, it follows

that

b b
0 f s(x)y(x)(x) dx f s(x) ly(x) 12dx > 0

a a
(2.3)

because s(x) > 0 and y(x) # 0. The contradiction in (2.3) suggests that % can-

not be complex, hence it is real as required.

In order to prove (2.2), we multiply (I.I) by y(x) and integrate the resulting

equation twice from x a to x b. We consequently arrive at (2.2) on using the

conditions (I.I)-(1.4).

3. A SECOND ORDER METHOD FOR COMPUTING % FOR (I.I)-(1.2).
b a

For a positive integer n > 4, let h and x
i

a + ih, i 0(I) n+l.n+
We shall also designate Yi Y(Xi)’ Pi P(Xi) etc. We discretize the boundary

value problem (1.1)-(1.2) by the following set of difference equations

(a) [4Pl + P2 + h2(ql/2+ q3/2 + h4rl]Yl [2Pl + 2P2 + h2q3/2]Y2 / P2Y3

h4slY + 0(h4), (3.1a)

(b) Pi_lYi_2 [2Pi_l + 2Pi+l + h2 qi- 1/2]Yi-I + [Pi-I + 4Pi + Pi+l + h2(qi-I/2 +

qi+ I/2 + h4ri]yi [2Pi+ 2Pi+l + h2qi+I/2]Yi+l + Pi+lYi+2 kh4siyl + O(h6)’

i 2(1)n-l, (3.1b)

(C) Pn-lYn-2- [2Pn-I + 2Pn + h2qn-I/2]Yn-I + [Pn-I + 4Pn + h2(qn-I/2 + qn+I/2

+ h
4

h
4
SnYnr ]Yn X + 0(h4). (3.1c)

The difference equation (3.1b) os pbtaomed bu wrotomg (I.l) at x xl, in the

form

h2(qy ’) + h2(r As )Yi 0,h2(py")
i i i i
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(ri- ),(PY")i-I- 2(py")i+ (PY")i+I h[(qY’)i+I/f (qy)i- I/2 + h2 ksi)Yi --O(h4

or

Pi_l[Yi_2 2Yi_ + Yi 2Pi[Yi_ 2y
i
+ Yi+l

+ Pi+l [Yi 2Yi-! + Yi+2 h2[qi+ I/2(Yi+l Yi qi- !/2(Yi Yi-! )]

+ h4(r
i sl)Yi

0(h6), (3.2)

which can be arranged in the desired form (3.1b). The difference equations (3.1a) and

(3.1c) are introduced so that the resulting coefficient matrix in (3.1) is a five-band

symmetric matrix. In order to obtain (3.1a), we write (I.I) at x x in the form

h2(qy’) + h2 As )Yl 0,h2 (PY") (rl

p0Y0- 2PlY + P2Y2- h(q3/2y3/2 -ql/2Yl/2) + h2(r Isl )Yl

or

-2Pl(y0 2y + Y2 + P2(Yl 2y
2
+ Y3 h2[q I/2(Y 2 yl

q I/2 (Yl Y0 )] + h4(rl %sl)Yl 0(h4)" (3.3)

The preceding equation is easily arranged in the form (3.1a). The difference equation

(3.1c) is developed in an analogous manner by writing (I.I) at x x The system of
n

linear equations (3.1) can be written in matrix form

(A + h4R)y h4Sy + t(h) (3.4)

where A is a symmetric flve-band matrix. The matrices R diag (rl), S =diag (s i)
are diagonal matrices and y [y! y2...yn]T,t(h) [t t2...tn].

T
Here tl, t

n
0(h4)

and t. 0(h6), i 2(1)n-l.
1

Thus, our method for computing approximations A for l satisfying (I.I)-(1.2)

can be expressed as a generalized five-band symmetric matrix eigenvalue problem

(A + h4R)y-- Ah4Sy. (3.5)

It can be proved that A is a positive definite matrix and hence for any stepslze h > 0,

the approximations A for by (3.5) are real and positive for all p, q, s > 0 and

r > 0. That our method provides 0(h2) convergent approximations A for k can be

established following Grigorieff [6]. We omit the long and tedious details of conver-

gence proof for brevity.

Normally, only one or a few of the extreme elgenvalues of (1.1)-(1.2) are needed

in applications. In what follows, we will compute only the smallest eigenvalue of the
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system to illustrate our method based on (3.1). We consider the eigenvalue problems

[(I + x2)y"] [(I + x2)y’] + I___ k(l + x)4]y 0 (3.6)
(I + x) 2

with boundary conditions (1.2) at a O, b I, and

[eXy"] [eXy ’]’ + [sin x cos x]y 0 (3.7)

with boundary conditions (1.2) at a 0, b I. We computed approximations to the

smallest eigenbalue A of these eigensystems by our method (3.1) or equivalently

(3.5). The corresponding relative errors are shown in Table I. It is evident from

the entries of the accompanying table that our numberical method provides 0(h2) con-

vergent approximations. In computing the relative errors, we assumed that kl A1
with h 2-8, because exact value of k cannot be obtained by analytical methods

for these eigensystems.

TABLE I

Observed relative errors for h 2-m m 3(1)7

Problem h A
1

Relative Error

(3.6) -3
2 24.634,681 2.448-2*
-4

2 25.085,489 6.068-3
-5

2 25.199,984 1.497-3
-6

2 25.228,721 3.563-4
-7

2 25.235,913 7.125-5
-8

2 25.237,711 0.0

(3.7) 2
-3 19.548,553 2.551-2
-4

2 19.921,847 6.294-3
-5

2 20.016,196 1.551-3
-6

2 20.039,847 3.691-4
-7

2 20.045,764 7.380-5
-8

2 20.047,244 0.0

-2
* We write 2.448-2 for 2.44fl x i0

4. A METHOD FOR COMPUTING FOR (I.I)-(1.3).

We omit the lengthy details of the development of our numerical method but we re-

mark that a second order method for computing approximations A to satisfying

(I.I)-(1.3) is based on

(A’ + h4R)y Ah4SY (4.
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where A’ differs from A introduced in (3.5) in the first and the last rows only.
The first row of A’ is

[[2P0 + 4Pl + P2 + h2(q I/2 + q3/2 )} [2Pl + 2P2 + h2q3/2} P2 0...0]

and the last row of A’ is

[0 0 Pn-I -2Pn-I + 2Pn + h2qn-I/2 {Pn-I + 4Pn + 2Pn+l + h2(qn-I/ qn+I/2)}]"
Again, as in the previous section, the matrix A’ is a five-band symmetric matrix.

Another second order method for computing approximations A to satisfying
(I.I)-(1.3) is based on

(A" + h4R)y-- Ah4Sy (4.2)

where A", as before, differs from A in the first and the last rows only.
The first and the last rows of A" are

[{4P0 + 4Pl + P2 + h2 (q I/2+ q3/2 )} /2P0 + 2Pl + 2P2 + h2q3/2 P2 0...0]

and

[0...0 Pn-1 {2Pn-1+ 2Pn +I/2Pn+I+ h2qn-I/2 [Pn+l+ 4Pn + 4Pn- + h2 (qn_I/ q n+I/2)}]
respectively. The numerical results for computing A based on (4.2) are slightly
better than those based on (4.1), but the matrix A" is no longer a symmetric matrix.

We illustrate our methods based on (4.1) and (4.2) by computing A satisfying
(3.7) and the boundary conditions (1.3) with a 0 and b I.

The smallest elgenvalue A is computed employing inverse power iteration method and

the numerical results are summarized in Table II

Table II

Observed relative errors for Problem (3.7)-(1.3) with a 0, b i

Method h AI Relative error

2
-3

841.550 1.374-1
-4

2 925.773 3.393-2
-5

2 949.245 8.364-3
-6

2 955.283 1.990-3
-7

2 956.803 3.980-4
-8

2 957.184 0.0

(4.2) -3
2 922.198 3.805-2
-42 949.282 8.428-3
-5

2 955.404 1.967-3
-6

2 956.847 4.553-4
-72 957.197 8.983-5
-8

2 957.283 0.0
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5. HIGHER ORDER METHODS FOR SPECIAL CASE OF (I.I).

In this section we consider the linear differential equation

(4)
y q(x)y" + (r(x) % s(x))y 0

associated with the boundary conditions (1.2) or (1.3). For n > 7, let the step-

size h and the sequence {xi} be defined as in section 3.

Case I. The boundary value problem (5.1)-(1.2) is discretized by the following

difference equations

(a) (44 + 12h2q! + 6h4rl)Y (38 + 6h4ql)Y2 + 12Y
3 Y4 6Ah4SlYl

(b) (38 + 8h2q2)Yl / (56 + 15h2q2 + 6h4r2)Y2
(39 + 8h2q2)Y3

2
6Ah

4
s2+ (12 + h q2)y4 Y5 Y2

2

(c) ’/t-3 + (12 + h2qi)i_2
(39 + 8h2q3)i_ + (56 + 15h2qi + 6h4ri)t

2

(39 + 8h2qi)Yi+ + (12 + --h2qi)Yi+2 Yi+3 6Ah4siYi, i 3(I)n-2,
2

(d) Yn-4 + (12 + --h2 8h2qn-I 5h2qn-Iqn_l)Yn_3- (39 + )Yn-2 + (56 + +
2

6h4r )Yn- (38 + 8h2 I)Y 6Ah4s Yn-n-I qn- n n-I

(e) -Yn-3 + 12Yn-2- (38 + 6h2qn)Yn-I + (44 + 12h2qn + 6h4rn)Yn 6Ah4SnYn"

(5.2)

The system of equations (5.2) can be written in the form

(A + h2QB + 6h4R)y 6Ah4Sy (5.3)

where

A j3 + 6j2 J (Jmn) is a tridiagonal matrix with Jmm o

I, and B (b is a five-band matrix so that

bll b 12, b bn,nn 1,2 n-I
6 and

8, i-bij I/2’ j 2.

Case 2. The boundary value problem (5.1)-(1.3) is discretized by the difference

equations (see [I] also)

(a) (76 + 2h2q0 + 12h2ql + 6h4rl)Y (42 + 6h2ql)Y2 + 12Y
3 Y4 6Ah4SlYl

h2qo I13 h4r2(b) (42 +_ + 8hZqz)Y + ---+ 15h2q2 + 6 )Y2 (39 + 8h2q2)Y3
2

+ (12 + h__
2

q2)Y4 Y5 6Ah4s2Y2
2

(c) The same equation as (5.1c), i 3(I) n-2, (5.4)
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2 (39 + 8h2q )Yn-2 +(d) -Yn-4 + (12 + h__ qn_l)gn_3 n-I --" + 15h2qn-I+13

2

8h2qn_l 2 =6Ah4s Yn-6h4rn-l)Yn-I (42 + + qn+l)Yn n-I

6h2qn + 2h2qn+l + 6h4rn)Y(e) Yn-3 + 12Yn-2 (42 + )Yn-I + (76 + 12h2qn n

_4
6Ahs Y

n n

We computed approximations to A for the boundary value problems (5.1)-(1.2)

and (5.1)-(!.3) with q(x) + x2, r(x) 2’
s(x) (I + x) 4, a 0, b 1.

(l+x) -8
In both cases we assumed that A with h 2 It is abundantly clear from

the entries of the Table III that both our methods based on (5.2) and (5.4) are fourth

order methods.

TABLE III

Observed relative errors (Oh.4)?.converen.t .nu..er.ical techniqu.es)

Problem & method h AI Relative error

Problem (5.1)-(1.2) 2
-3

19.807,299 7.203-4
based on method -4
(5 2) 2 19.820,723 4.256-5

-5
2 19.821,518 2.469-6
-6

2 19.821,564 1.324-7
-7

2 19.821,567 5.515-8
-8

2 19.821.567 0.0

Problem (5.1)-(1.3) 2
-3 93.932,101 3.772-3

based on method -4
(5 4) 2 94.265,002 2.268-4

-5
2 94.285,062 1.398-5
-6

2 94.286,299 8.632-7
-72 94.286,376 4.800-8
-8

2 94.286,380 0.0
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