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ABSTRACT. In this paper a number of generalizations of the classical Heisenberg-Weyl
uncertainty inequality are given. We prove the n-dimensional Hirschman entropy in-
equality (Theorem 2.1) from the optimal form of the Hausdorff-Young theorem and deduce
a higher dimensional uncertainty inequality (Theorem 2.2). From a general weighted
form of the Hausdorff-Young theorem, a one-dimensional weighted entropy inequality is
proved and some weighted forms of the Heisenberg-Weyl inequalities are given.
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1. INTRODUCTION.

Let f be the Fourier transform of f defined by
f(x) =f e_Zﬂifo(y)dy, X € R.
If f e L%lR)with L2 -norm ilfl]2 = 1, then by Plancherel's theorem Ilfllz =1, so
that |f(x)|2 and ]f(y)f2 are probability trequency functicns. The variance of a
prcvability frequency function g 1is defined by

Vig] =.& (x-m)zg(x)dx where m =.& xg(x)dx

is the mean. With these notations, the Heisenberg uncertainty principle of quantum
mechanics can be stated in terms of the Fourier transform by the inequality

VIIEIZVEIE[2] 5 aend)~l. (1.1
In the sequel, we assume without loss of generality that the mean m = 0. If g 1is a
probability frequency function, then the entropy of g 1is defined by

E[g] = ﬁ{ g(x)log g(x)dx.
With f as above, Hirschman (1] proved that
ELIE1%) + E[]£]2) < E, (1.2)

with E; = 0, and suggested that (1.2) holds with Ey = log 2-1. If Ey has that form,
then by an inequality of Shannon and Weaver [ 21 it follows that (1.2) implies (1.1).
Using the Babenko-Beckner optimal form of the Hausdorff-Young inequality ([3])
N ~ 1 _ .
HEH e < a@ el 0 1< p < 2, atp) = [p/ppry=1/p7 172, (1.3)
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in Hirschman's proof of (l1.2), then as Beckner [31] notéd, (1.2) holds with Ey = log 2-1.
A modest extension of (l.1) is obtained as follows: Let f on R be differentiable,

such that £(0) = 0. Then Holder's and Hardy's inequality [4, Theorem 3.27] yield with

1 <psg?2

golf(x)lzdx < ({j]x f(x)|de)1/p((f:°|f(x)/x|r>'dx)1/p'

< p({jlx £60 [Pa Pl Go [Pan P
Applying this estimate also to f(-x), then

llfllg = 6m|f(X)lzdx + (f:olf(—x)lzdx
< p[({jlx f(X)|de)1/P(§lf'(x)|p'dx)1/P'
+ (§°|x f(—x)Ipdx)”P(Z|f'(—x)|p'dx)1/P']

< Ix £60 [Pa0 /RS £ (o [P e e',

where the last inequality follows from HSlder's inequality. Now by (1.3) and the fact
that %'(y) = 2miy E(y) we obtain
THEOREM 1.1. If f € S (R) and £(0) = 0, then for 1 < p ¢ 2

[1e112 < 20 p &) |Iel |1yl ], (Lo

Note that the constant in (l.4) is slightly better than that in [4,81.4] but un-
likely best possible.

The purpose of this paper is to give extensions of the Heisenberg-Weyl inequality
(1.1). In the next section a new proof of the entropy inequality (1.2) for functions
on R" is given and an n-dimensional Heisenberg-Weyl inequality is deduced. The n-
dimensional generalization of inequality (l1.4) is also given in the next section. The
two inequalities are quite different, even in the case p = 2, but depend strongly on
the sharp Hausdorff-Young inequality. In the third section a weighted form of the
Heisenberg-Weyl inequality in one dimension is obtained from a weighted form of the
Hausdorff-Young inequality ([5][61[7'[8]). Unlike the constant A(p) in (1.3) the con-
stant of the weighted Hausdorff-Young inequality (3.3) of (Theorem 3.1) is far from
sharp. If the constant is not too large, then a weighted form of Hirschman's entropy
inequality can also be given, from which another uncertainty inequality is deduced.

v

Throughout, p' = p/(p-1), with p' = « if p = 1, is the conjugate index of p, and
similarly for other letters. S(RY is the Schwartz class of slowly increasing functions
on R®. We say g is in the weighted L; -space with weight w, if wg € LY and norm
[Ig(lr’w = [Iwg|lr. If x € R, then x = (XL’XZ""’Xn) and dx = dx;...dx, the n-
dimensional Lebesgue measure. fi(x), x € R™ denotes the partial derivative of f with

th

respect to the i component and fij = (fi)j. The letter C denotes a constant which

may be different at different occurrences, but is independent of f.
2. THE HIRSCHMAN INEQUALITY.

The Fourier transform of f on R" 1is given by

f(x) =/ e'2“ix.yf(y)dy, x € RO,

Rn X'y = lel +...+ x

nYus
and the entropy of a function on R" is defined as before with R replaced by R". We

shall need the following well known result (c.f. [9; §13.32 ii]):
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If / du =1, then
X

lim (/ |f|pdu)l/P = exp [ log |fldu. (2.1)
prot+ X X

Using this fact we obtain easily the n-dimensional form of Hirschman's inequality (1.2)
THEOREM 2.1. I1f f ¢ L2 (R™) such that |[£][, = [|E|[, = 1, then

E[£]%] + E[|¥]2] < n[log 2-1], (2.2)

whenever the left side has meaning.

PROOF. Let £ e (L1 L2)(R®), then £ « LP(R"), 1 < p < 2, and by the n-dimen-
sional form of the sharp Hausdorff-Young inequality [ 3] (that is,(1.3) with A(p) re-
placed by [A(p)]™) we obtain with p = 2-r, r > 0 and p' = 2-r', r' < 0

(2-r)1/2r)

_rV)‘l/(Zr')

U B 12 ay) " <
R™ (2

]D(}[‘Rnlf(x) |2-rdx)1/r.

Now let dii = |f(y)|%dy and du = |f(x)|%dx, then {R" dii = {R“ du = 1, so that the in-

equality becomes

~ SR ' - '1/(2r) (]
(al E 7T ab ]/r/(f rleo hramt/e = 10 /<2°f'>'”(2" -
an

But as r > o+, -r' > o+, so that by (2.1)

exp(/ | log If(y)|dﬁ)/
R exp(ﬁp log(lf(x)l_l)du)

n
R R (2r)

exp(/ _|E(y) [210g|E(y) [dy + £ o] £(x) | 2108 |£(x)]dx)lim 2B "

o () 1ay fon £ Cx [“10g] £ () | x){}Tz VT

- 2n/29-n/2.
Taking logarithms on both sides we get

FalE@) 210|200 [dy + £ 1200 [P10g]£00) [ax < § [10g 2-1]

and this implies (2.2) in the case f ¢ (L1 L2)(RY).
If f ¢ L2 the result is obtained as in [l ] only now one takes for W, wo(x) =

- 2 R _ 2
emmelx] and for fp, w_(y) =€ n/Ze-wlyl /e. We omit the details.

If ]gl € LZ(R) is a probability frequency function, then the relation between
entropy and variance is expressed by E[Iglz] > - % - % 10g(2WV[lg|2])([2: p. 55-561]).
The n-dimensional form of this inequality is given in the following lemma:

LEMMA 2.1. ([2; p. 56-57]). Let g ¢ L2(R") with ||gl||, = 1. 1f B = (b;) 1is
the matrix with entries

bij = V[]glz] =.&n xixj]g(x)lzdx, i,j = 1,2,...,n;
then

Ellgl?] » 3 1og (2nlbij|1/“) - n/2
where fbij|=det B.

Using the lemma and Theorem 2.1, we easily establish an n-dimensional extension
of the Heisenberg-Weyl inequality.

THEOREM 2.2. Let f ¢ L2(R") with |[£]], = [[£]], = 1 and

_ 2 . Soy12
bij = fmn xyxg £ [Pax,  Byy = {R iy £ [ “dy,
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i,j = 1,2,...n; be the entries of the matrices B and ﬁ respectively, then
(det B)(det B) » (16 12)7™.
PROOF. By (2.2) and Lemma 2.1,
nllog 2-1] » E[|£]2] + E[|]?]

_n I/ny _ D L 1/ny _
2 -5 log(2m Ibijl ) 3 log(2m Ibijl ) n,
so that
1 2 L/n|{ 1/n
log 2 > - 5 log(4m Ibij' lbijl ).
But then

4 > 1/[(det B)/N(det B)1/M4n?),
which implies the result.
Clearly, if n = 1 we obtain at once (l.1). If n = 2 then

by, by

&2 xf]flzdx, &2 x1x2|f|2dx’
b byy’ * 2 21612
21 22

Jr'Rz xlelfl dx, J{RZ x2|f| dx $

B = (

with a similar expression for B. Applying Theorem 2.2 we obtain

3y - 2012 2112 2,12
(det B)(det B) = [({R2 x1|f| dx)(.ll’Rz x2|f| dx) - (/IrR2 XX, | £]%dx)“]

Ly vEPay) = (g yyalElPen?) > a6 7)H72

If we denote the bracketed terms above by D[|f|2] and D[Iflzl, the discrepancy of
Schwarz's inequality, or the difference between variance and covariance of
|f|2 and |f|2, then the two dimensional Heisenberg-Weyl inequality shows that the dis-
crepancies of Iflz and lflz cannot both be small; D[|f|2] D[|§|2] » (16 "2)—2.

A different generalization of (l1.1) may be obtained along the lines of Theorem l.1.

THEOREM 2.3. Let f € S(R™), such that f(x),Xp,...,xy) = 0, whenever x; = 0 for
some i. If 1 < p < 2 and A(p) 1is the constant of (1.3), then

E112 ¢ (2mp 41 [yt |y vkl e

PROOF. We only give the proof for mn = 2 since the general case follows in exactly

the same way. Let f21(x,y) = g(x,y), then

X y
£G,y) = £ [ a(s,
(x,y 0h g(s,t)dtds

and by Holder's and the two dimensional Hardy inequality, with Ri = (0,*)x(0,*),

J['Rzlf(x,y)|2dxdy < ({Rzlxy f(x,y)|pdxdy)I/P(J[‘RZ|f(x,y)/xy|p'dxdy)up'
+ + +

2 A} |
<P U alxy £Gy) [Paxdy) P ) [£5) (xuy) [P dxay) 1P
+ Ry
On applying this estimate four times we obtain with du = dxdy

Ilfll§ = J['R2(|f(x,y)|2 + £y |2+ [ECx,-9) 2 + [£(-x,) [Ddu
+
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2 ' '
< P lxy f(x,y)[Pdu)up(fmzlfn(x,y)lp aw /e
+ +
+ (ﬁzlxyf(x,-ynpdu)l/ptkzlf21(x,—yﬂp'du)I/P'
+ +

+ <{kz|xyf<-x,—y>IPdu>1/P<{k2If21<-x,-y>IP'du>1/P'
+ +

* (ﬁZIXYf(‘X»Y)deu)l/p(&zjf21(-x,y),P'du)l/P'}
+ +
< Pz{ckzlxylptlf<x,y>lp + [EGG=9)| P+ [£(=x,-y) [P + |£(-x,y))P)aw)1/P
+
X(%glle(x,y)lp'+ |f21(x,-y)|p'
+

g xamy) [PT 4+ £y (-, y) [P 110wy P

i} pz(flexyf(x,y)lpdu)l/P(ﬁqzile(x,y)Ip'du)l/p"

where the last inequality follows from HGlder's inequality. But by the sharp form of
the Hausdorff-Young inequality with n = 2 we obtain |lf||§ < [p A(p)]2||xyf||p||E21||p..

ince (I )(s,t) = 4n%st £(s,t) the result follows.
3. WELIGHTED HIRSCHMAN ENTROPY INEQUALITY AND WEIGHTED HEISENBERG-WEYL INEQUALITY.

The results of the last section show that the Heisenberg-Weyl inequality is a
consequence of the Hausdorff-Young theorem. Recently a number of weighted Hausdorff-
Young inequalities have been obtained [5], [6], [7] and [8]. We shall use these results
in this section to obtain a weighted Hirschman entropy inequality as well as weighted
form of the Heisenberg-Weyl inequality. Here we consider weighted extensions in Rl
only.

Recall that if g is a Lebesgue measurable function on R, then the equi-measurable
decreasing rearrangement of g is defined by g*(t) = inf{y > 0: |{x ¢ R: |g(x)| > y}|< t},
where y > 0 and |E] denotes Lebesgue measure of the set E. Clearly, if g is an even
function on R, decreasing on (0,®), then for t > 0, g*(t) = g(t/2). We shall use this
fact below.

DEFINITION 3.1. Let u and v be locally integrable functions of R. We write

(u,v) € F*p’q, 1$p<qc<w®, if

sup (6s[u*(t)]th)1/q(61/s

(/¥ 1P ae) /P < o, (3.1

where in the case p = 1 the second integral is replaced by the essential supremum of
(l/v)*(t) over (0, 1/s).

If u and 1/v are even and decreasing on (0, ®) then (3.1) is equivalent to

sup (/2 [u() 190 VO 290y )P ) LR < (3.2)

s>0 0
and in this case we write (u, v) € Fp q
The weighted Hausdorff-Young inequality is given in the following theorem:

THEOREM 3.1. ([5; Theorem 1.1]). Suppose (u,v) € F*P q’ lspsq<=and f e Ls.

(i) If lim lifn - fllp,v = 0 for a sequence of simple functions, then {En} con-
n>e

verges in Li to a function f € Lﬁ. £ is independent of the sequence {En} and is called



190 H. P. HEINIG and M. SMITH

the Fourier transform of f.

(ii) there is a constant B > 0 such that for all f € LS

HEl g,y < BIE, o (3.3)

(iii) If g ¢ LT/u’ q > 1, then Parseval's formula

f[R E(y)g(y)dy = flR £(t)g(t)de

holds.

We note ([5], [6], [8]) that Theorem 3.1 is sharp in the sense that if u and v
are even and satisfy (3.3), then (u, v) satisfies (3.2). The constant B in (3.3) is
not sharp, however it is of the form B = k.C where k = k(p,q) is independent of u and v
and C is the supremum of (3.1), and in the case u, 1/v decreasing and even the supremum
(3.2).

A special case of Theorem 3.1 is the following:

- ' -
COROLLARY 3.1. Suppose f € L51/2/p, @I™2/P"172/py e p < 2, where

PP
u and v are even,decreasing as (0, then
LI, TN ' _
(f[Ru(y)p [P < k.Cp(fle(x)p 2)£(x)| Pax)l/P (3.4)
where Cp = sup (IS/Z u(x)p'-de)I/p'(61/(25)V(x)(Z'P)P'/de)I/P'.
s>0

Utilizing the last result we now give a weighted form of Hirschman's entropy in-
equality.

PROPOSITION 3.1. Suppose f € L2 N Li/v’ where u and v satisfy the conditions of
Corollary 3.1. If l|f||2 =1 and (3.4) holds with 0 < k £ 2 and Cp remains bounded as
P > 2, then

£ EO Progluie ey + £ 1100|2108 [veo£6o | ax

€ 2 log k + 8 sup (J’S/2

s>0
PROOF. Since f € Ls 1-2/p, 1 < p < 2, we apply Corollary 3.1 with p = 2-r, r > O,

p' = 2-r', r' <0 and da(y) = If(y)lzdy, dp(x) = |f(x)|2dx. Then (3.4) has the form
s/2

61/(25)10g [u(x)v(y) |dxdy) .

(& laE) [T aw /2" ¢k sup [6

u (x)'r'dx {)1/(25\)/(x)_r'dx]l/(2_r')
s>o

¢ (& |V(X)f(x)|'rdu)1/(2—r)

or, on raising the inequality ot the power (2-r')(-1/r'), equivalently
N S [
U e )Y 1 € k'

r?

8 [v(x)£(x) | Tdu)

where
s/2 1/(2s) !
M. =sup [/ / [u(x)v(y)1 T 4dxdy]'1/r'.
s>o
Given € > 0 there is an s_. > 0 such that

o
M. < [650/2f1/(25)[u(x)v(y)]'r'rdxdy]'l/r' + €

so that



EXTENSIONS OF THE HEISENBERG-WEYL INEQUALITY 191

¢ lup i | am e
R Iu y y l ({Rlv(x)f(x)l—rdu)l/r

< k(%072 2%0) (L yvip) 17T hdxdy 17 LE + 6, (3.5)
0

0
where we used the fact that k/2 £ 1. Now as r » o+, r' > o—, then on applying (2.1)

to both sides of (3.5) we obtain

exp(f 1og|u(y>%(y>|m:>/exp(f[R log|1/[v(x)E£(x)]|dw)

log[v(y)u(x)l4dxdy + €]

< kl[exp fso/2fl/(2s°)
0 0

< k[exp sup [
s>o
But € > 0 is arbitrary so that on taking logarithms we have

8/2{:/(25) loglu(x)v(y)l4édxdy + €].

770 180 [PoglumE 1y + 3 12 1£60 | Ploglvin £ | 2ax

< log k + 4 sup(fs/zlog u(x)dx + fl/(zs)

log v(y)dy)
s>o 0

which yields the result.
Note that if u = v = 1 and if k € ¥2/e we obtain (2.2) with n = 1.

We can write the conclusion of Proposition 3.1 in the form

E[Iflz] + E[IQIZ] < 2 log k + 8 sup (fslzéll(zs)loglu(x)v(y)ldxdy)
s>o0
- &J%(y)|210g|u(y)|2dy -.&If(x)lzloglv(x)lzdx.
But since ([2]) E[IfIZ] > - % - % log(2m V[|f|2]) and also with f replaced by f we
obtain another uncertainty inequality
. -4
V[|f|2] V[lle] > k2 5 exp[-16 sup fslzfll(zs)logluvldxdy]
4mce > 0
s>o

x exp(2 J lflzloglulzdy) exp(2 [ lflzlog|v|2dx).
R P R

If u=v =1and k = /372 in this estimate we obtain (1.1).
THEOREM 3.2, (Heisenberg-Weyl inequality). If (1l/u, v) € F
and f € S{R), then
113 < e fuoxe [9a0 /9" ¢ vyt Pay P, 3.6

p,qg> L€pPsa<®

PROOF. Integration by parts and Holder's inequality show that for 1 € q < =
lel12 < 2 /['Rlef(x)Hf'(X)ldX

< 2<flRl>m<x>f<x>I‘*'dx)”q'(f[RIf'(x)/u(x)lqcho“q

< ZCL&lxu(x)f(x)Iq'dx)l/q'(&lv(y)f'(y)Ipdx)llp,

where the last inequality follows from (3.3). Since f'(y) = 2miy f(y) the result

follows.
*

Note that the case p = 1 also holds, provided the second integral in the Fp,q

condition is interpreted as the essential supremum of (l/v)* over (0, 1/s).
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The same result holds also if we take (1/u, v) € Fp,q'

Observe also that the case u =v = 1 and q = p', 1 < p < 2 reduces to (1.4), but

with a different constant.

Weighted inequalities of the form (3.6) were also obtained by Cowling and Price

[3] but by quite different methods.

10.
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