THE n-DIMENSIONAL DISTRIBUTIONAL MELLIN TRANSFORMATION

SUNIL KUMAR SINHA

Department of Mathematics Tata college Chaibasa, Singhbhum Bihar-833202, INDIA

(Received revised copy July 20, 1981)

<u>ABSTRACT</u>. The n-dimensional distributional Mellin transformation is developed using the testing function space $M_{c,d}$ and its dual $M'_{c,d}$. The standard theorems on analyticity, uniqueness and continuity are proved. A necessary and sufficient condition for a function to be an n-dimensional Mellin transformation is proved by the help of a boundedness property for distribution in $M'_{c,d}$. Some operational transform formulas are also introduced.

KEY WORDS AND PHRASES. Distributional Mellin Transformation, Distributions, and Test function spaces.

1980 AMS SUBJECT CLASSIFICATION CODES. 46F12, 44.

1. INTRODUCTION.

The Mellin transformation was previously extended to certain generalized functions by Zemanian [1] and Fung Kang [2]. In the present paper, we develop the n-dimensional distributional Mellin transformation.

For the sake of brevity, we shall use the following notations. \mathbb{R}^{n} and \mathbb{C}^{n} are respectively real and complex n-dimensional euclidean spaces. The symbols z and s stand for elements of \mathbb{C}^{n} representing the n-triples $(z_{1}, z_{2}, \dots, z_{n})$ and $(s_{1}, s_{2}, \dots, s_{n})$ respectively. We take $x \in \mathbb{R}^{n}$, $t \in \mathbb{R}^{n}$, $\sigma \in \mathbb{R}^{n}$, $\omega \in \mathbb{R}^{n}$ and $s = \sigma + i\omega \in \mathbb{C}^{n}$. A function on a subset of \mathbb{R}^{n} shall be denoted by $h(x) = h(x_{1}, x_{2}, \dots, x_{n})$. By [x] we mean the product $x_{1}, x_{2}, \dots, x_{n}$. Thus, $[x^{S}] = x_{1}^{S_{1}}, x_{2}^{S_{2}}, \dots, x_{n}^{S_{n}}$ where $s = \{s_{1}, s_{2}, \dots, s_{n}\}$ and $[e^{-St}] = \exp(-s_{1}t_{1}-\dots-s_{n}t_{n})$. By log x we mean

 $\{\log_{1},\ldots,\log_{n}\} \text{ and, by xt, we mean } \{x_{1}t_{1},x_{2}t_{2},\ldots,x_{n}t_{n}\} \text{ . Also,} \\ x^{s} = \{x_{1}^{s_{1}},\ldots,x_{n}^{s_{n}}\} \text{ and } e^{-st} = \{e^{-s_{1}t_{1}},\ldots,e^{-s_{n}t_{n}}\} \text{ . The notation } x \leq y \text{ and } x < y \\ \text{mean respectively } x_{\vee} \leq y_{\vee} \text{ and } x_{\vee} < y_{\vee} (\vee = 1,2,\ldots,n) \text{ . The letters } k \text{ and } m \text{ shall} \\ \text{denote non-negative integers in } \mathbb{R}^{n}, \text{ i.e., } k_{\vee} \text{ and } m_{\vee} \text{ are non-negative integers.} \\ \text{Letting } k = k_{1} + k_{2} + \ldots + k_{n}, D_{x}^{k} \text{ shall denote } \frac{\sigma^{k}}{\sigma x_{1}^{k_{1}\sigma}x_{2}^{k_{2}} \ldots \sigma x_{n}^{k_{n}}} \text{ .}$

By a smooth function we mean a function that possesses partial derivatives of all orders at all points of its domain.

2. THE TESTING FUNCTION SPACE M

Let \mathbb{R}^{n}_{+} denote the open domain $0 < x < \infty$. We define $\eta_{c,d}(x)$ as the product function $\prod_{\nu=1}^{n} \eta_{c_{\nu}}, d_{\nu}(x_{\nu})$ where $\eta_{c_{\nu}}, d_{\nu}(x_{\nu}) = \begin{cases} x_{\nu}^{-c_{\nu}} & \text{if } 0 < x_{\nu} < 1/e \\ x_{\nu}^{-d_{\nu}} & \text{if } e < x_{\nu} < \infty \end{cases}$.

In fact, $M_{c,d}$ is the linear space of all smooth functions f(x) defined on R_{+}^{n} with values in C^{1} , which satisfy the following set of inequalities.

For each non-negative integer k,

$$|\eta_{c,d}(x) [x^{k+1}] D_x^k f(x)| \le Q_k, \quad 0 < x < \infty.$$
 (2.1)

 Q_k denotes constants which depend upon the choices of k and f.

Any smooth function, whose support is contained in \mathbb{R}^{n}_{+} , is in $\mathbb{M}_{c,d}$. Other members of $\mathbb{M}_{c,d}$ are $[x^{s-1}]$ for $c \le \operatorname{Re} s \le d$ and $[(\log x)^{k} x^{s-1}]$ for $c < \operatorname{Re} s \le d$.

 $\boldsymbol{\mu}_{\boldsymbol{v}}$ represents a seminorm defined by

$$\mu_{v} = \mu_{v}(f) = \max_{0 \le |\mathbf{k}| \le v} \sup_{\mathbf{x}} \left| \eta_{c,d}(\mathbf{x}) \left[\mathbf{x}^{k-1} \right] D_{\mathbf{x}}^{k} f(\mathbf{x}) \right|.$$
(2.2)

Of course, the collection $\{\mu_{_V}\}$ is a multinorm, being a separating collection of seminorms. Thus we can assign to M $_{c,\,d}$ the topology generated by $\{\mu_{_V}\}$.

A sequence $\{f_{\nu}\}_{\nu=1}^{\infty}$ is a Cauchy sequence in $M_{c,d}$ if and only if each $f_{\nu} \in M_{c,d}$ and, for each fixed k, the functions $\eta_{c,d}(x) [x^{k+1}] D_x^k f_{\nu}(x)$ converges uniformly on R_+^n as $\nu \neq \infty$. Hence, $M_{c,d}$ is sequentially complete.

THEOREM 2.1. The mapping

$$f(x) \rightarrow [e^{-p}] f(e^{-p}) = g(p)$$
 (2.3)

is an isomorphism from $M_{c,d}$ into $L_{c,d}$ where $L_{c,d}$ denotes the testing function space

defined by Sinha [3].

The inverse mapping is given by

$$g(p) \rightarrow [x^{-1}] f(-\log x) = f(x)$$
 (2.4)

PROOF. The proof of this theorem is easy and is therefore omitted.

3. THE DUAL SPACE M', d.

 $M'_{c,d}$ is the dual space of $M'_{c,d}$. Multiplication by a complex number, equality, and addition are defined in the usual way. In fact, $M'_{c,d}$ is a linear space over C^1 . By $\langle h, f \rangle$ we mean a number that $h \in M'_{c,d}$ assigns to $f \in M'_{c,d}$. If the support (Miller [4], §1.6) of a distribution h is contained in a compact subset of R^n_+ , then $h \in M'_{c,d}$, c,d $\in R^n$ with c < d. Also, every member of $M'_{c,d}$ is a distribution on R^n_+ .

Let us define a (weak) topology for $M'_{c,d}$ by using the following separating set of seminorms. For every $f \in M_{c,d}$, we define a seminorm $\zeta_f(h)$ on $M'_{c,d}$ by

$$\zeta_{f}(h) = |\langle h, f \rangle|, \quad (h \in M_{c,d}^{\dagger}).$$

In fact, a sequence $\{h_{v}\}_{v=1}^{\infty}$ (h $\in M_{c,d}'$) is a Cauchy sequence in $M_{c,d}'$ if and only if, for all f $\in M_{c,d}$, the numerical sequence $\{\langle h_{v}, f \rangle\}_{v=1}^{\infty}$ converges.

We can easily prove that $M'_{c,d}$ is sequentially complete.

In view of Theorem 1, we can relate to each h(x) \in M' , a distribution h(e^p) \in L' , (see [3]) by

$$(h(e^{-p}), g(p)) = (h(x), f(x)).$$
 (3.1)

Conversly, if $\psi(p) \in L'_{c,d}$, then $\psi(-\log x) \in M'_{c,d}$ is given by $\langle \psi(-\log x), f(x) \rangle = \langle \psi(p), g(p) \rangle.$ (3.2)

Using (3.1) and (3.2), we can easily have the following theorem:

THEOREM 3.1. The mapping $h(x) \rightarrow h(e^{-p})$ defined by (3.1), is an isomorphism from M' onto L' . The inverse mapping is given by (3.2).

4. THE n-DIMENSIONAL DISTRIBUTIONAL MELLIN TRANSFORMATION M.

DEFINITION. We define the n-dimensional distributional Mellin transformation Mh as the function H(s) on Ω_h into C¹ by

 $(Mh)(s) = H(s) = \langle h(x), [x^{s-1}] \rangle \text{ for } s \in \Omega_{h}, \qquad (4.1)$

where $\mathfrak{M}_{\mathbf{h}}$ is the tube of definition of the n-dimensional distributional Laplace

transformation (see [3]).

In fact, the R.H.S. of (4.1) has a meaning because the application of h $\in M'_{\rm c,d}$ to $[x^{\rm s-1}] \in M_{\rm c,d}.$

Setting $g(p) = [e^{-sp}]$ and $f(x) = [x^{-1}] g(-\log x) = [x^{s-1}]$ and using Theorem 2.1, we can have the following theorem:

THEOREM 4.1. The distribution h(x) is n-dimensional Mellin transformable if $h(e^{-p})$ is n-dimensional Laplace transformable. In such a case, $Mh(x) = H(x) = Lh(e^{-p})$ for ever s $\in \Omega_{h}$.

Using Theorems 2.1 and 3.1, we can have the following theorems:

THEOREM 4.2. (The Analiticity Theorem). If Mh = H(s) for s $\epsilon \ \Omega_h$, then H(s) is analytic on Ω_h and

$$\frac{\partial H}{\partial s_{v}} = \langle (\log x_{v}) h(p), [x^{s}] \rangle, \quad s \in \Omega_{h}.$$
(4.2)

The proof is analogous to that given in [3].

THEOREM 4.3. (The Uniqueness Theorem). If Mh = H(s) for $s \in \Omega_h$ and Mg = G(s) for $s \in \Omega_g$, if $\Omega_h \cap \Omega_g$ is non-void, and if H(s) = G(s) for $s \in \Omega_h \cap \Omega_g$, then h=g in the same sense of equality in $M'_{c,d}$ where $c, d \in \Omega_h$ and c < d. The proof is analogous to that given in [3].

THEOREM 4.4. (The Continuity Theorem). If $\{h_{v}\}_{v=1}^{\infty}$ converges in $M'_{c,d}$ to h for some c,d $\in \mathbb{R}^{n}_{+}$ (c < d) and if $Mh_{v} = H_{v}(s)$, then Lh = H(s) exists for at least c < Re s < d and $\{H_{v}(s)\}_{v=1}^{\infty}$ converges pointwise in the tube of definition c < Re s < d to H(s).

PROOF. Since $[x^s]$ is in $M_{c,d}$ for each s satisfying c < Re s < d, the theorem follows from the definition of convergence in $M'_{c,d}$ and the fact that $M'_{c,d}$ is sequentially complete.

5. A BOUNDEDNESS PROPERTY FOR DISTRIBUTIONS IN M'c,d.

For each h \in M'_{c,d}, there exists a non-negative integer r \in R¹₊ and a positive constant c \in R¹₊ such that, for all ψ in M_{c,d}?

$$|\langle \mathbf{h}, \psi \rangle| \leq c \mu \ (\psi). \tag{5.1}$$

6. <u>A NECESSARY AND SUFFICIENT CONDITION FOR M(s) TO BE AN n-DIMENSIONAL MELLIN</u> TRANSFORM.

A necessary and sufficient condition for a function M(s) to be the n-dimensional Mellin transform of a distribution h is that there be a tube c < Re s < d (c < d) on which M(s) is analytic and bounded when

$$|\mathbf{M}(\mathbf{s})| \leq \mathbf{P}(|\mathbf{s}|) \tag{6.1}$$

where P(|s|) is a polynomial in |s|.

It can be easily proved by using the boundedness property of Section 5 and (Bochner [6], Theorem 60, p. 242 and \$4, p. 244).

7. SOME OPERATIONAL TRANSFORM FORMULAS FOR THE n-DIMENSIONAL DISTRIBUTIONAL MELLIN TRANSFORMATION.

Let us suppose that Mh(p) = H(s) for $s \in \Omega_h$ and $p \in R^n_+$, $\alpha \in C^n$. We can easily have the following operational transform formulas (Using Theorem 4):

- (11) $M D_p^k h(p) = s^k H(s), s \in \Omega_h,$
- (12) $M[[x^{\alpha}]]h = H(s + \alpha), s + \alpha \in \Omega_{b},$
- (13) Mh (log x) = H(-s), -s $\epsilon \Omega_{h}$,
- (14) $Mh\{\tau(-\log x)\} = [\tau^{-1}] H(s/\tau), s/\tau \in \Omega_{h}, \tau > 0.$

Also, by using Theorem 5, we can have

(15) $M\{(-\log x)^k h(-\log x)\} = (-)^{|k|} D_s^k H(s), s \in \Omega_h.$

REFERENCES

- 1. ZEMANIAN, A.H. Generalized Integral Transformation, Interscience, N.Y., 1968.
- 2. FUNG KANG. Generalized Mellin Transforms-I, Sci. Sinica 7 (1958), 562-605.
- SINHA, S.K. The n-Dimensional Distributional Laplace Transformation, to appear.
 MILLER, J.B. Generalized Function Calculi for the Laplace Transformation, <u>Arch. Rational Mech. Analy. 12</u> (1963), 409-419.
- GELFAND, I.M. and SHILOV, G.E. <u>Generalized Functions</u>, Vol. 1, Academic Press, New York, 1964.
- BOCHNER, S. <u>Lectures on Fourier Integrals</u>, Princeton University Press, Princeton, 1959.