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ABSTRACT. This paper establishes an apparently overlooked relationship between the
iv yiVp’air of fourth order line,r equations y p(x)y 0 and + p(x)y 0, where

p is , positive, continuous function defined on [O,m). It is shown that if all

solutions of the first equation are nonoscillatory, then all solutions of the second

equation must be nonoscillatory as well. An oscillation criterion for these equations

is also given.
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I. INTRODUCTION.

This note is concerned with the pair of fourth order linear differential equations

iv
y p(x)y 0 (I.I)
iv

y + p(x)y 0 (1.2)

where p p(x) is a positive, continuous function on [0,). The objective is to

relate the oscillatory character of (i.I) with that of (1.2).

Recall that a linear differential equation is said to be oscillatorx on an inter-

val I if it has a nontrivial solution y y(x) which has infinitely many zeros on

I. Also, such a solution y is called oscillatory. On the other hand, if no non-

trivial solution of the equation is oscillatory, that is if all nontrivial solutions

are nonoscillatory, then the equation is said to be nonoscillatory on I. Hereafter,

the term "solution" shall be interpreted to mean "nontrivial solution".

This study is motivated by several recent results concerning pairs of equations

of the form

z
(k) p(x)z 0 (1.3)

z(k) + p(x)z 0 (1.4)
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See, for example, D. L. Lovelady [i] and W. E. Taylor, Jr., [2]. When the order, k,

of the equations is odd, each equation is the adjoint of the other and it is natural

that their oscillatory character should be related. In particular, (1.4) is oscil-

latory i and only if (1.3) is, when k is odd. In contrast, (i.I) and (].2) are each

self-adjoint and the current literature suggests that the two equations are unrelated

with respect to oscillatory behavior. Indeed, the two equations have always been stud-

ied separately. See the works of W. Leighton and Z. Nehari [3], M. Keener [4], and

S. Ahmad [5] for detailed investigations of these equations. The fact that ether all

the solutions of (1.2) are oscillatory or they are all nonoscillatory, while (].l) al-

ways ias nonoscillatory solutions, provides a demonstration of the apparent indepen-

dence of the two equations in terms of oscillation. However, contrary to this evidence,

we shall show that there is a relationship between (1.1) and (1.2) that involves the

oscillatory behavior of the solutions.

2. MAIN RESULTS.

Our work requires the following general lemma. A proof of this result appears in

tle paper [6] by G. D. Jones.

LEMMA. If the function f f(x) is (k+l)-times differentiable and satisfies

f(i)(x) e O, i 0,| k, and f(k+l)(x) < 0 on an interval [a,oo), then

f(x) > (k-i)! (x-a)i, i < k-l,f(i) (x) k!

on [a,o).

Both Ahmad [5] and Keener [4] have shown that (1.1) always has a pair of solutions

y and w satisfying

y(x) O, y’(x) > O, y"(x) 0, y"’(x) > 0 (2.1)

on some half-line [b,), b a O, and

w(x) > O, w’(x) O, w"(x) O, w"’(x) < 0 (2.2)

on [0,o). Solutions of (i.i) which satisfy (2.1) are said to be strongly increasing

on [b,), while solutions satisfying (2.2) are termed stron_ decreasing. Ahmad

proved that (i.i) is oscillatory if and only if all nonoscillatory, eventually positive

solutions satisfy either (2.1) or (2.2). This fact serves as the basis for our main

tleorem.

THEOREM i. If (i.i). is nonoscillatory, then (1.2) is nonoscillatory.

PROOF. Assume that (1.1) is nonoscillatory. It follows from the remarks above

that (l.1) has an eventually positive solution which fails to satisfy either (2.1) or

(2.2). It is easy to show that such a solution, say y y(x), must satisfy

y(x) O, y’(x) > 0, y"(x) > O, y"’(x) < 0

on [a,) for some a > 0. Let z y’(x). Then z is a solution of the third order

equation

z .... p(x)y(x) z 0 (2.3)
y’(x)

,nd z satisfies z(x) O, z’(x) O, z"(x) 0 on [a,oo). From this we can con-

clude that (2.3) is (],2)-disconjugate o [a,oo) and hence nonoscillatoy (see [2]).
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Using the Lemma, we have

y(x) x-a
y’ (x) 2

Thus, by a well-known comparison theorem (see, for exa,nple, Nehari [7]), the third

order equation

107

z"’ (x-a)
2

p(x)z 0 (2.4)

is also nonoscillatory and (l,2)-disconjugate on [a,oo). Therefore, (2.4) has a solu-

tion u u(x) satisfying u(x) > O, u’(x) > O, u"(x) < 0 on [a,==). It follows

from these inequalities that u"(x) 0 and u’(x) a 0 as x.- . Subs:ituti=g

nto (2.4) yields

u"’(x) (-a)p(x)
2 u(x)

We integrate this eqation from x to s to obtain

I fs (t-a)p(t)u(t)dt, x > au"(s) u"(x)
.x

Now, letting s and using the fact that u"(s) / 0, we have

-u"(x)
x (t-a)p(t)u(t)dt.

Integrate again from x to s, using integration by parts. The result is

u’(x) u’(s)
x (r-a)p(r)u(r)d dt

i ;s (t-x)(t-a)p(t)u(t)dtl(s-x) (t-a)p(t)u(t)dt + x2 s

or

i f I Is (t-x)(t-a)p(t)u(t)dtu’(x) u’(s) + g(s-x) s (t-a)p(t)u(t)dt +
x

Thus, we can conclude that

i (t_x)2p(t)u(t)dtu’ (x) _>
x

on [a,). Furthermore, since

u(x) u(a) + |x u (s)ds
a

wu halve

l;x I (t-s)2p(t)u(t)dtdsu(x) u(a) + - a

Now, by standard iteration techniques, there is a nonnegative function w w(x) de--
fined on [a,) such that

lx[ (t_s)2p(t)w(t)dtdsw(x) w(a) +
a

Differentiating w, we find that

w(x) > 0. w’(x) > 0. w"(x) > O. w"’(x) < 0
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and

iv
w (x) -p (x)w(x)

Thus, w is a nonoscillatory solution of (1.2) which implies that all solutions of

(1.2) ,are nonoscillatory (see [3]).

COROLLARY. If (1.2) is oscillatory, then (i.i) is oscillatory.

REMARK. Euler equations can be used to show that the converse of the Theorem
iv -4

does not hold. For .:.:ample, the equation y x y 0 is oscillatory while
iv 4yV + x- 0 is nonoscillatory.

We conclude this note with an oscillation criterion for (1.2) and hence for (i.i).

This result involves a comparison of (1.2) with a "conditionally" oscillatory second

order differential eq,ation.

THEOREM 2. Let v v(x) be a function such that

2
lira inf

(x-a) ->-
3!v(x)X

for arbitrary a

_
0 and suppose that the differential equation

z" + cv(x)p(x)z 0

is oscillatory for some c e (0, I). Then (1.2) is oscillatory.

PROOF. Suppose that (1.2) is nonoscillatory. Then there is a solution y y(x)

of (1.2) satisfying y(x) > O, y’(x) > 0, y"(x) > O, y"’(x) > 0 for all x on

some half-line [a,oo). From the l,enma, it follows that

2_X_() _> (x-a)
y"(x)

on [a,o). Note that (1.2) can be written as

Z 0 X a,z" + y" (x)

where z y"(x). Using the Sturm comparison theorem, we conclude that

z" + (x-a)2p(x)

is nonoscillatory. Since lim inf
(x-a)2

x 3!v(x)
>_ 1, corresponding to each b c (0,1)

there exists t
b

a such that

2(x-a)
> b for x _>

b.3!v(x)
2

Therefore bv(x) <
(x-a)

3!
on Itb,) from which it follows that

z" + bv(x)p(x)z 0

is nonoscillatory. This contradicts the hypothesis of the theorem and the result is

established.

While the techniques in this note are similar to those used in [6], the results

are new.
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