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ABSTRACT. The tree polynomials [i] of the basic graphs with cyclomatic number 2 are

derived. From these polynomials, results about forest decompositions are deduced.

Explicit formulae are given for the number of decompositions of the basic graphs into

forest with specified finite cardinalities.
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INTRODUCTION.

The graphs considered here will be finite. Let G be such a graph. With every

tree a in G, let us associate an indeterminate or weight w. .With every spanning for-

est or cover C of G, let us associate the weight

w(C) H wa,

where the product is taken over all the elements of C. Then the tree polynomial of G

is 7.w(C), where the summation is taken over all the spanning forests in G.

In this paper, we will assign the weight w to each tree with n nodes. There-
n

fore, the tree polynomial of G will be a polynomial in the indeterminates Wl,W2,W3,...
We will denote it by T(G;w__), where w (Wl,W2,...). If we put w

i
w, for all i, then

the resulting polynomial, T(G;w), will be called the simple tree polynomial of G. The

basic properties of tree polynomials are given in Farrell [i].
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Let H be a forest subgraph of G. We say that H is incorporated in G if H is re-

quired to belong to every cover of G that we consider. When G contains an incorpor-

ated subgraph, we indicate this by writing G* We call G* a restricted graph. By

attaching a chain (a tree with nodes of valencies i and 2 only) A to graph B, we will

mean that identifying of an end node of A with a node of B. If both end nodes are

attached to different nodes of B, then we say that the chain A has been added to B,

(n.b. B must have at least two nodes).

We will use the term forest decomposition to mean a decomposition into spanning

forests. If G has p nodes, q edges and k components, we define the cyclomatic number

of G to be q p + k. The basic raphs with cyclomatic number 2 is the minimum set of

graphs with cyclomatic number 2 can be obtained rom these graphs, by attaching trees

to them. We refer the reader to Harary [4] for the basic definitions in Graph Theory.

We will derive the tree polynomials of the basic graphs with cyclomatic number 2,

using some of the results for chains and circuits derived in Farrell [2]. The tree

polynomials of the basic graphs will then be used to deduce results about forest de-

compositions of graphs with cyclomatic number 2.

2. SOME FUNDAMENTAL RESULTS.

The covers in G can be partitioned into two classes according to whether or not

they contain a specified edge. This leads to the following theorem, which is also

given in [i].

THEOREM i. (The Fundamental Theorem). Let G be a graph (possibly restricted)

containing an unincorporated edge xy. Let G’ be the graph obtained from G by deleting

xy and G* the graph obtained from G by inco.rporating xy. Then

T(g;w__) T(G’ ;w_) + T(G*;w_).

As indicated in the Introduction, we will assign the same weight to all trees

with the same number of nodes; we will also associate an integer to each incorporated

subgraph, at the same time shrinking the entire subgraph to a single node which

replaces it. This integer equals the number of edges in the subgraph. We will call

such a node a compound node and speak of it as representing the incorporated subgraph.

A convenient incorporation process would therefore be node identification (as for

chromatic polynomials), see Read [5]. We will also omit loops formed during the iden-
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tification process [5], since a loop could be identified with the final edge needed to

complete a circuit in the incorporated subgraph. Thus, by deleting loops formed dur-

ing identification, we are assured that all our incorporated subgraphs will be trees.

We will therefore speak about "incorporated trees". The fundamental algorithm for

tree polynomials, or the reduction process, for brevity, consist of repeated applica-

tions of Theorem 1 until we obtain graphs H for which T(Hi;w) are known.

By a block we will mean a maximal nonseparable subgraph. The following results

are also given in [I].

THEOREM 2. (The Component Theorem). Let G be a graph with components

HI, H2,...,Hn. Then
n

T(G;w__) H T(Hi;w_)
i=l

THEOREM 3. (The Cutnode Theorem). Let G be a graph consisting of n blocks

BI, B2,...,Bn. Then

(n-l) n
T(G;w) w T(Bi;w).

i=l

3. PRELIMINARY RESULTS.

We will now give some lemmas which will be useful in obtaining our main results.

These lemmas were proved in [2]. We will therefore quote the results. The interested

reader might wish to consult [2] for detailed proofs.

We will denote the chain with n nodes by Pn’ and the circuit with n nodes, by Cn.
P(n) will be written for T(Pn;W). The tree polynomial of the chain P can be obtained

n

by application of the reduction process, by successive deletion of the terminal edges

incident to a fixed terminal node (and to its subsequent incorporated subchain).

P

P(p) w
i
P(p- i).

Since most of our results will be obtained in terms of the tree polynomials of

chains, we will give a table of values of T(P ;w), for p i, up to p 6. We define
p--

T(Po;W__) to be I.



128 E.J. FARRELL

Table i

P P(P)

i w
I

2
2 w

I + w
2

3
3 w

I
+ 2WlW2 + w

3

4 w14 + 3w12w2 + 2WlW3 + w22 + w
4

5 wl
5 + 4w13w2 + 3w12w3 + 3wlw22 + 2WlW4 + 2w2w3 + w

5

6
w
I + 5w14w2 + 4wl3w3 + 6w12w22 + 3wl2w4 + 6WlW2W3 +

2WlW5 + w23 + 2w2w4 + w32 + w
6

We will give the tree polynomials of two types of restricted chains: (i) those

in which the compound node is an endnode of the chain, and (ii) those in which the

compound node is not an endnode of the chain. The restricted graphs of type (i) will

be represented by P*[r] where p 1 is the number of edges in the unincorporated sub-
p

chain, and r is the number of edges in the incorporated tree. The restricted graphs

of type (ii) will be represented by P* [r] where p i and q i are the number of
p+q-i

edges fn the unincorporated subchains (p,q > O) and r is the number of edges in the

incorporated tree (Note that the subscripts of P* are formal and should not be corn-

puted). The results can be easily obtained by application of the reduction process.

LEMMA 2.

LEMLA 3.

LEMMA 4.

P

T(P[r];_w) Wr+i P(p- i).
i=l

P q

T(Pp+q_l[r];w__ Wr+s+t_1 P(p- s)P(q- t).
s=l t=l

P

T(Cp;W__) rw
r

P(p r).
r=l

PROOF. Apply the reduction to C in such a manner that Lemma 2 could be used.
P

The result then follows.

We will denote by C*[r], the restricted circuit with p nodes, one of which is a
P

compound node representing a tree with r edges.
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LEMMA 5.

T(C*[r] ;w) i j)
p Wr+i+j P(P-

PROOF. Apply the reduction process in such a manner that Lemma 2 could be used.

We will denote by H the graph obtained by attaching the chain P to a graph G.
n n

Let us apply the reduction process to H by deleting the edge of P incident to the
n n

node of attachment. Then G’ will consist of components Pn-i and G, and G* will be

H*n_l[l], i.e. the graph Hn_1 with a compound node of attachment representing a tree

with one edge. By continuing (in a similar manner), the reduction process on H* [i]n-I

and on subsequent graphs H* [k] we obtain the following result in which G[r]
n-k

denotes the graph G with a compound node representing a tree with r edges.

LEMMA 6.

T(Hn;W__ P(n- k) T(G*[k- l];w__) (G*[O]---- G).
k=l

We will use the notation G*[rl, r2, rk], for a restricted graph G containing

k compound nodes, representing trees with rl,r2,... ,rk edges. We will denote by

H*[rln ,r2,...,rk] the graph obtained by attaching the chain Pn to G[rl,r2,...,rk].
The following result can be easily proved.

then

LEMMA 7. If the node of attachment is a compound node representing r
i

edges,

T(Hn*[rl,r2 ,rk];W_) e(n s) T(G*[rl,r2, r
i
+ s i rk];W_).

s=l

If it is an ordinary node, then

T(Hn*[rl,r2 rk];W P(n- s). T(G*[rl,rm,...,rk, s l];w_)
s=l

Lemma 7 can be used to obtain a result for the graph J formed by adding the
n

chain P to a graph G.
n

LEMMA 8.

T(Jn;W_) P(n r- s i) T(G[r,s-l];w) + T(G*[n-l];w_).
r=l s=l

4. TREE POLYNOMIALS OF THE BASIC GRAPHS WITH CYCLOMATIC NUMBER 2.

The basic graphs with cyclomatic number 2 are shown below in Figure i. The num-
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ber of nodes in the subgraphs are indicated by p,q and r, where p,q,r > 2.

P

(a) (b) (c)

Figure 1

We will denote the graphs shown in (a), (b) and (c) by G(p,q), G(p,q,r) and G((p,q),r)

respectively. G(p,q,r) is sometimes called a ’tetha’ graph.

THEOREM.

T(G(p,q) ;w_) P(p s m) Ws+m+i+j_Is=O m=l
P(q i j)].

PROOF. Apply the reduction process to G(p,q) by deleting an edge of the subgraph

C incident to the node of valency 4. In this case G’ will be H and G* will be
P P

G*(p- l,q) [i]. We can apply the reduction process to G*(p l,q) [i] in a similar

manner to obtain the graphs H* [i] and G*(p- 2 q) [2] By continuing in this man-
p-i

ner until a loop is formed in the restricted graph G*, we get

p-I
T (G (p q) ;w) H* [r]

i=0
p-r

where

H*[O] H and H[p i] C*[p i].
P P q

The result then follows by using Lemmas 7 and 5.

In order to find the tree polynomial of G(p,q,r) we will establish two lemmas.

LEMMA 9. Let P* [r denote the restricted chain P* [s] with one of itsp+q-r s p+q-r

endnodes being a compound node representing a tree with r edges. Then

T(P* [r s];w) i) P(q j)
p+q-i Wr+i Ws+m+j-i P(p -m-

m=l i=+/- "=

PROOF. Without loss in generality, we will assume that the compound endnode is

on the subchain Pp. We can apply the reduction process to P+q_l[r,s], by deleting
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the edge of the subchain P adjacent to the internal compound node. G’ will consist
P

of two components P* P* G* P* [r s+l] By continuing
p-i

[r and [s], while will be
p+q-2q

the reduction process on G* in a similar manner until the entire subchaln P is incor-
P

porated, we get
p-i

T(P* [r s];w) e.*_m[r] P*[s + m- i].
p+q-i q

m=l

The result then follows by using Lemma 2.

Let us denote by C* [r,s] the restricted (p + q 2)-gon containing two com-
p+q-2

pound nodes, representing trees with r and s edges, and separated by paths of lengths

p 1 and q i.

LEMMA i0.
p p-k+l p-k-m+l q-i

T(C+q_2[r,s] ;w__) Wr+k+i_2 Ws+m+j_I
k=2 m=l i=l j =i

q-2 q-i-i
e(p + k- m- i i) P(q j) + Wr+s+p+i+j_I

i=l

X P(q- i- j i).

PROOF. Apply the reduction process to C+q_2[r,s] by deleting an edge incident

with the compound node representing the tree with r edges. G’ will be P* [r,s]p+q-2

G* will be C*p+q_3[r+l,s]. By continuing in this manner (until the entire path of

length p i is incorporated), we get

P
T(C* [r,s];w) P* [r + k 2,s] + C* [r + s + p i].

p+q-2
k=2

p+q-k q-i

The result then follows from Lemmas 9 and 5.

We can view the graph G(p,q,r) as the circuit Cp+q_2 with the chain Pr added to

it. Therefore, Lemma 8 can be immediately applied. In this case, G*[r,s i] will be

C* [a,b i] and G*[n- i] will be C* [r i] Hence we get
p+q-2 p+q-2

r-2 r-q-i
T(Gfp,q,r);w) ’. P(r- a- b I) T(C*. [a,b l];w) +

b=l
pq-z

T * r l];w)(Cp+q_21

By using Lemmas i0 and 5, we obtain the following theorem.
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THEOREM 5.
r-2 r-a-i p p-k+l p-k-m+l q-i

r(G(p,q,r);w_) P(r a b I)[
a=l b=l k=2 m=l i--I j =i

Wa+k+i_2 Wb+m+j_2 P(p + k,- m- i i) P(q j)

q-2 q-i-i
+ - Wa+b+p+i+j 2

i--1 j =l

p+q-3 p+q-i-2
+ Wr+i+j_1

i=l j=l

P(q i j i)

P(p + q i j 2).

The following corollary of Theorem 4 will be useful in finding the tree polynomi-

al of G((p,q),r). Its proof is straightforward.

COROLLARY 4.1. Let G*(p,q)[r] be the restricted graph consisting of the graph

G(p,q) with its node of valency 4 being a compound node, representing a tree with r

edges. Then

p-i p-s q-i q-i
T(G*(p,q)[r];w_) P(p s m)[ Wr+s+m+i+j_2s=O m=l i=O j=l

P(q i j)].

We can obtain the tree polynomial of G((p,q),r) by using Lemma 8. In this case,

G will be the graph with two components C and C and the added chain will be P In
p q’ r"

the lemma, G*[r,s-l] will consist of two components C_*[r] and C*[s-l], and G*[n-l]
q

will be the graph G((p,q),r) with the entire path P incorporated. Notice that if we
r

shrink this incorporated path to a node, then G*[n-l] will become G*(p,q)[r-l]. By

using Lemmas 8 and 5, and Corollary 4.1, we get the following result.

THEOREM 6.

r-2 r-k-i p-i p-i
T(G((p,q) ,r) ;w__) P(r- k- s I)[ Wk+i+jk=l s=l i=l j=l

q-i q-i

Ws+i+j-i P q i j)j
i=l j=l

p-i p-s q-1 q-i
+ " P(p- s- m) Wr+s+m+i+j_3

s=0 m=l i=0 j--I

P(p i j)]

P(q- i- j)].

5. SIMPLE TREE POLYNOMIALS OF GRAPHS WITH CYCLOMATIC NUMBER 2.

The deletion of any k of the p i edges of the chain P yields a cover with
P

cardinality k + i. Hence we have
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LEMMA ii. T(Pp;W) w(l + w)p-I.

A similar argument yields

LMA 12. T(Cp;W) (i + w) p i.

The expression (i + w)
p

1 will occur quite often in our results. We will

therefore replace it by (p). A useful property of (p) is the following.

LEMMA 13. (m + n) (m) (n) + (m) + (n).

The Cutnode Theorem can be applied to G(p,q) to obtain the following result.

THEOREM 7.

T(G(p,q);w_) w-l[(p + q) (p) (q)].

THEOREM 8.

-i
T(G(p,q,r);w__) w [(p + q + r 3) (p I) (q i) (r i)].

PROOF. Apply the reduction process to the tetha graph, by deleting an edge in-

cident to the node of valency 3 and belonging to the path with r nodes. This yields

T(G(p,q,r);w) T(Hr_l;W) + T(G(p,q,r- l);w).

By continuing the reduction process in the same manner on all subsequent theta graphs

formed by incorporation of edges, we obtain

r-i
T(G(p,q,r);w) k= r(Hr-k;W) T(G(p l,q l);w) (5.1)

The graph Hr_k consists of the blocks Cp+q_2 and Pr-k with a common cutnode. There-

fore, by using the Cutnode Theorem, we get

-i
T(Hr_k;W)_ w T(Cp+q_2,-w) P(r- k)

r-k-i(p + q- 2)(1+w)

By substituting into Equation (5.1), we get

r-i
T(G(p,q,r);w) (p + q 2) . (i + w)

r-k-i + w-l(p- 1)(q- l)

-1 -1w (p + q- 2)(r- i) + w (p- l)(q- i).

The result is then obtained by using Lemma 13.

G((p,q),r) consists of three blocks Cp, Cq and Pr, with two cutnodes of valency

3. Hence Theorem 3 can be immediately applied. This yields

-ITHEOREM 9. T(G((p,q),r);w) w [(p + q) #(p) (q)][#(r i) i].
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The result given in Lemma ii holds for all trees with p nodes. Thus, if T is a
P

tree with p nodes,

T(T ;w) w(l + w)
p-I

P

Let us denote by GplP2...pn, the graph obtained by attaching n trees

to a connected graph G. By applying the Cutnode Theorem, we obtainTpI, Tp2, Tpn
the following theorem.

THEOREM I0.

where

T(G
PlP2" "Pn

;w) (i + w) N-nT (G ;w)

n
N=___ Pi-

i=l

Since any graph with cyclomatic number 2 can be obtained from the basic graphs by

attaching trees to them, it follows that Theorem i0, together with the results given

in Section 5, is sufficient to obtain the tree polynomials of all graphs with cyclo-

matic number 2.

6. FOREST DECOMPOSITIONS OF GRAPHS WITH CYCLOMATIC NUMBER 2.
nI n2 n

k
It is clear that the coefficient of the term w

I
w
2 ...wk in T(G;w__), is the

number of decompositions of G into n
I nodes, n

2 edges, n
k

trees with k nodes.

Therefore, Theorems 4, 5, and 6 provide information about the decompositions of the

basic graphs with cyclomatic number 2 into spanning forests with specified trees.

The coefficient of w
k

in T(G;w) is the number of decompositions of G, with car-

dinality k. We will represent this by Tk(G). Hence we have the following corollaries

in which
n

0 for r > n, and k’ k + I.
r

COROLLARY 7 i

P+q
rk(G(p’q)) k’ (kp’) -( ’)"

COROLLARY 8. i.

p+q+r-3
rk(G(p’q’r)) k’

r-ip-i qkk’ ,i )_ k’

COROLLARY 9.1.

k+lp+q r-i pi+q
i=O
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In order to extend our results to all graphs with cyclomatlc number 2, we add the

following corollary of Theorem i0.

COROLLARY i0. i.

T
k
(G k N-n
PlP2"’’Pn) i= k-i Ti(G)"

Let us denote by N(G), the number of spanning forests in G. Then N(G) is the sum

of the coefficients of the terms in T(G;w). Hence it is clear that

N(G) T(G;I).

The following theorem is immediate.

THEOREM Ii.

(i) N(G(p,q)) (2
p

i)(2
q

i),

(ii) N(G(p,q,r)) (2p+q-2 I)(2
r-I

i) + (2p-I i)(2
q-I

i),

(iii) N(G((p,q),r)) 2 r-l(2p I)(2
q

i).

Let us denote by F(G), the number of spanning trees in G. Then F(G) is the co-

efficient of w in T(G;w). The number of spanning trees in the basic graphs can be

immediately obtained by trivial counting techniques. However, we could test our sire-

ple tree polynomials, by extracting the coefficients of w. For completeness, we add

the following result.

THEOREM 12.

(i) r(G(p,q)) pq,

(ii) F(G(p,q,r)) pq + pr + qr 2(p + q + r) + 3,

(iii) F(G((p,q),r)) pq.

It should be noted that these explicit formulae agree with the results obtained

in Farrell 13].
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