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ABSTRACT.  An almost coatacr metric 3-submersion 1s & Riemennian suomersian, 7 |

o . . - 3

from an alirost contaet metric manifold (V™3 (o, . &, MiY.: ,2) onto an almos:
2,
l=1
type (1,1);i.e., "¢ @9y = J; ™, for i = 1,2,3. For veriocus restrietions on

zuaternionic manifold (N3P, (4 ,h) which cormutes with the structure tenscrs

Y9¥;, (e.2., M is 3-Sasakian), we show correspending limitations on the seconc

fundamental form of the {ibres and on the csomplete integranility of the herizontal
distribution. Concomritantly, relations are derived between the Betti aumders of

-~

& compeet ‘ctal space and the buse space. For instance, ii M is 3-grasi-Sasax.en

-

dP =0), then by(N) < by(M}. The respective ¥j-holemocphic sectional and

=

isecticnal curvature tensors arz studied and saveral unexpected results are
abtaired. 45 an example, if X and Y are orthogonal horizontal veetcr flzlds
on tie J-contict{z relatively weax structure) totai spase of such a sutmersicn,
tnep the respective holomorohi: hisectianal curvatures satisfy: B (X7) =

B, (X,,Y,) - 2. Applications to the raal differential geomeiry of Yarg-Mills f:2ud
V.

eqiations are indicated based on the fact that a orincipal SU(S)-hindie ovac a
asompactified realized spece-time can be given the structures of an &lmost csitact

meiric 3-submersion.

LY MORDS AND PHRASES. Riemannian submersions, almost contact metriec manifolds,
quaternionic Kahler manifolds, harmonic mappings, Betti numbers, almost contact
metric manifolds with 3-structure.
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1. INTRODUCTION.

We became interested in almost contact metrie 3-submersions because of a
possible application to the fornnlgti§n ard solution of gauge field equations n
general relativity(1-2]. The separste entities cf an almost contact metric J-sub-

. . - . . v e . Y ihane
mersion are not unknown. Kashiwadal[31, Konishil4], Kuoi5], Sasakils], Tacnibana
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and Yu[7] and Tanno[8], among others, have studied manifolds with K-contact or
Sasexian 3-structures and have developed many of their properties. The associated
3-fibrations of certain of these spaces over quaternionic Kidhier manifolds were
investigated by Ishihara{9], Ishihara and Konishil10], Konishi{11], Shibuya[12],
Tauno{8], and others. In another direction, quaternionic hsdnler manifolds have teen
taken up by Alekseevskiil[13-14],Gray[15-16],Ishihara[17],Kraines{18],Sakamoto[19],
#wolf{20] and others.

In this report, we propose to extend the known 3-fibrations to a general
theory of Riemannian submersions {rom almost contact metric manifolds with 3-struc-
ture to almost quaternionic manifolds in which the fibre submanifolds are almost
contact metric manifolds with 3-structure. In sections 2 and 3, we define the basic
objects of interest and study the geometry of the immersion of the fibre submani-
foids and the integrability of the horizontal distribution of the submersion. Che
fourth section is devoted to questicns of the existence of almosi contact metric
3-subrarsicns. Several examples are given. In see. 5, we consider relationshios
detween the several curvature tensors of the three associated manifolds and in
sec. 6, the reiationships between the cohomologies when the totsl space is commact.
These latter resuits should be compared with thcse of [211].

All manifolds considered in this repoct are smooth. zonnected and cumpiete.
Al! mappings and teasors are smeoth.

2. FUNDAVIENTAL CONCEPTS.

Pecalil22] that an almost contact metric irgnifold is 8 giintuple (MM, 32 ,¢8,2 g)

where (M,g) is a Riemarnian manifold of dimension m equipped with a mctric tensor

’

g, and with an almost contact structure, (Y, ,n ) compatible with g;i.e., ¥is
g tenscr field on M of type (1,1), ¢ is a urit distinguizhad vactor field on M

and 7 i3 a differential 1-form oa M such that

nii) = 1, (2.18)
PoP= -id+ n®E, (2.1h)
g{pE,PF) = g(E,F) - 72(E)n(F). (2.1e)

for all E,FeAM), the Liz algebra of vector fielas on .

From these axioms, it fcllows easily that:

e(%) =0, (2.2a)
nov = 0, (2.2b)
72(E) = g(E,§) ¥ E ¢ XM). (2.2¢)

Every almost contact metric manifold M, ¢, &, n,g) possesses a local crtho-
normal basis of vector fields of the form {Ey,...,Ep, wEj,..., pEn, &1, It follows
that an almost contact metric manifold is odd-dimensional and orientable. The
structure group of an almost contact metric manifold, MEL s U(m) x.{ll}.

An almost contact metric manifoid (v2mtl, e, &, 7 .g) possesses a canonically
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defined differential 2-form,®, given by

&(E,F) = g(E.¢F), ¥ E,Fe ¥M). (2.3)

® is called the fundaments! 2-form of (M,0, % ,n,g). We utilize ® to define

severel structures on M. We say that M, o, §,1n,8) is:

(a) Contaet, if & = dn,

(b) K-contact, if M is contact and £ is Killing,

(e} Nearly cosvmplectic, if (Vg@)E = 0, ¥ E ¢ ¥(M),

(d) Closely cosymplectic, if M 1is nearly cosymplectic and dn = 90,
(e) Almost cosvmplectie, if d® = 0 and d7 = 0O,

{f) Nearly Sasakian, if (Vge)F + (Vpe)E = 2g(E,F) - n(E)F - n(F)E,
¥ E,F ¢ WM.

Almost contact manifolds may possess a normality property analogous to the
integrability of the almost complex structure of almost complex manifolds. We say

that M, ¢, §,n) is normal if:

N(D(EF) = [¢,¢l(EF) + 2dn(E,F) = 0, ¥ EFe ¥M (2.4,
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This property allows the definition of other interesting structures on

(M, ¢,§,n,g). We say that M is:

(g) Quasi-Sasakian, if d® = 0 and M is normal,
(h) Sasakian, if M is contact and normal,

(i) Cosymplectie, if d& = 0, dn = 0 and M is normal.

Thase classes are related bv the following lattice in which each inclusion

is striet:
ALVDST AIMDST
CONTACT CONTACT
CONTACT \ NEARLY
‘ NEARLY ALMOST COSYMPLECTIC
{ SASAKIAN COSYMPLECTIC i
K~CONTACT QUASI- CLOSELY
\ / ____—— SASAKIAN \ __— (DSYVPLECTIC
SASAKIAN COSYVMPLECT IC

Fig. 2.1 Lattice of important almost contact metric structures.

Examples of almost contact metric manifolds are common. Odd-dimensional
spheres may be given 3ssakian structures. Compact, orientable 3-manifoldsl 23] and
tangent sphere bundles(2i] are other manifolds which may be given the structure of
almost contact meiric spaces.The product of a compact Kihler space and a circle,
Sl, may be given a cosymplectic structure[25].

It will be important for our analysis to have a cicsed expression for the
ecvariant derivative of the structure tensor, ¢, of an almost contact metric mani-

fold. We first define a partial integrability tensor:
NOEFR = ( Lgeym - ( Lrorm, (2.5)

which vanishes on contact manifolds. Then,

LEVMA 2.1 [22]: For an almost contact metric manifold M, ¢, £, » ,g2),

(i) 28((VEW)F,G) = SdD(E,PF,%G) - 3dD(E,F,G) + gN(I)(F,G),pE)
+ N(2)(F,G) n(E) + 2dn (PF,E)n(G) - 2dn (PG,E) n (F)

(ii) If M 1is contact,
22(( VEYIF,G) = gN(1)(F,G),PE) + 2dn (PF,E) 7(G) - 2d n (¥ G,E) n (F)
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An almost contact metric 3-structure on (M,g) is a triple (¥;, fg, 7i)i=1,

of almost contact me‘ric structures, ecch compatible with tne2 Riemannien structure,
g, and satisfring:

&) =0, i # ], (2.6a)
Pio®; - 188 =-®jo®; + "@&; =Py, for i <, k#i, k#j, (2.6b)
gl &y, 8 = 0, i # j, (2.6¢)

"io?’j = - 'le(Pi = T, for i<, k#i, XK#j, (2.6d)

ik =-0508) = &, fori<j, k# i, k# j. (2.6e)

-

Every such almost contact metric maniiold with 3-structure (M, ( ¢, Ei,ﬂi)i3=1,g)

possesses a local orthonormal basis of vector fields of the form: tEl,...,En,lel,..
., ¢1En, ©2E;, ..., ¥9Eq, ©3E1, ..., 93E,, 51, £, 53}. It follows that an almost
contact metric manifold with 3-structure is orientable and has real dimension of the
form: 4m + 3. Each almost contact metric structure determines a fundamental 2-form,
@i, with respeet to g. If each almost contact metric structure is of class &
(see Fig. 2.1), we say that (M3 (e; &, ’71)2=1,g) has a 3- & structure. For
instance, if each (i, $j, 7{) is contact, then (M,(%;, §;, ﬂi)gﬂ,g) is 3-contact.
The structure group of an almost contact metric manifold with 3-strucature
is Sp(m)x{I3}.

Exampies of manifolds with almost contact metric 3-structure include S7, the
unit 7-sphere in R3, and more generally, S¥™3 and Psme3(R). The three almost
contact metric structure on S7, induced from the essentially unique quaternionic
structure on R8, are all Sasakian.

An invariant submanifold of an almost contact metric manifold with 3-structure
is defined in the usual way. That is, if f£M4mM3 _ (N4N*3 (1 o; &, 7m.){.1,g) is
the immersion of M into N, we reguire that Soif:,pxp € Tf(p)(f(M)) ¥ peM ¥
Xp € Tp(M) and i =1,2,3. We shall investigate the inheritance of certain 3-struc-
tures onto invariant submanifolds when we study the fibre submanifolds of the
3-submersions which are the focus of this report.

An almost quaternionic metric manifold is a Riemannian manifold (M, g) which
possesses in each coordinate neighborhcod (U, ¥), a triple of locally defined
almost Hermitian structures {J1,J9,J3} satisfying:

Jiodj = -1id, fori = 1,2,3, (2.7a)

Jjod; - Jjodj = Jg, for i< j, k#i, k#]j. (2.7b)
An almost quaternionic metric manifold M possesses a local basis of its vector
fields of the form: {El,...,En,JlEl,...,JlEn'JQEl,...,J2En,J3E1,...,J3En}. Thus .
the dimension of such a manifold is a multiple of 4 and the manifold is orientabie.
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Each almost Hermitian structure J; defines a local fundemental 2-form via:

&;(E,F) = g(E,J;F), for E,Fe ¥(U) and i

[}

1,2,3. (2.3)

These allow the definition of a global fundamental 4-form on M via:

d = DAD] + Dyl + DyaDs. (2.9)

An almost quaternionic metric manifold for which V& = 0 is called quatern-
ionie Kihler. The structure group of an almost quaternionic metric manifold
(MM, Jy,d9,d3,8) is Sp(m)-Sp(1) = Sp(m) x {Sp(1)/+1}.A Riemannian manifold
(VM o) which is oriented is quaternionic Kihler if end only if its holonomy group
is contained in Sp(m)-Sp(1).

Examples of almost quaternionic metric manifolds are legion. Any 4-dimensional
oriented Riemannian manifold is almost quaternionic metric by virtue of the group
isomorphism: SG(4) = Sp(1)-Sp(1). Obviously, R4¥M and quaternionic projective
space Py(H) are quaternjonic Kahler.

Invariant submanifolds of almost quaternionic metric manifolds are defined as
before in the case of invariant submanifolds of almost contact metric 3-manifclds.
3.  AIMOST GONTACT METRIC 3-SUBVERSIONS.

A Riemannian submersion is a surjective mapping r~:M - N batween Riemannian

manifolds of maxi.el rank such that the restriction of its pointwise differential
tc the orthogonal complement of the kernel of that differential is a linear
is>iatr,. The basic reference is O'Neill{26]. 3ee also [15] and [21]. Vector fields
on M which belong to the kernel of ™+« are called vertical, while those ortho-
gona: to the vertical distribution are horizontal. We shall follow the usual conven-
tions snd denote vertical vector fieids by U,V,W,..., horizontal vector fields by
X,Y,Z,..., and general vector fields ch M by E,F,G,.... If the horizontal
vector field X is 7-related to a vector field X+ on N, then X is said to be
basic. It is easy to see that the vertical distribution is completely integrable.
The completeness of M implies that the Riemannian submersion =:M — N 1s a
locally trivial Riemannian fibre space in the usual sense[20]. We denote the fibres
z’l(y), yeN, by F and denote tensors and operators on F by a caret,
We denote those on the base manifold N by a prime, ' ;e.g., the Levi-Civita
connection on F is ¢ and on N is ¥'. Examples of Riemannian submersions
include Riemannian covering mappings, principal fibre bundles, taagent and
cotangent bundle projection mappings, Hopf mappings, ete.,[15,21,26].

A particularly interesting example of a Riemannian submersion is the Boothby-
Wang fibration[27] of a compact, contact manifold MZM*1 ¥ ¢ 7 g) whose
distinguished vector field ¢ is regular. The quotient space M/{ is symplectic
(and so, almost Kihler) with integral fundamental 2-form. In fact, if M is
Sasakian, then M/¢ is Kidhler and therefore it is a Hodge manifold.
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We define an almost contact metric 3-submersion to be a Riemannian submersion
Pl
i (QEI3 (L E g 7i)jo4:8) (N4"‘,(Ji' )§=1 ,g') from an almost contact metric
manifold with 3-structure onto an almost quaternionic metric manifoid which

satsifies:

T« PiE = JimE, for all EeX(M and for 1 =1,2,3. (3.1)
We capture several fundamental properties of almost contact metric 3-submersions in
the following:

PROPOSITION 3.1: Let F — M - N be an almost contact metric
3-submersion. Then,

(i) The vertical and horizontal distributions induced by = are invariaant by
each of the three almost contact structure tensors: ¥y, ¥, %3,

(ii) The fibre submanifolds of M are invariant almost contact metric
submanifolds with 3-structure,

(iii) &y, 52, and ¢35 are vertical vector fields,

(iv) 7;(X) = 0, for all horizontal X and for i =1,2,3,

2 dn;(X,Y) = -} 7;(P1XY]), for all horizontal X and Y and

for 1 =1,2,3.

PROOF : (i) Let V e V(M), the vertical distribution. Then, T« @iV =
= J' me«V = 0. Therefore, ®;V e VIM). Let X e H(M), the horizontal
1 i

distribution. Then, g(¥;X,V) = -g(X,Pi{V) = 0. Thus, ¥;X1v(M) and
PiX ¢ HM). (ii) follows immediately from (i). Consider Jime by = muPd =
= 0. Thus, (iii) is shown. To see assertion (iv), we need only recall that
74(X) = g(§{,X) = 0. (v) follows from the identity:
2d7;(X,Y) = X7i(Y) - Y7,(X) - 7;(XYD. (3.2)

While almost contact metric manifolds have been extensively studied in the
last two decades(see refs. in [22]), as have been almost Hermitian manifolds(see
refs. in [28]), very little has been reported on almost quaternionic metric mani-
folds, their integrability and the various classes of structures inducible by
representations of the structure group. Perhaps their newfound applicability to the
study of Yang-Mills equations(29,30], o -models[31-33] and supergravity(34] will
stimulate interest in them.

In general, the existence of a particular structure on the total space of a
Riemarnian stuimersion which commutes with certain G-structures will induce a struc-
ture on the hase space. For example, if =:M — N is an almost Hermitian
submersion[21] anc M is almost Kidhler(resp., Kidhler), then N must be almost
Kdhler(resp.,«<ihler). Such a transference does not always obtain;e.g., the almost
semi-Kidhler case[35]. In the almost contact metric 3-submersion situation, we are
limited by the paucity of distinguishable structures on the almost quaternionie

metric base space. Nevertheiess,
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THEOREM 3.2: Let ¥ — M — N be an almost contact me<ric 3-submersion with
M, 3-guasi-Sasekian(in carticular, M mav be 3-cosympiectie or 3-Sasakian). Then

N {s guaternionic Kihler.

PROOF : Gray[36] has shown that the quaternionic Kihler property on N ‘nay

2e characterized by the vanishing of
4 4 ‘ ’ - - LN ’ ‘ 7, \
(Cx (7Y L (J9Yx) \(J3Ys) + (‘.IYt)A(~§£J2)Y: INEES O N (JlYt)/\(JéY*)/\(inJé){t).

For a 2-quasi-Sasakian structure. the relation on V¥ given in Lemma 2.1(i)
becomes :
g({Vx%)Y.2) = dni( @Y, X)7(Z) - d7(@iZ,X)7(Y) = 0

because 7; = 0 on horizontal vector fields. Therefore, H Vx‘Pi)Y = 0,
implying that (V'XSJ{))Y. = 0. Thus, N is quaternionic Kihler.

Each of the almost contact metric 3-structures we have defined for the total
space(see Fig. 2.1) is inherited by the fibre submanifolds. Toc begin with, we note
that 51, 52, and S3 are vertical vector fields and are the characteristic
vectors asscciated to the restrictions @;, @9, and p3, respectively. Since the
metric strueture, g, on F is the restriction of g from M, the fundamental 2-
and 1l-forms, ¢; and 7j, are inherited. The embedding mapping of a fibre
corrrutes with the exterior differential operator. Therefore, contact( & = dn ) and
almost cosympiectic( d& = 0 and dy = 0) are inherited properties. To see
the inheritance of the K-contact structure, we recall[22] that a contact maniiold
(F, @, & 9.,8) is K-contact if and only if €7U£ = - @U. But this equation
restricts directly from the same statement on M.Normality and the relation, (Ty¥)U=
= 0, inherit as has been shown in [36] for the corresponding assertions for
an almost Hermitien structure, J. Thus, Sasakian, quasi-Sasakian, normal, nearly
cosymplectic, closely cosymplectic and cosymplectic are inherited. The inheritance
of the nearly Sasakian property is shown by direet calculation emulating that for
(Vg ¥Piu.

O'Neill[26] defined twe configuration tensors, T &nd A, associated to a
Riemannian submersicn, =:M — N , which will be particularly useful in our
investigations of almost contact metric 3-submersions. Let 'Z/:K(M) ~—»V(M) and
¥ ¥ (M) —> HM) be the obvious projections. For E,F ¢ X(M),

TeF = WV ptVF)  +V Ty pdF), (3.3)

and agF = Vo p®F) + Ry t)F). (3.4)
T and A are skew-symmetric tensor fields(with respect to g) of type (1,2) whieh
reverse the horizontal and vertical distributicons induced on M by = . For U and

V, vertical, TyV coincides with the seccnd funagsmental form of the immersion of
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the fiore submanifolds. For X and Y, horizontal, AxY = 177(X,Y], reflecting

the ccmplete integrability of the horizontsl distribution. Severa!l useful

properties of T and A are to be fcund in O'Neill[2s], Grey[15]) and Vilms[37].
For now, it suffices to recall:

LEVMA 3.3: let F - M — N be a Riemannian submersion. Let X,Y ¢ H(M)
and U,V ¢ V(M). Then,
(i) W= T+ S,

(ii) T o= RV o+ T,

(1ii) TxU = agt + Yvgu,

(iv) YYo= WY o+ ALY,

(v) if X is basie, then ¥vyX = axU,

(vi) if X is basie, then ¥[X,U] = ¢,

(vii) Tgv = 0 for all U,V eV(M iff TgX = 0 for all U e V(M) and for

all X « H(M) iff T 0.

"

(viii) AxY = 0 for all X,Y ¢ H(M) iff AxU
for all U ¢ V(M) iff A = 0,

0 for all X ¢ H(M) and

(ix) T = 0 and A = 0 iff » is a totally geodesic mapping iff M is
covered by a Riemannian product space, one of whose factors is isometric
to N [37].

The intertwining of the three tensors { ¥1,%,, %3} restricts the configu-
ration tensors, T and A. This limitations is fundamental to our analysis of

these submersions. For example,

LEVMA 3.4: Let F - M = N be an almost contact metric 3-submersion
which satisfies TgV + Ty y(®i{V) = 0 for all U,V and for i =1,2,3. Then,
1

T = 0.

PROOF: We calculate:

0 = Tyv + T¢P1U(’P1V) Tyv +R§U((P3V).

Thus, T(p1 plP1v) T(p}(_}( ¥Y3v).
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On the other hand, T.V = 0 implies:
“i

0 = Tyl + T Vz(eu(wz(Flv) = T%L‘.(‘P V) v T gty
1 L - P
Therefore. T = 0.

THEOREM 3.3: Let F = M — N be an almost contact metric 3-submersion
with M, either 3-Sasakian or 3-cosymplectic. Then the fibre submanifolds are
totally geodesically immersed.

PROOF : learly, 3-cosymplectic( ¥¥; = 0) implies that
Tgv + T'PiU( $;v) = 0. Lemnz 3.1 then applies. The Sasakian defining identity

on (f’i can be written as
TPy - Pilrgw) = guv ép - .

Taking horizontal projections yields

]
(=]

TU((Pi V) - PiTyv

1]
o

from which TV + T g(®PiV) is inmediate.
i
THBOREM 3.6: Let F - M > N be an almost contact metric 3-submersion

with 3-dimensional fibres. Suppose that M is one of the following:

(i) 3-contact,

(ii) 3-nearly Sasakian,
(iti) 3-quasi-Sasakian,

(iv) 3-almost cosymplectic,
(v) 3-nearly cosymplectic.

Then, T = 0.
PHODF: We may choose { £1, &5, £3} as our orthonormal local basis for the

vector fields on the fibres, F. From Lemma 2.1(i), a contact structure satisf{ies:
g(( SgPE,G) = 3gWNINF,G),PiE) + d7{(P{F,E)7{(G) - dni(®GE)"(¥).

Thus, 8(‘PiT$inX) = 0, because dn{(¥iX, §i) = 0. Hence, T'fk( £) =0
for all i and for all k. Therefore, T = 0. A 3-almost cosymplectic structure
satisfies g(( Vg¥P{)F,G) = ig(N(1)(F,G), P;E), from which a similar analysis
yields T = 0. On a nearly Sasakian manifold, Ty(®;V) + T¢iUV = 20;Tyv,
which implies that Téi( 55) = 0. Analogously, the reiation g(( YgE®;)F,G) =
= 49 (PEF)7i{(G - dni(PiGE) 7i(F), arising from the identities dP = 0
and N(1) = 0 on a quasi-Sasakian manifold gives Tfi( fj) = 0. On a nearly

cosymplectic manifold, (7g®{)E = 0 implies Ty(Piv) + To gV = 29Ty,
as in the case of a nearly Sasakian structure. Again, T = 0.
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In the cases described in Thms. 3.5 and 3.6, Hermann's Theor«m[38] implies
that the submersion is a principal fibre bundie with structure group, G = [(F),
the isometry group of the fibres.

LEWA 3.7: Let F M N be an almost contact metric 3-submersion which
satisfies
Tyu + T(PiU(CPiU) =0

for all U and for i =1,2,3. Then, H = 0.
PROOF: Let ({Ej,...,Ep-n,P1E1.---,P1En-n.P2E1,-.-, ®sEnpn,¥P3E;,...

ceo  P3Emn. £1, §9, {3} be a locel orthonormal basis for the vector fields on the
fibre submanifolds, F. The mean curvature vector field, H, of the fibres is

given by:
m-n 3

Hos ) {re@p) + Ty E{P1ED) + Ty (P 280 - T E§<P3Ei)} £ Do e
i=1 - j=1 v

By hypothesis,
Tg(E;j) + Ty g(P1Ej) = 0,
Ei i ‘PiEi 15}

d Tp g( @2E{) + T (WyWPoE{) = 0.
an ¢2Ei 2k§ 'ﬁiPin 1 ¥2bj
Thus, T Ei) + Twr(®PiE;i) = 0.

us vzsi( ¥aE; .5 P3Ej)
Clearly, T + T y(¥u) = 0

3
implies Tg (&) =0,
J

and the Lemma is demonstrated.

THBCREM 3.8: Let F - M — N be an almost contact metrie 3-submersion
with M, one of the following:

(i) 3-quasi-3asakian,
(ii) 2-nearly Sasakian,
(iii) S-nearly cosympleectic,
(iv)  3-closely cosymplectiec.

Then the mean curvature vector field, H, vanishes and the fibre submanifolds are
therefore minimally inmersed.

PROCF: For (iii) and (iv), the defining relation, (Vgei)u = o0
immediately implies that

Tgu + Tﬁ_ u( ®il) = o0,
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and Lemma 3.7 applies. For nearly Sasakian,
Tyl @iV) + Ty(eil) = 2 @;TyV
implies T + T, gl¥il) = 0.

If M is 3-quasi-Sasakian, then,

g(Tpl @U) - o TeU,X) = d 1y (X, #xU) 1 (0).
Since My(E;) = g(Ej, ) = 0 for the orthonormal ¥y - basis chosen in the
proof of Lemma 3.7, we have
TE(.Ei) + ka E( WkEi) = 0.
Exactly as in the peoof of Lemma 3.7, this result implies that H = 0.

THEOREM 3.9: Let F —V — N be an almost contact metric 3-submersion
with 3-dimensional fibres and with M, 3-normal. Then the fibre submanifolds are

minimally immersed.

PROOF: The fundamental relation of Lemma 2.1(i) implies that

Zg((vgiﬁ)fi,X) = 3d¢i(si,‘ci£i,¢’iX) - 3d®Pi( &y, E{,X) +
+2dn; @8, 5 X)) - 2d (X, §) 150 Ep) =
= 0.
Thus, ",Te (&) = 0 and TE_.I‘Si) = 0. Hence, H = 0.

i

Eells and Sampson[39] showed that a Riemarnian submersior 1s a narmonic
mapping if and only if its fibres are minimal. Thus the 3-submersions specified
in Thms. 3.5,3.6,3.3 and 3.9 are all harronic. As we shall see, this property has
interesting implications for the possible cohomologies of the total space and base
space.

An almost contact metric submersion = :MZT'l & N2 of type Il with M,
cosymplectic, has completely integrable horizontal distribution. Otherwise, among
the structures we have considered, A does not vanish identically. However, when
the three aimost contact metric structures on the total space of an almost contact
mmetric 3-submersion are nearly or almost cosymplectic, they intertwine to cause A

to vanish. This produces(sec. 6) an even richer cohomology relationship.

THEOREM 3.10: Let F-—M —N be an almost contact metric 3-submersion
with M, rearly cosymplectie. Then, A = 0.
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PROOF: Since 7; vanishes on the horizontal distribution, it suffices to
consider

A(F3Y) = ax(¥,9,1) = Asolx(‘PzY) =
Apop) XY = - ApyxY =
= - Ax(¥P3Y).
Therefore, A = 0.
THEOREM 3.11: Let F —M — N be an almost contact metric 3-submersion
with M, almost cosymplectie. Then, A = 0.

PROOF: On an almost cosymplectic 3-submersicn,

Agxt = -ay(PiX) = - PiayX = Py = ax(¥P).
This implies that A = 0, exactly as in the proof of the preceding theorem.
Recalling that T = 0 for a cosymplectic submersion(Thm. 3.5) and that
A = 0 (Thm. 3.11), we see that a cosymplectic 3-submersion is a totally geodesic

mapping. Vilm's characterization of such a fibration, cited in Lemma(ix),
forces its total space to be covered by a Riemannian product manifold, one of whose
factors is a-guaternioniec Kidhler manifold, the other a 3-cosymplectic manifold and

the 3-submersion mapping to be covered by the Riemannian product projection ento
the quaternionic Kidhler factor.

We recapitulate our findings in Fig. 3.1:

ALVDST ALVDST
COSTACT CONTACT
/ NORMAL ~
CONTACT \ NEARLY
NEARLY ALVDST COSYVPLECTIC
‘ SASAKIAN COSYMPLECTIC (H=0,4=0)
K-CONTACT (H=29) (a = 0)
Quasi- CLOSELY
SASAKIAN \\ COSYVPLECTIC
/(H:O) /(H=0.A=0)
SASAKIAN COSYVPLECTIC
(T = 0) (T=0,4=0

Fig. 3.1. Almost contact metric 3-submersicns
with totally geodesic or minimal fibres and/or
completely integrable horizontal distribution.
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Since a most important application of almost contact metric 3-submersions is
in the form of SU(2)-bundles over a compactification of a realized space-time, we
aiso recapitulate in Fig. 3.2, the vanishing of the T and A tensors for
3-submersions with 3-dimensional fibres. It is important when examining the left-

hand side of Fig. 3.2 to recall Hermann's Theorem on principal 1(F)-bundles[38].

AIMOST ALMOST
CONTACT CONTACT
pd NORAL \
CONTACT (H=0)
(T =0) NEARLY
NEARLY AIMOST QOSYMPLECTIC
\ SASAKIAN (OSYMPLECTIC (T=0,A=10)
K~CONTACT (T=0) (T=0,Aa=0) l
(T =0) QUASI- CLOSELY
/ SASAKIAN COSYMPLECTIC
/(T=0)\ " reoa=0
SASAKIAN CQOSYMPLECTIC
(T =0) (T=0,A=0)
Fig. 3.2. Almost contact metric 3-submersions
3-dimensional fibres which have totally goedesic
or minimal fibres.
4. EXISTENCE.
As we have mentioned, the canonical mapping, s3 - sd4m+3 Pp(d), is the

standard example of an almost contact metric 3-submersion. More generally,
Konishi{4], and others, have studied an almost contact metric manifold
(M4m"3,(¢i, Si- ”i)‘}:,»g) with 3-K-contact structure. In fact, they only require
that the distribution spanned by the three characteristic vectors, V, -
span{ {1, é9, §3} satisfy the basic K-contact identity: YV &§{ = -¢;U. In that
case, V, is easily seen to be involutive( for i # j, [ §;, fj] =
Vg ( §i) - Vg(. £5) = -5 £y + 5]’ = 28, k#1i,j). Vo is now assumed
to be a regular distribution so that M/V, is meaningful. Actually, one need only
assume that §; is a regular vector field[8]. Then M/V, 1is an almost quaternion-
ic metric manifold and the canonical projection =:M - M/V, is an almost contact
metric 3-submersion. It can be shown that if M/V, is quaternionic Kihler, then
the total space M must be Sasakian{4]. Note the 3-dimensionality of the fibres.
Konishi[11] constructed a 3-Sasakian submersion over an arbitrary quaternicnic
Kdhler manifold M of positive scalar curvature by defining a pseudo-Riemannian
submersion structure on the standard P3(R)-bundle over M. Again, the fibres are
3-dimensional.
The inherent geometry of 3-Sasakian manifoids necessarily limits our search
for 3-Sasakian submersions. Kashiwada[3] has shown that manifolds with 3-Sasakian

structure are Einstein. A 3-Sasakian submersion has a quaternionic Kidhler manifold
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as base space. Alekseevskii[13] and Ishihara[17] have shown that any quaternionic
Kdhler manifold of dimension 8 or greater is Einstein.

On the other hand, the total spaces of 3-cosymplectic submersions are_covered
by Riemannian product manifolds. Essentially, we have only the product of s3  and
a quaternionic Kihler manifold.

5. CURVATURE.

It is straightforward to prove that a Riemannian submersion is Riemannian
sectional curvature increasing on horizontal 2-planes{26]. In fact, if X and Y
span the horizontal plane ny, then

K(lxy) = K'(dxy,) - 31aYI2/IXAYIZ, (5.1)

[f the Riemannian submersion is required to conmute with the structure tensors
of some more restrictive G-structure, then certain curvature tensors associated tc
these G-structures may be affected. For instance[21], if ~:(M,J,g) = (N,J',g")
is an almost Hermitian submersion from the quasi-Kdhler total space M to the
necessarily quasi-Kdhler base space N, then the respective holomorphic sectional
curvatures[36] are equal. If M is Kidhler, then the holomorphic bisectional
curvatures are equal. The intertwining of the three almost contact metric
structures on an almost contact metric 3-submersion similarly restricts the various

Pi-holomorphic sectional and bisectional curvatures.

Let (M, 9, &, n,g) be an almost contact metric manifold and let E and F
be vector fields on M. The ¢ -holomorphic bisectional curvature tensor, is
defined by:

B (EF) = |EI=2|F|~2g(R(E, ¢E)F, ¢F). (5.2)
Letting F = E with E L § , the {-holomorphic sectional curvature is:
Hp(E) = |E|~4g(R(E, PE)E,PE). (5.3)

The properties of these two curvature tensors are well-known(see e.g.,[22]). For
each of the three structure tensors ¥; on an almost contact metric manifold with
3-structure, we define three such @ -holomorphic bisectional curvature tensors and
three § -holomorphic sectional curvature tensors, with obvious notation. For each
of the three almost Hermitian structures J; on an almost quaternionic manifold,
we define the holomorphic bisectional and holomorphic sectional curvature tensors
in the usual way for almost Hermitian manifolds. We denote them, for instance, by
"1o(Xx,Yx) and H'py (Xs).

The followinglis a translation of the results of Gray[15] and O'Neill[26] to
the present situation:

THBOREM 5.1: Let F - M > N be an almost contact metric submersion.
Then the holomorphic sectional and bisectional curvature tensors take the forms:
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Bg(u,v) + IUI'2IVI‘Z{g(TU(l€ VT gV - BTGV, Ty g £V,

{i) By (0,V)
2 A

(ii) By (X,V) IXI=2IVI=2{g(( TyAX(PiX), P{V) + glxV.Apx(PiV)) +

'g(Ax(PiV).A@lx\') - g(-’"yivA)X(SPiX),V) +
+ g(TtinX,TV(‘«PiX)) - g{Ty&,T (piv(‘PiX))}.
(i1i) By (X,Y) = B}, (%,%) - IX1-2171-2{2g(Ag( ¥ X)), Ay(P{Y)) +
- g(A(&XY,Ax(LP i) - g(AxY.Aﬁx(PiY))}.
(iv) Hq,i(V) = ﬁs‘g“” IVIFAITY(PVIZ - g(TW,Tgy(P V)],
(v) H,{X) = Hp, (R - BIXITHAR(P X012,
1 1

Different structural restrictions on the {%i} limit these relationships

on the sectional and bisectional holomorphic curvature tensors.

THEOREM 5.2: Let F—M — N be an almost contact metric 3-submersion
with M, 3-contact. Then,

= - - -21y(-2 2
By, (X,Y) B'Ji(x.,Y:) 2 IXI74lYl%g(X,Y)=“.
PROOF: Consider the terms in brackets in Thm. 5.1(iii):
{2g(Ax (P iX),Ay(PY)) - g(AepxY,Ax(?iY)) - gAY, Apx(®¥;Y))}.
i i

Since M is 3-contact, we have Ax(¥;X) = 1X|2 {; which implies that

glax(¥iX),Ay(P;Y)) = [XI2)Y|2.
For the third term,

BAXY Apx(PiY)) = g(igY,PiApxV) + g(X.Vglay, §j) =

-lagYl2 + 7;(axY)2.

Similarly, g(A‘,ixY,AX(‘PiY)) = AxYIZ - g(X,Y) - Tj(axY)?.
COROLLARY 5.2.1: B?(X,Y) < B'J'(Xa,Y:).
i i
COROLLARY 5.2.2: If X | Y, then BY.(X,Y) = B'J,(Xac,Yt) - 2.
1 i
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THEOREM 5.3: Let F-—M-— N be an almost contact metric 3-submersion
with M, 3-contact. Then,
H,(X) - H'J..(Xa) - 3.
i A

THEOREM 5.4: Let F3— Mim3 __5 N4Mm  be an almost contact metric submer-
sion with 3-dimensional f{ibres and with M, 3-contact. Then,

By (U,V) = BjU,V).
2 #
PROCF: For a 3-contact submersion, dim(F) = 3 implies that T vanishes.

THEOREM 5.5: Under the same hypotheses as in Thm. 5.4 for a 3-contact
submersion,
Hyp (U) = Hg (U).
L #s
THHEOREM 5.6: Let F—>M -— N be an almost contact metric 3-submersion
with M, 3-Sasakian. Then,

= 2!X|-2|v|-2 21X12 - 2
Bpi(X,V) 2IX|2IVITEl (V)41 X] lAxVI24} .
PROOF: It is straightforward to show that ApxV = ¥ ;AxV and that
i
Ax(¥iV) = PiAxV - 7;(V)X for a Sasakian structure, ¥;. From this, the basic

definition of the covariant derivative of A allows the derivaticn of

g VyA)x(¢iX), PiV) = g v'«.piyt'\)x(wiX).V)
from which
g(AXV,A(pix(‘?iV)) - 2P V), apxV) = -2lagviZ o+ 2!XI2(v)2.

Sinece T = 0 on a 3-Sasakian submersion, the assertion follows.

THEOREM 5.7: Let F3 — ¥4m*3 _, N4M be an almost contact metric 3-submer-
sion with 3-dimensional fibres and with M, 3-Sasakian. Then

(i) Hp(X) + Hp(X) + Hp(X) = 3,
‘Pl 5 ‘PB
(ii) 7, (Xs) + H';, (Xs) + iy, (Xe) = 0.
1 2 3
PROOF : Tanno(8] proved (i) for vector fields orthogonal to a 3-dimensional

vertical distribution on a 3-Sasakian manifold. (ii) follows from Thm. 5.3.

THEOREM 5.8: Let F3 -3 M —N be an almost contact metric 3-submersion
with M, 3-nearly Sasakian and with 3-dimensiona. fibres. Then

Bp(U,V) = Bg(U,V).
¥, %,
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PROOF: On a 3-nearly Sasakian submersion with 2-dimensional fibres,
O'Neill's T tensor vanishes (Thm. 3.8(ii)).

THEOREM 5.9: Let F—oM-—>N be an almost contact metric 3-submersion

with M, 3-nearly Sasakian. Then

(1) He (V) = Hg(V) + 2:vi~tiTywi2,
¥, A v
(ii) Hp(X) = H' (X&) - 3.
(Pi( ) J!
i
THEOREM 5.10: Let F3 - M = N be an almost contact metric 3-submer-

sion with M, 3-nearly Sasakian ard with 3-dimensional fibres. Then

fp (V) ﬁ¢évx

THEOREM 5.11: Let F3 — M = N be an almost contact metric 3-submer-

sion with M, 3-quasi-Sasakian and with 3-dimensional fibres. Then,

Bg (U,V)
’Pi LA

Bv.(L‘,V)
i
PROOF:  Again, Thm. 3.6.

THEOREM 5.12: Let F-> M-\ be an almost contact metric 3-submer-

sion with M, 3-guasi-Sasakian and with 3-dimensional fibres. Then,
4. (U i .
f hi(l.-) = ¢i(U).

6. COHOVDLOGY .

The classic Hodge Theorem relates the space Y{T(M) of real harmonic r-forms on
an oriented, compact Riemannian manifold, M, to the classical de Rham cohomology
space, HF(M,R), and, thereby, to a standard, say sheaf, cohomology space, HF(M,R).
In fact, an isomorphism is established: ¥F(M) = HF(M,R) = H'(M,R). This iso-
morphism pilays an important part in the theory of Riemannian submersions. We
recall first the easily established fact that for any r-form w on a compact,
oriented Riemannian manifold M, Aw = 0 if and only if both dw = 0 and

5w = 0. The author proved[49] that a smooth manifold surjection commutes with
the codifferential on all 1-forms if and only if (a) it is a Rierannian submer-
sion and (b) the fibre submanifolds are minimally immersed. Goldberg and
Ishihara[41] extended the work of the author{42] by showing that a Riemannian
submersion commutes with the Laplacian on forms of fixed degree r(r > 2) if and
only if the fibre submanifolds are minimally immersed and the horizontal distribu-

tion is completely integrable. The same conditions are necessary and sufficient for
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cumnutation with the codifferential oir forms >f fixed degree r{(: > 2). Our results
in sec. 3 now permit us to establish necessary conditions for the existence of
almest contact metrie 3-submersions with specified structures. We sssume for the
remainder of this report that all manifolds are compact, even though we shall often
reemphasize this point.

LEWA 6.1: Let F = W 5 N be a Riemannian sutmersion with M, compact .

(i) If the fibre submanifolds are minimal, then o0y(N) < by(M).
(ii) If the fibre submanifolds are minimal and the horizontal distribution is
completely integrable, then bp(N) < by(M), for r =0,1,2,...,dim(N).

PROCF:  Under the stated hypotheses, =*:Y{T(N) —»¥ (M) is

a linear isometry between finite dimensional real vector spaces.

As an example of such necessary conditions, note that the dim(M)-th Betti
number of the total space must be positive when H = 0 and A = 0. Moreover,
Poincare duality then implies that the (dim(M) - dim(N))-th Betti number of M
is also positive. As a specific example, if = :M!%® — N8 s a 3-nearly cosymplec--
tic(see Thms. 3.8(iii) and 3.10), then bg(M) > 1 and bg(M) > 1. If N is
quaternionic Kiihler, then the non-zero AK® = . ....® (k times) is harmonic
{187 on N, so bgM) > byr(N) > 1. Poincare duality, acting on such
R"k(i\d), further restricts the possibilities for =.

THEOREM 6.2: Let F - M - N be an almost contact metric 3-submers<ion
with M, ccmpact and

(i) 3-nearly Sasakian, or
(ii) 3-quasi-Sasakian(including 3-Sasakian). Then,
by(N) < by(M).
PROCF :

In each case, the fibre submanirolds are minimal.

THBOREM 6.3: Let F > M - N be an almost contact metric 3-submersicn

with M, compact and nearly cosymplectic(including closely cosymplectic anc
cosvmplectice). Then, for all r = 0,1,2,..., dim(N),
5% (N) < br(W).
PROOF : H = 0 and A = o.

We recall that if =:M - N*!' is a ?-Sasakian submersion, then byx(N) > 1
for k = 0,1,...,n by [18]. However, this data cannot translate to the total
space M, because the O'Neill tensor A can never vanish identically on a
3-Sasakian submersion.
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In [10] Ishihara and Korishi proved that the first Betti numbers of the total
space and the base space of a 3-Sasakian submersion with 3-dimensional fibres are
egual. We hasten to note that most investigators of the properties of 3-Sasakian or
3-K-contact fibre spaces over guaternionic manifolds have limited themselves to the
3-dimensional fibre case. A glance at Fig. 3.2 illustrates how this hypothesis
reduces the analysis, while a glance at Fig. 3.1 indicates the more general situa-
tion. In the 3-dimensional fibre case, the 3-almost cosymplectic and 3-nearly
cosymplectic(including 3-closely cosymplectic and 3-cosymplectic) fibrations are
trivial in that they are covered bv Riemannian products{37]. The 3-contact
(including 3-K-contact and 3-3asakian) as well as the 3-nearly Sasakian and 3-quasi-
Sasakian fibrations are principal fibre bundles by Hermann's Theorem[38]. The
cosyrplectic side of Fig. 3.2 being trivial, we capture the Betti number inequali-
ties for the Sasakian side in:

THEOREM 46.4: Let F3 - M > N be an almost contact metric 3-submersion
with M, compact and with dim(F) = 3. Suppose M is:

(i) 3-contact,
(ii) 3-K-contact,
(iii) 3-Sasakian,

(iv) 3-nearly Sasakian,

(v) 3-quasi-Sasakian, or

(vi) 3-normal.

Then b1 (N) < byqwy.
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