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ABSTRACT. The purpose of this paper is to provide an efficient algorithmic means

of determining the rational canonical form of a matrix using computational symbolic

algebraic manipulation packages, and is in fact the practical implementation of a

classical mathematical method.
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I. INTRODUCTION.

One of the most useful and beautiful canonical forms of an n by n matrix over

a field F is the rational canonical form which is sometimes called the Frobenius

Perron normal form (see 3). In the literature there are several articles which

provide algorithms for reducing a matrix to rational canonical form. Generally

ignored is an algorithm which is classical in nature in that it calculates the

invariant factors of a matrix (with polynomial entries) among which is the minimal

polynomial. Professor J. Rotman has highlighted this fact in [i p. 653] where he

says

"- current proofs have a defect; given a matrix A, they do not
indicate how to compute the invariant factors Thus there are two
articles in the January 1983 issue of the monthly that seem to
overlook an old theorem. (An algorithBic derivation of the Jordan
canonical form, by Fletcher and Sorenson, and An algorithm for the
minimal polynomial of a matrix, by Gelbaum. The theorem says that if
B is a matrix with (polynomial) entries in Fix], then one can put B in



254 J.S. DEVITT and R. A. MOLLIN

diagonal form diag(gl(x), og, gm(x) where g=(x) gi+l(x),
using elementary ro and c operations. (In so’doing, one needs
the Euclidean algorith for the g.c.d, of two polynomials. In
particular, this can be done for B xI A. The nonconstant g:(x)
are the invariant factors of A, and gn(X) is the mxnimal polymomal of
of A."

As Professor Rotman indicates, there is a simple, beautiful, classical method which

exists for deriving canonical forms. ile this method has a number of advantages,

at least some of which will become apparent as we proceed, the method has generally

been overlooked for reasons pertaining to the difficulty of it’s practical

implementation. In this paper, we discuss in detail the practical implementation

of this algorithm. Our implementation relies heavily on the advances which have

taken place in symbolic algebra packages over the last decade. One of the main

goals of this paper is to focus attention on these advances and the ease with which

these packages may be used.

2. DESIGN CONSIDERATIONS.

A well known algorithm for computing the characteristic polynomial of a given

matrix is the Danilewsky method (see [2]). This algorithm has been ued in a

variety of settings, and has been incorporated successfully into at least one graph

theory package for computing chromatic polynomials [3].

For more general applications, the numerical stability of the Danilewsky

method has raised some concern. Chartras [4] and Hanson [5] introduce extended

precision arithmetic to combat this problem. Other approaches (see [6]) introduce

an elaborate procedure based on modular arithmetic to achieve stability. It is

interesting to note that thee modular methods are very similar to the techniques

used in the symboIic packages for precisely the same reasons. It is a characte-

ristic of symbolic computation that while initial and final results may appear

quite innocent (eg. (x-1)lOO/(x-1) and x
99 + x

98 +...+ 1 have mall coefficients)

while expanded intermediate results have large coefficients such as 100!/(50!) 2

In addition, one may encounter mathematically valid examples which require

arbitrarily high precision. For example, the matrices

A

have minimal polynomials (x-l)

and I
1 0 1

2 and (x-l) respectively, if a # O.

(2.1)

sufficiently small that the floating point representation of 1 a is I, then the

computation of the minimal polynomial fails. Similarly, with the modular method,

computed lower bound on the product of the modulii (see [7, pp. 918-919]) can be

forced to exceed any fixed limit.

It is precisely these extreme cases that we wish to address. One strategy

that is available is to anticipate the degree of precision required for any given

problem. Alternatively one can work with exact arithmetic and unbounded precision.

This approach still doe not deal with the above example if we insist that a be

indeterminant. As well, estimating the degree of precision required may be

If a of (2.1) is
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difficult in general. (The modular algorithm addresses this problem to some

extent). The unbounded precision approach has traditionally been avoided because

of the difficulty of implementation. For example, because no upper bound exists on

the size of an integer, the issue of dynamic memory all.cation must be confronted,

and the exclusive us of rational or integer arithmetic must be considered. These

design issues are identical to those which must be addressed by symbolic algebra

systems. Thus the proposed algorithm might be regarded as a natural consequence of

the decision to go with unbounded precision.

In the proposed algorithm, we work directly with the symbolic representation

of the matrices with entries which are polynomials over the rational number field.

Most operations performed (beginning with the characteristic matrix) are integer

operations though rational coefficients do occur as intermediate results. All

calculations are exact.

3. TI{E RATIONAL CANONICAL FOli. (See [8])

First we introduce some required concepts. If F is a field and

p(x) a0
+ alx +...+ an_lxn-I + x

n
with ai, i 0 ,n, all elements of F; i.e.

p(x) is in Fix]; then the companion matrix of p(x) is:

0 0 0 0 -a
0

0 0 0 -a10 I 0 0 -a
2o o ...o-as

o o o -_
(3.1)

It turns out that for any n x n matrix A over F, there are uniquely determined

monic polynomials qi(x), i l...r, such that qi_l(X) divides qi(x), i 2...r, and

qr(X) is the minimal polynomial of the matrix A. If C
i

is the companion matrix of

qi(x), then the rational canonical form of A is the matrix with the block diagonal

form

C 0 0 0I
0 C2

0 0

0 0 C
3

0

0 0 0 0

0 0 0 C
r

(3.2)

We have deliberately avoided any reference to the underlying vector space and

the attendant relationship to the C.’s and invariant subspaces so as to achieve a

simple description of the rational canonical form at least at the outset.

As noted by Professor Norman [I], the usual derivation of canonical forms for

n x n matrices over a field F involves such matters as invariant subspaces and

cyclic vectors. They key to the proposed algorithm lies in a more detailed

explanation of this proof.

First we require some definitions. Let B be a matrix with coefficients in the

polynomial ring Fix], and let d
k be the monic g.c.d, of all non-zero k x k minors

of B. (set do 1.) It is easy to check that dk_ I divides dk for k 1...r, where
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r is the largest integer for which the r x r minors are not all zero; i.e. r is the

is the kth torsion order of B and is set to 0rank of B. The polynomial a
k dk/dk_ 1

if k r. In the special case where A is an n x n matrix over F, xI A, and
n

th
the k torsion orders are called the elementary divisors of A.

In what follows V is an n dimensional vector space over the field F, and

HomF(V,Y) is the ring of F-endomorphisms of V. Thus A is an element of HomF(,).
For any polynomial p(x) in Fix], the mapping p(x) p(A) is a ring homomorphism of

Fix] into HomF(Y,V), and so the scalar multiplication given by p(x)v p(A)v for

any v in V, defines an Fix] module structure on V which we denote by VA. It can be

shown that VA is isomorphic as an F[x]-module to the direct sum F[x]/(ql)Q...@
F[x]/(qn), where (qi) (qi(x)) denotes the principal ideal of F[x] generated by

the i
th

elementary divisor of A. Conversely, each F[x]-module F[x]/(qi)
corresponds to an F-vector space V. and associated endomorphism A. defined by A.v

1 1

xv for all v n V
i

i.e. the restriction of A to Yl
If qi(x) a0

+ alx + + am_lxm-1 + xm then as an F-vector space, V.1 has

{i(1), i(x),..., i(xm-1)} as a basis where .:l F[x] F[x]/(qi(x)) is the i
th

projection map. Since T’’(xk)l i (xk+l) for k 0, 1,. ..,m-l, and Tiwi(xm)
-(a0i(1) + ali(x) +...+ am_li(xm-1)) then the matrix of T

i
relative to the given

basis of i is just the companion matrix of qi(x). Now, qi(Ti)(Vi) qi(x)wi(F[x])
i(qi(x)F[x]) O. Moreover, for any p(x) in F[x] with degree less than m, we

have P(Ti) # 0 since P(Ti)i(l p(x)i(1) i(P(X) O. Consequently qi(x) is

the minimal polynomial of T..

In summary, for any endoorphism A, of an n-dimensional F-vector space, there

is a basis for V with respect to which the matrix of A has the block diagonal form

C 0 0 0

0 C
2

0 0

0 0 C3 0 (3.3)

0 0 0 0

0 0 0 C

where the i
th block is the companion matrix of the i

th elementary divisor of A

(distinct from I). This form is known as the rational canonical form.

Since Fix]/(1) yields the zero subspace we need only consider the non-trivial

eIementary divisors. The following observations should aIso be made.

1. The elementary divisor corresponding to C is the minimal
r

polynomial of A.

2. The product of the elementary divisors qi(x), i 1 r,

is the characteristic polynomial (x) det(xI
n

A).
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3. /](x) qr(X)
r
so the minimal polynomial is the characteristic

polynomial if and only if r 1.

From the proof outlined above it is clear that one approach to obtaining the

rational canonical form is to obtain the elementary divisors directly. Apart from

the points mentioned earlier, this approach has the advantage that it can also be

used to find the torsion orders of an arbitrary n x n matrix over Fix].

4. THE AIPM)RITI.

Throughout, we work with matrices whose entries are in Fix] and calculale the

th
k torsion orders directly. Given a matrix A over F, we work with the

characteristic matrix B I xA to obtain the rational canonical form.

The basic procedure for finding the invariant factors is essentially to reduce

the matrix B to a diagonal of the form diag(b bn) with bllb2 bn_llbn, by

elementary row and column operations in such a way that:

1. No elements of the quotient field F(x) which are not in Fix]

are introduced.

2. No row or column of B is ever multiplied by a non--trivial

polynomial.

W proceed along the main diagonal, at each stage moving a polynomial of

minimum degree into the next diagonal position. The bulk of the work involves

ensuring that this polynomial divides all the elements in the remaining submatrix.

When it does, we can force the off-diagonal entries corre$ponding to the ro and

column of the current diagonal position to zero by means of standard ro and column

pvots.

First a polynomial of minimal degree is selected and moved to position [1,1]

by elementary ro and column operations. If ro and column pivots can no be

carried out on the entry p(x) in position [],1] without introducing into the matrix

elements of the quotient field F[x], this is done. If not, there must be some

polynomial t(x) in say position [1,k], which is not divisible exactly by p(x). Aa

appropriate multiple of row 1 is subtracted from ro k to leave in position [l,k]

the remainder of t(x) divided by p(x). This entry is no of smallest degree and is

moved o row 1 by swapping rows. This is essentially the Euclidean algorithm for

computing g.c.d.’s of polynomials by using elementary operations on matrices.

This reduction process is repeated until the row and column pivots can be

carried out. After these pivots we must still establish that p(x) divides every

element of the remaining submatrix. If this is not the case, we add the ro

(column) containing the offending entry to ro (column) 1. This does not change

the pivot element because of the earlier pivots, but allows us to reduce the degree

of the pivot element by the reduction described above, and then try again.

This whole reduction process continues until the pivot element is the g.c.d.

of the entire matrix. The algorithm continues by applying the above procedure

recursively to the (n 1) x (n 1) submatrix occupying ros and columns 2 through

n. A detailed description of the algorithm is listed in Figure 1.
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As already indicated, the rational canonical form can be obtained directly

from the result of applying the above algorithm to the characteristic matrix

I xA. One just uses the companion matrices of the resulting polynomials.

During the past two decades considerable effort has gone into the development

of computer software for symbolic algebra. Many of the features and techniques

that hve been considered for the efficient implementation of an algorit|m for

compu! Lng th rational canonical form are common to the general questions of

eff’icte,cy of many algebraic operations and, in fact, have been explored at great

length n this context, lFor example, see [9].)

The algorithm outlined above for computing the rational canonical form has

been mpieme,ted by the authors in the symbolic language Maple [10] for matrices of

polynomials over the rational number feld. The implementation allows for the

representation of field elements by unknowns. The richness of the built in

functions and abstract data structures of Maple, and the user extendabiltty of

these features were of significant help in reducing the programming effort

required. The program has been used on up to 20 x 20 examples. Copies of the

source :ode are available from the authors.

Eigure 1. Torsion orders of a matrix over F[x]

FUNCTION CANONICAL (M: matrix over F[x], index, size: integer) if index < size then

1. move a smallest degree non--zero polynomial to position
M[index, index] by row and column interchanges.

2. if M[index, index] divides every element of column index
then zero the non-diagonal elements of column index by

adding multiples of row index.
else reduce a non divisible element to its remainder on

dividing by M[index, index], by row operations and
then swap rows.
RETURN (CANONICAL (M, index, size))

endif

3. if Miindex, index] divides every element of row index
then zero the non diagoanl elements of row index by

adding multiples of column index.
else reduce a non-divisible element to its remainder on

division by M[index, index], by column operations
and then swap rows.
RITURN (CANONICAL (M, index, size))

endif

4. if M[index, index] divides every element in
M[index+l...size, index+l...size]

then make M[index, index] monic by a row operation.
P (CANONICAL (M, index/l, size))

else add a row (in the range indexl...size) containing an
element of M which is not divisible to row index.
ITUI (CANONICAL (M, index, size))

endif
else make M[index, index] monic by a suitable row operation.

’ruR(M)
endif

end;
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5. PERFORCE OF THE ALGORITH.

As the derivation of the rational canonical form from the diagonal matrix of

torsion orders of the polynomial matrix is straightforward, we discuss only the

p.rformance of the algorithm for obtaining the torsion orders. It should also be

observed that by working with the factorizations of torsion orders, the Jordan

canonical form can a]so be reconstructed.

For" matrices with small integer entries, the following table gives some

indication of performmce.

Fi_ure 2. Some timing results

size of matrix Time in seconds

4x4 15

6 x 6 28-- 35

10 x 10 95- 100

20 x 20 900

(5.l)

All timing is on a DECSYSTEM-20 with 1.25 megawords of main memory running

V.rsion 3.2a of Maple. In the worst case, about 350E words of memory were actually

used, though automatic garbage collection was invoked. (The automatic garbage

collecton was done at the programming level. Version 3.3 of Maple has garbage

collection fully implemented at the system level.)

These times are unacceptable for many purposes, and clearly reflect the

overhead cost of algebraic computing. However, it does provide the user with a

Iruly flexible tool which becomes part of, and is augmented by the increasingly

sophisticated work environment of algebraic computation. For example, working in

such an environment, algebraic factoring is already provided and can be invoked

drectly on the resulting elementary divisors.

In addition, the following .xample gives some indication of the generality of

this approach. The characteristic matrix

x-a --b -c
-d x-e x- f
-g -h

(5.2)

where a,b,c,d,e,f,g,h,i are all unknowns in the rational field is transformed by

the algorithm to the diagonal matrix

where

1o o
0 1 0
0 0 r(x)

r(x) x
3

(a+e+i)x2 (ei + ea ai fh- db cg)x

+ (dbi--dhc + fha- eai- fbg + ecg).

Various assumptions about non-zero divisors must of course be made. It is

easily verified that, in this case, the minimal polynomial r(x) is the characte-

ristic polynomial.

(5.3)
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