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ABSTRACT. Recently Chatterjea (i) has proved a theorem to deduce a bilateral

generating function for the Ultraspherical polynomials. In the present paper an

attempt has been made to give a general version of Chatterjea’s theorem. Finally,

the theorem has been specialized to obtain a bilateral generating function for a

class of polynomials {P (x; u,B )} introduced by Bhattacharjya (2).
n
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I. INTRODUCTION.

Using the following differential formula for the Ultraspherlcal polynomials

Pn (x) due to Tricomi,

(x2-In

n+ Dn (x2-1)- (I I)

Chatterjea (I) has recently obtained a bilateral generating function for the

Ultraspherical polynomials in the form of following theorem.

then

THEOREM I. If

F(x, t) am tm PI (x)
m

-21 x-t ty
tr plp F(--- . b (y) (x)
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r=o

(1.2)

where

b (y)
r

m=o
mr m

a
m

y and p (l-2xt+t2)I/2

A closer look at the above relation (1.2) suggests the following interesting

general version of Chatterjea’s theorem:

2. Let F o G be used to denote the composition F o G(x) F(G(x)). In

terms of this notation, we state

THEOREM 2. Suppose that there exist functions f, g, h and X and a

sequence of constants {cn} such that the sequence of functions {Qn } is generated

by the formula
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Cn f gn Qn X D
n

h, n= 0,1,2,

where D - d/dx. Define the generating function

(xt) t
n--o

Then

PROOF.

where

fF( X gtz) [x+t f c (gt)n
n %0 X bn (z),

n--o

n k=o c
k

(n-k)

By Taylor’s theorem

k

(2.1)

(2.2)

tDfF(X,gtz) ]x+t e fF (X, gtz). (2.3)

To evaluate the right hand side of (2.3), we shall use as our starting point the

tDrelations (2.1) and (2.2), and the series expansion for e Thus
tD tD

e fF(X,gtz) e f a
n

(gtz)n Qno x
n--o

atD n (tz)n D
n
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n=o m=o

" [ (anlcn) (gtln+m Cn+m f Qn+m Xlm’.
n=o m=o

f c (gt) n
n Qno X bn (z)

n--o
ak k

bn" (z)
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It is worthwhile to remark here that if we choose (x) pX (x)
n

f(x) (x2-1) -x g(x)= (x2-1) -1/2 X (x)= x(x2-1) -1/2 h(x)-- (x2-1) X and

c n’. /(-i)n then Theorem 2 would correspond to Chatterjea’s theorem.
n

APPLICATIONS: Earlier, lattacharJya (2) introduced a new class of

generalized Legendre polynomials {P (x" , )} which are orthogonal wlth the
n
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(l_x2) (i ) 12"
are 2 (6.6) and (6.8))"

The Rodrlgue’s formulae for these polynomials

P2m (x-I/2 ,8 xm+( +I)/2 (.I_X)( 8- )/2

(-2m-( a-l)12 )m

Dm (i_x)m-( 8- )/2 x--( +1)/2 (2.4)

and

(x-12P2m+l a,8 x,m+l+ /2 (l-x) 8- )/2

(-2m-( (+I)/2)m
Dm [ (l_x)m-(8 )/2 -m-( +3)/2

X (2.5)

Here we note that the sequences {P2n (x-I/2 s-2n, 8) } and P 2+l(X- I/2

s -2n, 8) } are amenable to a method of Theorem 2 for finding bilateral generating

;functions.

Let (x) P2n (x;s-2n, 8) P2n (x). For simplicity of notation, set

y -( s+l)/2 and 6 (u-8)/2. Then (2.1) holds with f(x) x
y

(l-x)

-12g(x) --(l-x) -I, X (x)ffi x and Cn (n) (-n-( -l)/2)n. Upon replacing

t by -t and z by -y, we get

x-t Y 1- (x-t)(--X-) -x _t)
I/2

where

and

I- (x-t)) (. -t r
_.x (r).

r=o

P2r (x-I/2) b (_y),(2.6)
r

t m (x 1/2I t am I--T) e2mI/2 l-x
III=O

-1/2Now replacing x

a (_y)m
b (-y) [ m
r #(m) (r-m) (2 7)

t=O

by s and t/(l-x) by t in (2.6), we are led to the following

bilateral generating function for gernerallzed even Legendre polynomials:

COROLLARY. i: If

F(x,t) [. a (x)
m P2m

----O
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then

Y x[ l-(x2-1)t ] (l+t) F i (l_t (x2_l)) 1/2
l+t r--o

P2r(X) b (-y)
r

where b (-y) is given by (2.7).
r

In the same way, let Qn (x) P2n+l (x; m-2n, 8) P2n+l (x), and set

= m+2)/2, -8 )/2. Then (2.1) holds with f(x) (l-x)

g(x) (l-x) -I -1/2
X (x) x and c (n) (-n-(+l)/2)n. Replacing t by-t and.

n

z by -y and making the same substitution as before in (2.7), we are led to the

following bilateral generating function for generalized odd Legendre polynomials.

then

CCROLLARY 2 If

F (x,t) am P2m+l (x),
m--o

l-(x2-1)t] Y
(l-t) F ( x

i-t (x2- i) __t_[__) . (_t)r (r)1/2
1 r=o

P2r+l (x) c
r (-y),

where
a (_y)m

c (-y) [ m
r Y(m) (r-m)

m=o
Taking 8 in Corollary 1 and 2, we can obtain bilateral generating functions

for generalized Legendre polynomials due to Dutta and More (3).

Next, we note that (2),

and

P2m (x;o,o)

where P

(-i)
m m: P2m (x)

(-2m +" 1/2) (2.8)
m

(_)m (x)m. P2m+l (2.9)
P2m (x;o,o)

(-2m- 1/2)
m

2m
(x) and P2m+l (x) are even and odd Legendre polynomials Therefore, by

(2.8), (2.9) and the above two corollories we can obtain bilateral generating

functions for Legendre polynomials.
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