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ABSTRACT. Under uniform integrability condition, some Weak Laws of large numbers are

established for weighted sums of random variables generalizing results of Rohatgi,

Pruitt and Khintchine. Some Strong Laws of Large Numbers are proved for weighted sums

of pairwise independent random variables generalizing results of Jamison, Orey and

Pruitt and Etemadi.
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Let Xn, n be a sequence of real random variables defined on a probability

space (, B, P) and ank, n _> I, k _> a double array of real numbers. Limit theorems

have been studied in the literature for the sequence Z ankXk, n _> of weighted sums
k>l

of the sequence Xn, n _> under some conditions on the double array of numbers and on

the distribution of the sequence Xn, n I. Jamison, Orey and Pruitt [4] studied

almost sure convergence of weighted sums under the assumption that the sequence Xn, n _>
is independently identically distributed with EIXII =. One of the objects of this

paper is to extend the result of Jamison, Orey and Pruitt [4] on almost sure convergence

to cover the case of pairwise independent identically distrubuted sequences Xn, n

with EIXII < =. Recently, Etemadi [3] has shown that Strong Law of Large Numbers is

valid for sequences Xn, n which are pairwise independent identically distributed

with EIXII < . The main result of Section 3 covers Etemadi’s result.

Our second objective in this paper is to study convergence in probability of the

sequence of weighted sums described above. Convergence in probability has been studied

under the following condition.

(B) There is a random variable X on [ such that EIXI s < for some s t 0 and

P{lXnl t x} ! P{IXI x}
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for every x 0 and n i. See Rohatgi [7]. Wei and Taylor [9, Lemma 3, p.284] have

shown that if

(A) Su EIXn lr
n>

< for some r > 0

holds, then-(B) holds for every 0 s <r. In this paper, we study convergence in

probability for sequences of weighted sums under the condition that

(C) Xn, n ! is uniformly integrable.

One can show that if (B) holds, then IXn Is, n is uniformly integrable. See

Chung [2, Exercise 7, 4.5]. One can also give examples of sequences Xn, n ! satisfy-

ing (C) but not (B) with s I.

2. CONVERGENCE IN PROBABILITY.

In this section, we present some results on convergence of weighted sums from which

Weak Law of Large Numbers is derivable. Theorem generalizes some results in the

literature in this area. See the remarks following Theorem i.

THEOREM i. Let Xn, n be a sequence of pairwise independent random variables

such that Xn, n _> is uniformly integrable. Let ank, n _> I, k _> be a double array of

real numbers satisfying

(i) Z lankl C for every n for some constant C > 0 and
k>l

max lankl, n J converges to(ii) O.
k>l

Then Z ank(Xk EXk), n converges to 0 in the mean.
k>l

PROOF. It is clear that the series Z ank(Xk EXk) converges absolutely a.e.
k>l

[m] for every n ! since sup mlXkl < and Z lank is convergent. Let t>O. We show
k>l k>l

that lim P{I Z ank(Xk EXk) t} 0. Let s O. Since X, k is uniformly in-
n/ k>l

tegrable, there exists 0 such that

sup lXkl dP < gt/8C (2.1)
k>l

whenever A g and P(A) < 6. Further, by Chebychev’s inequality, for any m 0 and

k i,

P{IXkl >m} (I/m)mlXkl (I/m) sup ElXkl.
k>l

Consequently, there exists a 0 such that

e{IXkl a} 6.sup (2.2)
k>1

Define for every k I,

Yk Xk if IXkl a,
0 otherwise, and

Zk Xk Yk"
Note that Yk’ k is a sequence of pairwise independent random’variables satisfying

IYk EYkl 2a for every k ! I. By (2.1) and (2.2), we have for every k ,
EIZkl / IXkl dP < et/8C.

"{IXkl a
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Consequently, for every n i,

E I ank(Zk- EZk) _< I lankl EIZk -EZkl 2 E lankl ElZkl t/4.
k> k> k>

Therefore, by Chebychev’s inequality, for every n _> I,

P{I E ank(Zk- EZk) t/2} /2.
k>l

Next, we choose N such that for every n N, we have

maxlank t2/B2a2C.
k>l

We observe that for every n N,

P{I E ank(Yk -EYk) t/2} _< (4/t 2) Var( Y. ank(Yk- EYk))
k>l k>l

(4/t 2) E 2 E (Yk EYk)2ank
k>

(4/t2)(max lankl) E lanklE(Yk EYe)2
k k>

(2.3)

e/2 (2.4)

Finally, (2.3) and (2.4) yield

P{l ank(Xk EXk) t} _< P{l E ank(Yk EYk) >t/2}
k> k>

+ P{I E ank(Zk EZk) t/2}
k>l

< e for every n N.

Thus E ank(Xk EXk), n J converges to 0 in probability.
k>l

To establish mean convergence, it suffices to show that E ank(Xk EXk), n is

k>l
uniformly integrable. See Chung [2, Theorem 4.5.4, p.97]. Since Xk, k is uniformly

integrable and E lankl ! C for every n I, it is obvious that E ank(Xk EXk), n

k> k>

is uniformly integrable.

REMARKS. (I). Rohatgi [7, Theorem i, p. 305] showed that E ank(Xk EXk), n
k>1

converges to 0 in probability under the following conditions.

(i) Xn, n is independent.

(ii) (B) holds with s i.

(iii) The double array ank, n ! i, k of real numbers satisfies (i) and (ii) of

Theorem i.

In view of the remarks made in the introduction, Theorem generalizes this result of

Rohatgi. (Also, this result of Rohatgi was a generalization of a result of Pruitt

[6, Theorem i, p. 770] who started with the assumption that the sequence Xn, n ! is

independently identically distributed with EIXII ). Moreover, our proof is simpler

than the one presented by Rohatgi. The essential difference in the proofs lies in the

fact that we truncate each Xn at a fixed point a, where as Rohatgi truncated Xn at an

with an varying with n. To illustrate the power of Theorem over Theorem of Rohatgi,

consider the following example. Let Xn, n _> be a sequence of pairwise independent

random variable with Xn having the following probability law.
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P{Xn n} P{X
n -n} I/2nlog(n+l),

P{Xn 0} (I/nlog(n+l)).

Xn, n _> is uniformly integrable. But (B) does not hold for the sequence Xn, n _>
with s i. Rohatgi’s theorem is not applicable to determine the convergence of

n n
(i/n) E Xk, n to 0 in probability. But by Theorem I, the sequence (I/n) E Xk,

k=l k=l

n > does indeed converge to 0 in probability.

(2). Chung [2, Theorem 5.2.2, p. 109] proved (attributed to Khintchine) the result

that (i/n)(X + X2 + + Xn), n ! converges to EX in probability if Xn, n is

a sequence of pairwise independent identically distributed random variables with

EIXII < . Theorem generalizes this result, Moreover, the proof presented here is

much simpler than the one presented by Chung.

If we impose a stronger condition on the double array, we can establish a Weak Law

of Large Numbers for weighted sums without the assumption of independence of the random

variables but in the presence of uniform integrability.

THEOREM 2. Let Xn, n _> be a sequence of real random variables defined on a

probability space (,,P) such that IXn Ir, n ! is uniformly integrable for some

0 <r <I. Let ank, n _> i, k _> be a double array of real numbers satisfying

(i) E lank Ir C for every n for some constant C O,
k >I

max lankl, n converges to(ii) 0.
k>l

Then E anuXu, n _> converges to 0 in r-th mean.
k>l

PROOF. This can be proved by a simple modification of the proof of Theorem I.

The series E ankXk n _> converges absolutely a.e. {P] for every n _> since
k>l

E ianklrlXk Ir converges a.e. [P] and 0 < r < I. The inequality (2.1) takes the form
k>l

sup / IXk Ir dP et/8C,
k>l A

and the inequality (2.2) remains intact as it is. The sequences Yk’ k ! and Zk, k

are defined in exactly the same way as it was done in the above proof. The probability

P{I E ankZkl t/2} is estimated by E lank Ir EIZk Ir. Now comes the point of departure.
k>l k>l

I the proof of Theorem I, we showed that E ank(Yk EYk), k converges to zero
k>l

in probability. Under the conditions of Theorem 2, we can do better than this. The

sequence E ank Yk’ n does indeed converge to 0 a.e. [P]. This follows from the

k>l

following chain of inequalities. For every n _> i,

ankYk a E lankl a(max lankl) l-r E lank Ir
k> k> k> k>

It now follows that E ankXk n ! converges to 0 in probability. To establish con-

k>l
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in r-th mean, it suffices to show that Z ankXk Ir, n is uniformly in-vergence
k>l

tegrable. This is not hard to prove.

REMARKS. Rohatgi [7, Theorem i, p.305] established a weaker conslusion than the

one given above under stronger conditions that the sequence Xn, n is independently

distributed and that (B) holds for the sequence Xn, n _> with s r. The major im-

provement achieved by Theorem 2 over Rohatgi’s theorem is dropping the assumption of

independence.

Now, we enquire about the validity of Theorems and 2 in the context of separable

Banach spaces. Theorem 2 is valid for sequences of random variables taking values in

separable Banach spaces. For the sake of clarity, we give the statement below.

THEOREM 3. Let Xn, n _> be a sequence of random elements taking values in a

separable Banach space B equipped with a norm II-II such that llXnll r, n is uni-

formly integrable for some 0 <r <I. Let ank, n _> i, k _> be a double array of real

numbers satisfying (i) and (ii) of Theorem 2. Then Z ankXk, n converges to 0 in
k>l

the r-th mean, i.e., Eli ankXkll r, n converges to zero.
k>l

REMARKS. (I). The proof of Theorem 3 is analogous to the one given for Theorem

2. This result is a generalization of Theorem 2.1 of [I]. The major improvement

achieved in the above result is in disposing of the assumption of independence in

Theorem 2.1 of [I]. Moreover, the proof suggested above is much simpler than the one

presented in [I] for Theorem 2.1.

(2). Theorem is not valid for Banach space-valued random variables under con-

ditions similar to those imposed in Theorem i. (See the comments following Theorem I.I

of [I]). For the validity of Theorem 3, almost sure convergence of Z ankYk, n
k>l

to 0 certainly helped. The proof given for Theorem fails to work in Banach spaces

because we are unable to establish convergence of Z ankYk, n _> to 0 either in
k>l

probability or a.e. [P]. However, if Xn, n is uniformly tight, i.e., given e O,

there exists a compact subset C of B such that P{X
n C} e for every n _> I, then

Theorem is valid under the conditions stipulated therein. For further details on this

result, see Wang and Bhaskara Rao [i0, Theorem 2.4].

3. oN-STRONG CONVERGENCE.

Extensions of Kolmogorov’s Strong Law of Large Numbers are generally sought so that

they become more applicable under circumstances less stringent than those imposed by

Kolmogorov’s Strong Law of Large Numbers. Jamison, Orey and Pruitt [4, Theorem 3, p. 42]

worked with independent identically distributed sequences of random variables but im-

posed conditions on the weights to establish Strong Law of Large Numbers. Etemadi

[3, Theorem i, p. 119] relaxed the assumption of independence in Kolmogorov’s Strong

Law of Large Numbers to pairwise independence and arrived at the same conclusion. The

following result encompasses both these extensions.

THEOREM 4. Let Xn, n be a sequence of pairwise independent identically dis-

tributed random variables defined on a probability space (,8,P) satisfying EIXII .
Let an n be a sequence of positive numbers satisfying lim max (ai/An) 0, where

n l<i<n
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n
An l ai, n _> I. Let N(n) be the number of positive integers k _> such that

i=l

(Ak/ak) <n, n O. If N(n)/n < r for every n > for some constant r 0, then

n
Z (ak/An)Xk, n _> converges to EX a.e.[P].

k=l

PROOF. The proof is carried out in the following three major steps. Since

+each of the sequences Xn, n _> and X, n _> satisfies the hypothesis of the theorem,

we can assume, without loss of generality, that each Xn _>0" For each k _> I, let

Yk Xk if Xk < Ak/ak,
0 otherwise.

Note that Yk’ k _> is a sequence of pairwise independent random variables. It can be
n

shown that Z (an2/A2n )EYn2 is convergent. Further, I (ak/An)Xk, n _> converges to
n>l k=l

n
EX a.e.[P] if and only if Z (ak/An)(Yk EYk), n converges to 0 a.e. [P]. The

k=l
details are worked out in Stout [8, p. 221].

2 We now show that almost sure convergence takes place along some well chosen
n

special subsequences of Z (ak/An)(Yk EYk), n I. In the final step 3 we will
k=l

show that convergence takes place along the entire sequence almost surely. Let a I.

Define a sequence m I, m2 of positive integers by letting m and mi min

a}, i 2,3 Obviously, m <m2 <m3 < We show that{j _> i; Aj _> Ami_l
mi

)(Yk EYk)’ i converges to 0 a.e.[P]. It suffices to show that forZ (ak/Ami
k-I

any e O,
mi

Ba,e i>!Z P{Ik.iI (ak/Ami)(Yk EYk) > } < ="

By Chebychev’s inequality, mi

Ba’ -< (I/e2)i>IZ Var(k=iZ (ak/Am)(ykl -EYk))

mi(I/2) i>iZ k=lZ (a/)
i"
War (Yk)

mi
<_ (I/e2) Z Z (a2k/)i EY

i>l k=l

(I/e 2) Z a my2
k

Z i/ 2

k> >J Aj,
k

where Jk min{j >_ I; mj >_k}, 1,2,3

It is clear that Amj > Ak and l i/ < (I/ )(i + I/a2 + I/a4 + i/a6 +
k- J>-Jk Jk

(i/Am2j)(a2/a2 i) _< (i/A)(a2/a2-1).
k

Consequently,

k>l
n

3 Finally we show that the entire sequence I (ak/An)(Yk EYk) n converges
k=l

to 0 a.e.[P]. Since lira max (ak/An) O, lira (an/An_ 0 and lira (An/An_ I.

n <k<n n+ n+
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Observe also that An/An_ for every n _> 2. We can find an integer N such that

< (An/An_l) < for all n_>N. Equivalently, if n>N, An_ < An < An_ I. For each

n I, there exists a unique integer i 2 such that mi_ n < mi. If mi_ N, then

< Ami < Ami-I < 2Am 2An. (3.I)An
mi

I/An < 2/Ami and
n
E (ak/An)Yk 2 E (ak/Ami)Yk or every n _> N.Consequently,

k=l k=l

Therefore,
n mi

lim sup E (ak/An)Yk _< lim I (ak/Ami)Yk 2EXI a.e. [P].
n/ k=l i k=l

n
(One can check that lim EYn EX and, by Toeplitz lemma, lim I (ak/An)EYk EXI.

n+ n/ k=
n mi-I

and E (ak/An) Yk-> (I/2) y.From (3.1), we also observe that I/An I/2Ami_l
k=l k=l

(ak/Ami-i) Yk’ if mi_ _> Na. Consequently,

n mi-1
lim inf r. (ak/An) Yk tl/a2) lim r. (ak/ami_) Yk (1/a2)EXl a.e. [PI-
n+ k=l i/ k=l

Thus we observe that for every I,

n(I/2)EX < lim inf (ak/An)Yk < lim sup I (ak/An)Yk _< 2EX a.e. [e]. This proves
n/ k= n/ k=

the almost sure convergence of the desired sequence.

REMARKS. (i). This theorem extends to separable Banachspaces-valued random

variables verbatim. A proof can easily be obtained with appropriate modifications of

the proof of Strong Law of Large Numbers given in Padgett and Taylor [5, p.42-44]. Or,

one can adopt the argument given in Bozorgnia and Bhaskara Rao [I] in the proof of

their Theorem 2.1.

(2). Kolmogorov’s inequality plays a crucial role in the standard proof offered

in many te.t books for Kolmogorov’s Strong Law of Large Numbers. This inequality, as

it stands, cannot be commandeered for pairwise independent sequences of random variables.

The idea of establishing convergence along some special subsequences is taken from

Etemadi [3] but his technique has been modified extensively in the above proof to suit

our needs. Also, Theorem 4 strengthens the conclusion of Theorem 5.2.2 of Chung [2,

p. 109] from convergence in probability to convergence almost everywhere [P].

There are sequences an n of positive numbers such that lim max ak/An 0
n+ <k<n

but N(n)/n, n is unbounded. See Jamison, Orey and Pruitt [4, p.43]. In such a case,

Theorem 4 becomes inapplicable. However, if we impose a stronger condition that

EIX111og+Ixl , one can establish a Strong Law of Large Numbers generalizing Theorem

4 of Jamison, Orey and Pruitt [4, p.43] as follows.

THEOREM 5. Let Xn, n _> be a sequence of pairwise independent identically dis-

tributed real random variables defined on a probability space (,B,P) with

LIElllog+IXl =. Let an n _> be a sequence of positive numbers satisfying lim An= ,
n

where An E ai, n _> I. Then
i=l

n
E (ak/An) Xk, n _> converges to EX a.e. [P].

k=l
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PROOF. Using Lemma 2 of Jamison, Orey and Pruitt [4, p.43], one can prove the above

result by a suitable modification of the proof of Theorem 4.

REMARK. Theorem 5 is also valid for separable Banach space-valued random variables.

relevant moment condition is that EllXllllog+llXlll <The
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