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ABSTRACT: This paper is concerned with the notion of "ordered Cauchy space" which

is given a simple internal characterization in Section 2. It gives a discription

of the category of ordered Cauchy spaces which have ordered completions, and a

construction of the "fine completion functor" on this category. Sections 4 through

6 deals with certain classes of ordered Cauchy spaces which have ordered comple-

tions; examples are given which show that the fine completion does not preserve

such properties as uniformizability, regularity, or total boundedness. From these

results, it is evident that a further study of ordered Cauchy completions is needed.
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0. INTRODUCTION.

Cauchy spaces provide a completion theory much more general than that obtained

from metric or uniform spaces, and much simpler than that arising from uniform

convergence spaces. R. Ball [i], [2] has shown the applicability of Cauchy spaces

in the study of lattice completions; the compatibility between lattice and Cauchy

structures is obtained by requiring the lattice operations to be Cauchy-continuous.

While this compatibility criterion is quite natural it is not appropriate for more

general order structures, such as partial orders, and may be too restrictive even

for some lattice applications.

L. Nachbin [9] has defined an "ordered uniform space" by requiring that the

uniform and order structures arise from a common source, that being a quasi-niform

structure on the same underlying set. We adapt Nachbin’s method to define an

"ordered uniform convergence space", and from this the definition of "ordered

Cauchy structure" follows naturally. The resulting notion of "ordered Cauchy space"

is given a simple internal characterization in Section 2.

The development of a completion theory for ordered Cauchy spaces is compli-

cated by the fact that some ordered Cauchy spaces do not have ordered completions.

In Section 3, we describe the category of ordered Cauchy spaces which have ordered

completions, and construct the "fine completion functor" on this category. The

remaining sections examine certain classes of ordered Cauchy spaces which have

ordered completions; examples are given which show that the fine completion does

not preserve such properties as uniformizability, regularity, or total boundedness.

From these results, it is evident that a further study of ordered Cauchy completions

is needed.
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1. PRELIMINARIES.

Let X be a set, and F(X) the set of all (proper) filters on X. If- ,8 E F(X), and F N G # for all F E , G then D denotes the

filter on X generated by {F N G: F G E }. On the other hand, if

F N G for some F and some G , we say that U fails to exist.

If A c X, A , we denote by <A> the filter of all oversets of A; one departure

from this convention are the fixed ultrafilters, which are denoted by for

xEX.

Turning to the product set X x X, the diagonal {(x, x): x E X} is designated

by A. Compositions are defined as follows: for subsets A, B of X x X,

A B {(x, y) there is z X such that (x, z) E A and (z, y) B}. Compo-

sitions and inverses of filters on X x X are defined in the obvious way. If

A c X x X and H c X, then A(H) {y E H: (x, y) A for some x H}; if, in

addition, G E F(X x X) and F(X) then A(), (H), and () denote the

filters on X generated by the sets {A(H): H }, {A(H): A }, and

{A(H): A 6 , H }, respectively.

DEFINITION I.I. A set of filters on X x X is called a quasi-uniform

convergence structure on X if:

(u)
(u2) .Q E 0 whenever 0

(u3) , whenever 5, 6 and = exists

(u4) and c__ implies 6

If satisfies the additional condition

(u5) , o implies -I E o

then is called a uniform conver.gence structure on X.

Quasi-uniform convergence structures are natural generalizations of quasi-

uniformities. Uniform convergence structures were introduced by Cook and Fischer

[3] another term often used for the same concept is "pseudouniforme Struktur"

(see [6]).
A subset ’ of a quasi-uniform convergence structure @ is called a base for

@ if, for each , there is ’ such that c One convenient

for any quasi-uniform convergence structure is A : c__ < A >}.

The set Qu(X) of all quasi-uniform convergence structures on X formq

complete lattice under the natural ordering (the dual of set inclusion). If

0, Qu(X), then O ^ has for a base all finite compositions I n
-I

where for each j, j E OA or j A" If o E (X), then v is the

uniform convergence structure on X induced by o. The lattice operations "v"

"^" applied to quasi-uniform convergence structures (including uniform convergence

structures) will always be taken relative to the lattice Qu(X).
DEFINITION 1.2. A set of filters on X is a Cauchy structure on X if:

(c I) x C for all x 6 X
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(c2) C and ! implies C

(c3) If , and U exists, then

A subset of a Cauchy structure is a base for if, for each E

there is in such that c With every uniform convergence structure

on X, there is associated the induced Cauchy structure E F(X):

x }. On the other hand, one can associate with each Cauchy structure

a finest compatible uniform convergence with base consisting of all finite

intersections of filters of the form x , where (one can show

that this set of finite intersections is closed under finite compositions). Also

associated with a Cauchy structure C on X is the convergence structure q
defined by: x in (X, qc iff x E

If f: (XI, ) (X2, 2) is a function from one Cauchy space to another,

then f is Caucy-continuous if f() C2 whenever

We next consider the notation and terminology associated with an order

relation on X. We shall always assume that (X, is a poset, and we identify the

order relation with its graph {(x, y) x y} X x X. Indeed, it will usually

be convenient to designate the poset by (X,) rather than the more conventional

notation (X, ).

Let (X, ) be a poset" let x X, A X, and F(X). Then

(x) ({x}), (A), and () are the increasing hulls of x, A, and

respectively. The decreasing hulls are -I (x), -i (5), respectively. The convex

hull of A is A^ (A) -I(A), and A is convex if A A^ similar

notation applies to filters. A Cauchy space (X, ) is lo.call convex if ^
whenever E C

If (XI, i and (X2, 2 are posers, a function f (XI, i / (X2, 2
is increasing if f( I 2 (equivalently, if f(xl) f(x2) whenever x E x2.

2. ORDERED CAUCHY SPACES.

Throughout this section, (X, ) will be arbitrary poset.

DEFINITION 2.1. Let (X, be a uniform convergence space. Then (X, ,
is an ordered uniform convergence space if there is a quasi-uniform convergence

structure on X such that <> , V -I, and = D{: @}.

DEFINITION 2.2. Let (X,) be a Cauchy space. Then (X, , is an

ordered Cauchy space (abbreviated o.c.s.) If there is a uniform convergence

structure on X such that (X, , ) s an ordered uniform convergence space,

and C C

We see that (X, @, ) is an o.c.s, iff and are both determined by some

quasi-uniform convergence structure on X (in the sense described in the preceding

definitions). We shall obtain a more precise chmracterization of of this concept

by making use of a particular quasi-uniform convergence structure o , con-

structed directly from and . Let o= F(X x X): <> be the

quasi-uniform convergence structure on X generated by . If is a Cauchy
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structure on (X, ), we define ,C ^ we also define the associated
-I

uniform convergence structure ,C (,C) v (,)
LE4A 2.3. Let (X, ) be a poser. For arbitrary filters , on X, the

following statements are equivalent:

(a) O() U exists.

(b) ; U -i(.) exists.

(c) @() U -I() exists.

(d) (3x) U <@> exists.

(e) (3 x <> <x> exists.

Let (X, be a poset and C a Cauchy structure on X. A relation is

defined on C as follows: If C then < iff there is a finite set

in C such that () U I 80n) U all exist.of filters I n
This relation is clearly reflexive and transitive, but not generally anti-symmetric.

PROPOSITION 2.4. Let (X,)) be a poset, C a Cauchy structure on X. Then

,C has a base of filters of the form ({ 9-I(.j) x j): j =I n})<>
where S <,j, < j < n.

PROOF: Assume $ < in C. Then there is I in C such that
n

() I ( gn U all exist. Thus -1(,) )

<> [x] <> [l x l] <> <> [x

exists; since each component filter in this composition is in either c or C
-I (5) x C) o Finite intersections of such filters are also in,C

,C
and so

,C contains all filters of the indicated form. Furthermore,

o has a base of filters of the form <> I < > < > < >,,C n
where each 6j is a basis filter for C that is, a finite intersection of filters

of the form x where 6 C A straightforward set-theoretic argument shows

that all such basic filters for @,C can be expressed in the form specified in

the statement of the proposition.

PROPOSITION 2.5. Let (X, ) be a poser, C a Cauchy structure on X, and

, C. Then iff x ,C
PROOF. If j the preceding proof shows that x is in @ since

-I Then by
() x () ! R x Conversely, suppose x G,C

in C with
Proposition 2.4, there are filters I’’’’ Rn and i n

j n such that ({

x If (x) U <@ > exists, then is clear. Otherwise, for some

j, ( x) U(I() x ()) exists. This implies < .j < .3 < and the

proof is complete. |

PROPOSITION 2.6. Let (X, @) be a poset and C a Cauchy structure on X.

Then (X, , C) is an o.c.s, iff U{ 6: C and ,C is compatible

with C-

PROOF. If the two conditions are satisfied, then (X, , C) is an o.c.s, by

Definitions 2.1 and 2.2.

Conversely, assume that (X, , C) is an o.c.s., and let be as in
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D thus theDefinition 2.2. Then U{A6: A } D U{A 6: CC
first condition holds. The second follows because and the fact

C
,C

that and are both compatible with

PROPOSITION 2.7. If (X, ) is a poset and C a Cauchy structure on X, then

U{N ,C iff x implies x y.

PROOF. With the help of Proposition 2.5, we have x x x

(x,y) {(: ( ,C the conclusion follows from these observations.

A poser with Cauchy structure is defined to be T2-ordered if x implies

x y. This terminology coincides with the definition of "T2-ordered’ for

convergence ordered spaces in [8] if we identify a convergence structure as a

complete Cauchy structure. It foiiows from Proposition 1.2, [8] that if (X, ,)

is a T2-ordered poser with Cauchy structure, then is closed in X x X.

A poser with Cauchy structure (X, , C) which is locally convex is said to

satisfy Condition (0C) If . C whenever < and < , then

(X, , C) is said to satisfy Condition (0C)2 Finally, if (X, ), C) is

T2-ordered then we say that Condition (OC)
3

is satisfied.

PROPOSITION 2.8. An ordered Cauchy space satisfies conditions (OC) I, (OC) 2,
and (OC) 3

PROOF. Let (X, C be an ordered Cauchy space. Condition (OC)
3

is an

immediate consequence of Propositions 2.6 and 2.7. Proposition 2.6 also asserts

that ,C is a compatible with C this fact will be used to establish (OC)

and (OC) 2. If C, then --< > (x) <>-- -I() x () (o,C

Also -I < -I (x.) <> () x -I) ((,C) I. Thus

U -I ,^ x ^ ),C v(,C )-i ,C ,and so . C and (OC) is

satisfied. Finally, assume < and , < .. Then, by Proposition 2.5, x

and x are in ,C Thus (.A) x (N) ,C and this filter,

being symmetric, is also in ,C Since , C is compatible with C, n. c. |

THEOREM 2.9. Let (X, @ be a poser with Cauchy structure. Then

(X, ,C is an o.c.s, iff Conditions (OC) I, (OC2), and (OC)
3

are satisfied.

PROOF. In view of Propositions 2.6, 2.7, and 2.8, it remains only to show

that C is compatible with O,C when the three conditions are satisfied. In

other words, we must show that B x B o, C implies C We prove this

implication first under the assumption that is a free filter; later, this

restriction will be removed.

andIf x ,C then by Proposition 2.5 there are filters I’ n
I n in , with j ~< j for j n such that x

_
([ -i(j) x 8(j): j n}) <>. If K is an ultrafilter finer than

then either < > K x contrary to our assumption that is free, or else

there is an index j, j n such that -I (j) x (j) x K. In the

latter case we see easily that ’3 ~< ’3’ and Sj ~< j; thus by (OC) and (OC)2,
j j Sj)^ C
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Without loss of generality, let {I,..., m} (m <_ n) be the indices for which,

if j {I m }, there is an ultrafilter K finer than such that

(j) x (j) c E x K For each j, _< j _< m, let j 5. .)^ as in

the preceding paragraph, Z. C We next show that ={. j=l m} C
Indeed, suppose j, k {I,..., m}. Then there are ultrafilters Kj and k finer

than such that Zj c j and Zk c . Since K x K D it follows that

either Aj x ) U < > exists, or else (Kj x Kk) U )-I() x ()]
exists for some {I n }, where 5 < . Either alternative leads to the

< Applying the same" reasoning with indices reversed leadsconclusion that j k
< Z and by (0C)2, j k

to conclusion Zj k Z C. Since j and k are

arbitrary indices in {l,...,m}, C Since Z c we conclude that C

when is a free filter in ,C
If x ,C is not free, then by (OC) 3) is necessarily of the form

I where I is free and x X. By our previous results, I C

Also, 6 c_ x where is the filter described earlier in the proof. Thus

c_ x ]I implies <> U ( x I) exists or ()-l(j) x 9(j))U( x |

exists for some j, j -< n. Either way, it follows that < I Starting with

6 c__ I x x leads to the conclusion that i < Using (0C)2 again, we con-

C, and the proof is complete.clude that I
The three conditions which characterize ordered Cauchy spaces are all quite

natural. The properties "locally convex" and "T2-ordered" are commonly assumed in

the study of ordered topological and convergence spaces, and the condition (OC)
2

is a natural extension to ordered spaces of axiom (C3) of Definition 1.2. Cauchy

structures intrinsic to distributive lattices and lattice ordered groups studied by

Ball ([I], [2]) are examples of ordered convergence structures.

Since Cauchy structures are primarily used as a means for constructing com-

pletions and compactifications, it is natural to turn our attention now to

completions of ordered Cauchy spaces. While it is well known that all T
2
Cauchy

spaces have T
2 completions (indeed, a variety of different completions are described

in the literature), it turns out that not all ordered Cauchy spaces have ordered

Cauchy completions. In the remainder of this paper, we characterize those ordered

Cauchy spaces which do have such completions, and examine several special cases.

3. ORDERED CAUCHY COMPLETIONS.

A triple (X, , C) will be called a poser with T2-ordered Cauchy structure

if (X, ) is a poset and C a T2-ordered Cauchy structure on (X, ). Thus a

poset with T
2
ordered Cauchy structure is required to satisfy condition (OC)

3
but

not (OC) or (OC) 2. An increasing, Cauchy-continuous function from one such space

to another will be called a morphism. The category having posets with T2-ordered
Cauchy structures as objects and morphisms as maps will be designated PCS. Let

OCS be the full subcategory of PCS whose objects are the ordered Cauchy spaces.

If (X, , C) PCS, let C be the Cauchy structure compatible with the
-Iuniform convergence structure ,C o ,C v o,C It follows from

Proposition 2.7 that (X, , @C) is T2-ordered. Furthermore, ,C ,C and

so by Proposition 2.6, (X, , is an o.c.s. We shall call C The ordered
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Cauchy modification of C relative to (X, )). If f: (X, ), C) (XI, I’ C1 is

a map in PCS, then it is a simple matter to verify that f:(X,

is also a morphlsm.

PROPOSITION 3.1. OCS is a reflective subcategory of PCS relative to the

reflector F: PCS OCS defined for objects by F(X, , ) (X, ),)C) and fixed

on maps.

If an object (X, ,C) in PCS is complete, then we shall refer to C as a

convergence structure on X and (X, C as a convergence, s.pac. For complete

objects in OCS, the T2-ordered property means simply that is closed in the

product convergence on X x X. A complete o.c.s, will be called an ordered

cpnvergence space; the latter term has the same meaning as "T2-ordered convergence

ordered pace" in [8]. Let OCON be the full subcategory of OCS whose objects are

ordered convergence spaces.

DEFINITION 3.2. An ordered completion ((XI, I,CI), ) of an o.c.s.

(X, , ) is a complete o.c.s. (XI’ I’ CI) and a morphlsm @:(X, , )
(XI, O I, i which is an ordered Cauchy embedding (meaning that and -I

one-to-one morphisms and (X) is dense in XI).
are

The maln goal of this section is to determine which objects in OCS have ordered

completions; the full subcategory of OCS determined by these will be denoted by
COCS. It is clear that (X, 9, C) COCS iff (X, , ) is isomorphic to a Cauchy

subspace of an object in OCON; we seek, however, an internal characterization of
such objects. For this purpose, it is necessary to introduce a new order relation

on the Cauchy filters of an o.c.s.

Let (X, , C) be an o.c.s. For C let L {x X: x and

U x X: x}. Note that if C then LN -l(y) and U (y).
Now, for , C define iff any one of the following is true:, or v < L> exists, or v < U > exists. Let @ be the smallest
transitive subset of Cx C containing other words, iff there are

I’’’’’ n in C such that I n " Note that I 2 C implies

I O 2 and 2 i also, if then I O I for every

I [] and I ]" Before proceeding further, we give an example to

illustrate the difference between the relations and Q
EXA}LE 3.3. Let X R

2 {(0,0)} be the Euclidean plane with the usual
order and with the origin deleted. Let D(x) be the neighborhood filter at x with
respect to the usual topology. Let be the filter on X generated by all sets of
the form Gn {(x,0): 0 < x < in for n 6 N and let be generated by nil

If (Xl’ I’ CI)’ ) is an ordered completion of (X, , C), then

((XI, I ) is obviously a Cauchy completion of (X, C), and so it will be con-

venient to review some aspects of Cauchy completions. Starting with a T
2 Cauchy

space (X, C), two filters , in C are equivalent if . Let

X* {[]: C} be the set of all Cauchy equivalence classes; let X X* be

the natural injection, defined by j(x) []. The completion ((XI, CI), ) is in

standard form if X X* and j. Reed [i0] showed that every Cauchy completion

is equivalent (in the usual sense) to one in standard form. The same is, of course,
true for ordered completions.
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sets of the form H {(0,y): 0 < y < i }. Let C be the smallest Cauchy

structure on X which contains D(x) for each x in X along with , and . It

is easy to verify that (X, , C) is an o.c.s.; also note that B and B i .
However ’$ and U both consist of the closed first quadrant (excluding, of

course, the origin), and consequently Q and

We now introduce three conditions which are analogous to (OC) I, (OC)2, and

(OC) 3" we shall show that an o.c.s. (X, @, ) has an ordered completion iff it

satisfies these new conditions.

(COC) E C implies (() N < U3 >) (-I() N < L3 >) E

(cot)
2

(cot)
3

C,,Q, and O implies 3 C

implies x _< y.

Let (X, , C) be an o.c.s., and define the preorder * on X* as

follows: * {([3], []) 3Q }. If (X, ,) satisfies (COC) 2, then

is a partial order on X*; if, in addition, (COC)3 is satisfied, then j: (X,@

(X*, *) is an order-embedding.

PROPOSITION 3.4. If (X*, I’ I )’ j) is a completion of (X, , ) in

standard form, then * ! I"
PROOF. First, let {([3], []) X* x X*: 3 < }. If ([], [])6

then < , and there are i n n
x all have traces on % Furthermore,all exist. Thus 3 x I"’’’ n

J (’)’ J !I J () are all in I’ and consequently

([.], [i]) ([ []) are all in

and so ! i"
The proof is concluded by observing that if D < L > or U < U >

exists, then ([,], []) is in the closure of Since )I is both closed and

transitive, ([3], ]) * implies

PROPOSITION 3.5. If (X, , ) has an ordered Cauchy completion, then

(X, , C) satisfies (COC)I, (COC)2, and (COC)3.
PROOF. Assume that (X, , ) has an ordered Cauchy completion

((x,, , c), J).

(COC)
2

If $, C ,3 Q, and O3, then it follows by
Proposition 3.4 that ([3], []) and ([], [3])E @I since is a
partial order, [3] [,].

(COC)
3

If O then ([]’ [])

(COC) By Proposition 3.4, @1 (j(3) []) ! *(J(3) []).
A direct argument shows that j-l(,(j(.) Q [,])) (3) < U > But

I(j(3) []) U )71 (j(3) [,]) CI, and consequently

((3) < Uj >) U (-I(3) O < L$ > 6 C

It was shown that the o.c.s. (X, , C) of Example 3.3 fails to satisfy

(COC)2, and thus we see that COCS is a proper subcategory of OCS
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We next show that the conditions (COC)I, (COC)2, and (COC)
3

are also sufficient

for the existence of an ordered completion. First, recall Wyler’s completion

((X*, ), j) of an arbitrary T
2 Cauchy space (X, ), defined by

{j() []: e}.

THEOREM 3.6. Let (X, , ) satisfy (COC)I, (COC)2, and (COC)3. Then

(X*, *, (*C) is an ordered completion of (X, ), C). If f:(X, , )
(XI’ I’ CI) is a morphism and (XI’ I’ I OCON, then there is a unique

morphism f* (X*, *, C) (XI, I’ CI such that f f* j.

PROOF. We have previously observed that conditions (COC) 2
and (COC)

3
guarantee that (X, @) (X*, @) is an order embedding. It is also clear

that j (X, C) (X*, *C) is Cauchy-continuous, and that j(X) is dense in
-IX*. The fact that is also Cauchy-continuous follows from (COC) and the

result (used also in the preceding proof) that () < U > j-l(, (j() []))
(along with the dual equality).

Given a function f as specified, let f* be the natural extension defined

by f*([]) y where f() C Then f*: (X*, ) (X1, C I) is

Cauchy-continuous by the well-known extension properties of Wyler’s completion

(see [5]), and f*: (X*, *C) (XI, i) is Cauchy-continuous by Proposition 3.1.

To show that f* is increasing, we first note that $ in implies

f($) O f() in I" Since I is complete, we have also that f() f(0,
and it follows from Proposition 1.2, [8] that., f*([$]) yf() Yf(0 f*([])" |

Henceforth, the ordered completion of (X, @, ) defined in Theorem 3.6 will

be denoted by (X*, >*, C*) rather than (X* * *)
Following [4], we define an ordered completion ((X*, i, CI) j) to be

order-strict if, for any ordered completion ((X*, 2’ 2)’ j) in standard form,

I ! 2" From Proposition 3.4, it follows that the ordered completion of

Theorem 3.6 is order strict.

COROLLARY 3.7. For an o.c.s. (X, , C), the following statements are

equivalent.

() (x, , fi) c0cs

(2) (X, O, ) satisfies conditions (COC)I (COC) 2, and (COC) 3.
(3) (X, , C) has an order-strict ordered completion.

(4) (X* O* *) is an ordered completion of (X , )

Without repeating the relevant definitions here, we remark that, in the

terminology of [5], the functor K: COCS OCON, defined by K(X, , C)

(X*, *, C*) is an order-strict completion functor, and consequently that COCS is

a completion subcategory of OCS. We shall henceforth refer to ((X*, @*, C*), j)

as the fine ordered completion of (X, , C), and K will be called the fine

ordered completion functor.

4. UNIFOMIZABLE ORDERED CAUCHY SPACES.

Let (X, O, ) be a poset (X, @) equipped with a T
2
uniformity . Then

(X, , ) is a uniform ordered space (Nachbin, [9]) if there is a quasiuniformity
-Ig on X such that g U g and g; such a quasiuniformity is said to

determine (X, , ). The set of -Cauchy filters is denoted by
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PROPOSITION 4.1. Let (X, ,) be a uniform ordered space determined by a

quasiuniformity g Then the following conditions hold.

(UOC) If 3 ( C, then g (3) U cq-l(3)E

(UOC)
2

If E C g(3) __c and g () . then 3 N (

If g () c then x _< y.(UOC)
3

PROOF. (UOC) 3 E _= x 3 __D g. 3 x 3 g D__ g g

But g (3x3) g (3) x g(3) D g. Likewise, g() x -I(3) D

and so (g(3) U g-l(,)) x (S(@) U gl()) D (S (,39 x S-l)) U

(g-l(3) x g(3)) - S U g-1 %(

(UOC) 2
, x 3

_
g and x 9__ g (3 x @ )- S" x )

x (,)) x D S x D S since D g(,. Similarly,

x 3 S and so 3 x __D S U S-I = This implies that N

(UOC)
3

S() __c x x __D S (x,y) g x y.

THEOREM 4.2. If (X, , ) is a uniform ordered space, then (X, , is

an o.c.s.

PROOF. Let be a quasiuniformity on X that determines (X, , ). Let

3 < in . Then, by Proposition 2.5, 3 x 60,C Clearly g generates

a quasiuniform convergence structure coarser than , ’2
and therefore

$ x __D g. Thus g() c_ Conditions (UOC) 2
and (UOC)

3
thus imply

conditions (OC) 2 and (OC) 3, respectively. But (OC) follows from (UOC)I and the

fact that g ! <O> Thus (X, , ) is an o.c.s, by Theorem 2.9.

An o.c.s. (X, @, C) is uniformizable if there is a T
2
uniform ordered space

(X, , %{) such that C

THEOREM 4.3. Each uniformizable o.c.s, has an ordered completion.

PROOF. Let (X, ), C) be a uniformizable o.c.s., and let (X, , 7) be a

compatible uniform ordered space; let g be a quasi-uniformity which determines

(X, ,). Let 3 C and x U3 Then $ J x and it follows from the

preceding proof that g(3) ! x, and consequently g() ! < U > Also

g (3) ! @($), and therefore g() ! @(3) < U
3

> Similarly,

g (3) c 8 (3) 0 < L3 > Thus (COC) follows from (UOC)I. A straight-

forward argument shows that g() ! whenever 3 < and so (COC) 2 and (COC)
3

follow from (UOC) 2 and (UOC)3, respectively. The conclusion follows by

Theorem 3.6.

It is natural to ask whether the fine completion functor K, when restricted

to uniformizable o.c.s.’s, preserves uniformizability. As the next example shows,

the answer is no. The same example shows that the fine completion preserves

neither regularity nor total boundedness.

EXAMPLE 4.4. Let E be the Euclidean plane with the usual topology and

partial order: E {(a,b), (c,d)): a c and b _< d}. Note that the elements in E

are E-related iff they lie on the same vertical line. Let Y {L n N} U
n



ORDERED CAUCHY SPACES 493

{(0,0)}, where Ln {( y): 0 y _< }; let (Y, O’, 4’) be the compact, Tz-
ordered topological space (considered as an object in OCON) with order and topology

inherited from E. Let S {( n N} and let X Y- S. The order and

Cauchy structures which X inherits from Y are denoted by O and respec-

tively. Since (Y, 0’, ’) is a compact, T2-ordered completion of (X, O, ),

(X, , ) is a uniformizable o.c.s.

Now consider the fine completion ((X*, 0., *), j) of (X, O, ). There is

an obvious correspondence between the sets X* and Y relative to which the

equivalence classes of non-convergent filters in X* correspond te the subset S

of Y. Let be the Frechet filter on Y of the sequence ( ), and let

be the corresponding filter on X*. Although converges to (0,0) in (Y, 4’),

is non-convergent relative to (X*, *). If p ( X* is the equivalence class

of filters converging in (X, ) to the origin, then the closure of the

p-neighborhood filter in (X*, *) is nonconvergent, and so (X*, *) is not

regular, and consequently not uniformizable.

From the fact that (Y, ’, ’) is compact, it also follows that (X, , )
is totally bounded (meaning that every ultrafilter on X is in ). Since no

ultrafilter finer than converges in (X*, *), we see that total boundedness is

not preserved by the fine completion functor.

Although no definition of "regularity" has been given for ordered Cauchy

spaces, the space (X, O, 4) as an ordered Cauchy subspace of a T2-ordered, compact

topological space, would be "regular" by any reasonable definition of that term.

Since (X*, G*, ) is not regular (in the usual convergence space sense) no

reasonable notion of regularity is preserved by the fine completion functor.

5. TOTALLY ORDERED CAUCHY SPACES.

We begin with a simple condition which is sufficient for the existence of an

ordered completion of an o.c.s.

DEFINITION 5.1. An o.c.s. (X, , ) satisfies Condition (A) if, whenever

is nonconvergent, there is ] such that O-I (I) c__ < L > and

i i < U, >

then:

PROPOSITION 5.2. If (X, @, g) is an o.c.s, which satisfies Condition (A),

(I) The relations Q and < on coincide.

(2) (COC) (OC)

(3) (COC)
2

(OC)
2

(4) (COC)
3

(OC)
3

(5) (X, @, ) has an ordered completion.

PROOF. (I) Suppose U < L > exists. If converges to y, then

L -l(y), and < follows intmediately. If is nonconvergent,

Condition (A) guarantees that U -I() exists, and so < Similar

reasoning shows that < whenever U < U > exists. Thus it is clear that

Q implies < The converse is always true.

Statements (2), (3), (4), and (5) are easy corollaries of (1). |
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Note that if (X, ), C) is an o.c.s, satisfying Condition (A), then

o* {([], []) x* x x*: < }.

The term totally ordered Cauchy space (abbreviated t.o.c.s.) will be used

for any o.c.s. (X, ,C ) for which @ is a total order.

PROPOSITION 5.3. If and are filters on a totally ordered set (X, @),

then either (5)!J exists, or -1() U exists.

PROOF. If both fail to exist, there is F E and G such that

(F) 0 G and -I(F) G , which means that ((F) U )-I(F)) 0 G .
Since F is nonempty, (F) U -I(F) X, and X N G is impossible.

COROLLARY 5.4. Let (X, O, C) be a t.o.c.s, and

then either () U exists, or else E [].

PROOF. If () D fails to exist, then () D exists, and so

~< But ~< is assumed, so by (OC) 2,

PROPOSITION 5.5. A t.o.c.s, satisfies Condition (A).

PROOF. Let (X, @, C) be a t.o.c.s., and let C be nonconvergent. If

< 5, and since [], @() U exists, which impliesx L. then

-I () c_ Thus -I () < L > This, along with the dual argument, proves

Condition (A).

COROLLARY 5.6. Every t.o.c.s. (X, , C) has an ordered completion, and

every ordered completion of (X, , C) is totally ordered.

PROOF. The existence of an ordered completion follows immediately from

Proposition 5.2 and 5.5. The completion (X*, *, C*) is totally ordered by

Proposition 5.3 and the remark following Proposition 5.2. Since the total order

@* is the smallest allowable order for an ordered completion in standard form, it

is the only possible order for an ordered completion in standard form.

6. AN ORDERED COACTIFICATION.

Every T2-ordered compactification of an ordered topological or convergence

space can be regarded as the completion of a certain totally bounded o.c.s., and so

the entire subject of T2-ordered compactifications lies within the scope of our

present investigation. Our immediate goal, however, is rather modest; we shall

formulate the ordered convergence compactification constructed in [8] as an

ordered Cauchy space completion, thereby gaining some further insight into its

properties.

Let (X, , +) be an ordered convergence space (i.e., an object in OCON);

the notation "7 x" indicates that converges to x in this space. Let C

be the complete Cauchy structure on X consisting of all convergent filters

relative to and (following [8]) let X’ be the set of all nonconvergent,

maximal convex filters on (X, O, +). In [8] an ordered convergence space

(X, O, +) is defined to be strongly T2-ordered, if the following property and its

dual are satisfied: If x, X’ and () exists, -I() c

With each ordered convergence space (X, @, +), we associate the Cauchy

structure C U F(X): there is 6 X’ such that G c }. Note that

is the finest Cauchy structure compatible with which is both totally
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bounded and locally convex relative to

A Cauchy completion of (X,N) in standard form is constructed as follows.

If A c X, let j(X) U {[] X*: X’ and A }. If F(X), let be

the filter on X* generated by {: F 5}. Let F(X*): there is

$ such that $ c }.

PROPOSITION 6.1. [8] For any ordered convergence space (X, , -), (X*,

is a T
2

compactification of (X, +).

PROPOSITION 6.2. A convergence ordered space (X, , is strongly

T2-ordered iff (X, , ) is an o.c.s, which satisfies Condition (A).

PROOF. If (X, (9, ) is an o.c.s., then (X, (9, +), which is its associated

convergence space, is clearly an ordered convergence space. It is also clear that

Condition (A) applied to (X, , )) implies the strongly T2-ordered property for

(x, (9, +).

Conversely, assume < relative to (X, , ), where -, are both

convex, and either which is non-convergent is assumed to be maximal convex. A

straightforward argument based on the strongly T2-ordered property leads to exactly

one of the following conclusions:

(I) There are x, y X such that x, y, and ()
(2) There is x X such that 5 x, is nonconvergent, and () c

(3) There is y X such that 8/ y, is nonconvergent, and (9()

(4) Both $ and are nonconvergent, and () c

With the help of these results, conditions (OC)I, (OC) 2, and (OC)
3

are easily

verified, and so (X, , N) is an o.c.s. Finally, if is nonconvergent,

is the maximal convex filter coarser than , and x then statement (2) above

gives the result @() ! l, or equivalently x I(), which implies

< L> I($I). This, along with the dual argument establishes Condition (A).

Combining the preceding results and Proposition 2.8, [8], we obtain:

THEOREM 6.3. If an ordered convergence space (X, , +) is strongly

T2-ordered, then ((X*, @*, ), j) is an order-strict, T2-ordered compactification

of (X, , -).

Under the assumptions of Theorem 6.3, (X, 8, -) also has an extension of the

form (X* (9* * which is the fine completion of (X, @, ) From Theorem 3 6

it follows that 4" is finer than If "* is totally bounded, then

(X*, *, *) is also a compactification, and indeed )* in this case.

PROPOSITION 6.4. Under the assumptions of Theorem 6.3, (X*, *, *) j) is

the largest T2-ordered compactification of (X, @, +) iff N* is totally

bounded. When this happens, (X*, @*, * ), j) coincides with the compactification

(X*, *, of (X, (9, constructed in [8].
It is shown in [8] that, under the assumptions of Theorem 6.3, (X*, *,

is the largest "relatively regular" T2-ordered compactiication of (X, @, +).
There is not, in general, a largest T2-ordered compactification of a strongly

T2-ordered convergence space as the concluding example shows.
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EXAMPLE 6.5. This example is based on Example 4.4, and the same definitions

and notation will be used here. Let (X, , /) be the T2-ordered topological

space compatible with (X, ,); in other words, is the relativization to X of

the usual topology on E. It turns out that is the finest locally convex

totally bounded Cauchy structure on X compatible with (X, , +). The compac-

tification (X*, @* is equivalent to the compactification (Y, ’ @’)

while the fine completion (X*, *, *) of (X, @, is not totally bounded.

Thus, in general, * and are distinct. There is no largest T2-ordered
compactificatlon of (X, , ). Indeed, suppose C" is the complete Cauchy

structure on Y which agrees with ’, except that the filter and all finer

filters are assigned to converge to (I,0) instead of (0,0). Then (Y, ’, C")

is a T2-ordered compactification of (X, @, +) which is neither larger nor smaller

than (Y’, @’, ’).

By altering the order structure in the preceding example, one can get quite

different results. Suppose (X, i’ /) is obtained by leaving X and

unchanged, but replacing by @i’ the usual order of the Euclidean plane. It

turns out that (X, @I’ +) is strongly T2-ordered and that is again the finest

compatible totally bounded locally convex Cauchy structure. In this case the fine

completion (X*, , *) of (X, @I, is totally bounded. Thus, by

Proposition 6.4, (X*, @, *) coincides with the compactification constructed in

[8], and is the largest T2-ordered compactification of (X, I’ +)
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