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We discuss the dynamics of the correspondences associated to those plane curves whose
local sections contract the Poincaré metric in a hyperbolic planar domain.
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1. Introduction. We consider certain 1-dimensional, holomorphic correspondences
of hyperbolic type, which we call “contractive curves.” These are curves whose local
sections contract the Poincaré metric of a hyperbolic planar domain. The model for
our analysis is given by the hyperbolic Julia sets.

This work has been motivated by the work in Ochs’ recent paper [5]. In the first part,
we adapt to our purposes the Schwarz lemma for correspondences that appears in
Minda’s paper [3]. In the second part, we discuss the dynamics of a contractive curve,
and the properties of the associated attractor. Such curves usually do not have global
sections that contract the hyperbolic metric. Nevertheless, the associated dynamical
systems have much in common with the iterated function systems of hyperbolic type.
The basis for our discussion is the paper [2] by Barnsley and Demko.

2. Preliminaries

2.1. Hyperbolic metric. The hyperbolic metric (infinitesimal length-element) on
the unit disk A = {|z| <1} c Cis dsa(z) = (2/(1—|z|?))|dz|.

Let U C C be a planar domain (open and connected subset of C), and assume that
the complement C\ U contains at least two points, so that U is a hyperbolic Riemann
surface; the universal covering of U is (biholomorphic to) A. The density py of the
hyperbolic metric in U, dsy(z) = py(z)|dz], is defined as follows. Fix an unramified
covering A 2. U. Given z € U, choose any t € ¢~1(z), and define py(z) = 2/(1 —
[t]2)| ¢’ (t)|. The definition of py(z) does not depend on the choice of A 4. U, nor
on the choice of t € ¢~ (z). Note that py is positive and real-analytic.

The hyperbolic distance sy in U is obtained by integrating the infinitesimal length-
element dsy. The metric space (U,sy) is complete.

The (Gaussian) curvature of a metric p(z)|dz| is K, = —(4/p?)(3%(logp)/0z0Z).
The hyperbolic metric dsy has constant negative curvature, K,, = —1.

Holomorphic maps do not expand the hyperbolic metric; given any holomorphic
map U N V of hyperbolic domains, f*dsy < dsy, thatis, py (f)|f’| < py. Equality at
some point of U implies that U L. V is an unramified covering; in this case, equality
holds everywhere in U.
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2.2. Hausdorff distance. Given two subsets K + & += H of a metric space (X,d), let
A(K,H) :=inf  nycxxu d(k,h), and define the Hausdorff distance

Ha(K,H) := max(supd(k,H),supd(K,h)). (2.1)
kek heH

When K, C K, d(K1,H) <H4(K,H).

Denote by % (X,d) := (¥ x,H,) the metric space of nonempty compact subsets of X.
Clearly, (X,d) is isometrically embedded in % (X,d), Xs(x,y) =d(x,y).

If (X,d) is a complete metric space, then % (X, d) is a complete metric space. There-
fore, when U is a hyperbohc domain, ¥ (U, sy) is a complete meftric space.

Given (X,dy) N (Y,dy) continuous, let (X, dx) N H(Y,dy) denote the contin-
uous map ¥y (K) := f(K). Let Lip(f) denote the Lipschitz “norm” of f,

dy (f(x), f(u))

dx (xX.10) T(x,u) e XXX, xqtu}. (2.2)

Lip(f) = sup {

We have Lip(% ) = Lip(f).

2.3. Stolz subdomains. Given a subdomain V of a hyperbolic planar domain U,
pu(z) < py(z) for all z € V. Equality at some point z € V implies that U = V.

DEFINITION 2.1. A subdomain V of a hyperbolic planar domain U is called Stolz if
and only if there exists a constant k > 1 so that py(z)/py(z) =k >1forallze V.

Equivalently, V is Stolz in U if and only if the inclusion (V,sy) - (U, sy) is a strict
contraction, that is, Lip(i) < 1.

If V c U, then V is Stolz in U. Roughly speaking, if V c U are planar domains with
piecewise Cl-smooth boundaries, then V is Stolz in U if and only if the boundaries
oU and 0V have no tangency at any common boundary point.

EXAMPLE 2.2. The disk {|z—R| < R} is not Stolz in the half-plane {R (z) > 0}. For
a>b =1, the angle A, = {|arg(z)| < 1/2a} is Stolz in A.

3. Schwarz lemma for correspondences

3.1. Ahlfors’ lemma. Recall the definition of ultra-hyperbolic metrics p(z)|dz| in
planar domains. An upper semicontinuous function vV . 10,0) is an ultra-hyperbolic
density function if and only if, for all z € V with p(z) > 0, there exists a positive C2-
smooth function V. £z, (0, 0), defined in a neighborhood V; of z, so that K,, < -1,
p- <p and p,(z) = p(z). Recall Ahlfors’ lemma (see [1]).

PROPOSITION 3.1. IfU L V is a holomorphic map from a hyperbolic planar do-
main U to an ultra-hyperbolic domain (V,p), then p(f)|f’| < py. In particular, p < py.

3.2. Proper curves. By a curve in a given holomorphic manifold, we always mean
a closed analytic subset of pure dimension one.
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DEFINITION 3.2. Let U and V be planar domains. A curve C ¢ U XV is called proper
if and only if the following two conditions are satisfied:
(i) the projection C L. Uis proper;
(ii) no local branch of C has vertical tangent.

DEFINITION 3.3. A local section of a curve C C U XV is a local section of the pro-

jection C LN U, that is, a holomorphic map Uy = V defined on a subdomain Uy c U
so that Graph(f) c C.

3.3. Schwarz lemma of Nehari and Minda. Using Ahlfors’ lemma, Nehari [4] and
then Minda [3] prove a Schwarz-Pick lemma for multivalent functions. We formulate
and prove their result, in a more convenient form.

PROPOSITION 3.4. Let U and V be hyperbolic planar domains. If C C U XV is a
proper curve, then py (f)|f'| < pu, for every local section f of C.

PROOF. Given a local branch B = (Cy,c) of C, let p(B) := p(c) € U and q(B) :=
q(c) € V. Let (C,0) £ . Bbea normalization, vg(t) = (x(t),y(t)). The slope of B is
$(B) =lim; o (¥’ (t)/x"(1)).

Let C -2 C be a normalization map of the (possibly reducible) plane curve C. Recall
that C is the curve of local branches of C. Let C —— C be the dual curve of C , that
is, the curve of tangents of local branches of C. Then C c &, where £ ~ C? is the
space of nonvertical lines in C2. Let ¥ —— C be the holomorphic map that associates
to a line its slope. The map C =.C, B~ s(B), is holomorphic since it factorizes as
cl.CccyZ.C

Given x € U, let C(x) be the set of local branches B of C with p(B) = x. Since
the projection C 2. Uis proper, C(x) is finite. Define the function U £, [0, 00),
p(x) :=maxpecx) Pv(q(B))-|s(B)|.By definition, py (f)|f’| < p for every local section
f of C. Clearly, p € C(U). We show that p is ultra-hyperbolic.

Let B be a local branch of C with s(B) # 0. Let m(B) denote the multiplicity of B.
Since B has nonvertical tangent, m(B) equals the local degree of B 2. U. Since B has
nonhorizontal tangent, m(B) equals the local degree of g : B — V. We can define, in a
punctured neighborhood of p (B), the function

1/m(B)
P (x) :{ I PV(Q(B))'|5(B)|} . 3.1)

BEB(x)

Clearly, p3 is real-analytic, and 0 < pp < p in suitable local coordinates in C, U, and V,
we see that pp is C2-smooth at p(B) with pg(p(B)) = pyv(q(B)) - |s(B)|. We prove now
that K,, < —-1.

Let W 2L (0,00), 1 <i<m, be C2-smooth positive functions in a planar domain,
and let W -Z. (0,00) denote their geometric mean, g = [[[; p;]'/™. The inequality be-
tween the arithmetic mean and the geometric mean of finitely many positive numbers
implies that if K := max; (K,,) <0, then K4 < K.

If x + p(B) is in a small neighborhood of p(B), then B is given over a small neigh-
borhood W of x by the union of graphs of m(B) biholomorphisms W i, V;cV,
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l1<i<m(B).LetW N (0,), pi 1= pv(fi)|fi|. The restriction to W of pj is the geo-
metric mean of the functions p;. The conformal invariance of the curvature implies
that K,, = K, = —1. Therefore, K,; < -1in W.It follows that K,, < —1 in a punctured
neighborhood of g(B). By continuity, K,,(q(B)) < —1.

Now, fix x € U with p(x) > 0, and choose B € C(x) with p(x) = pv(q(B)) - |s(B)].
Then pp is a support function of p of x. In conclusion, p is ultra-hyperbolic in U.
Ahlfors’ lemma implies that p < py, and the proof is finished. a

REMARK 3.5. Let C C UXV 3 (x,Vy) be a curve, with projections C 2. U and
C L. V. There exists F € O0(UxV) so that C = {F = 0}. Let Reg(C) denote the smooth
locus of C. Define ||C|| = supgegc)[(pv(q)/pu(p)) - ((0F/0x)/(0F/dy))]. The right-
hand side is independent of F. For every local section f of C, f*dsy < ||C|/dsy. When
p is proper, Proposition 3.4 says that either ||C|| = o (when C has vertical tangents),
or [C|l =1 (when C has no vertical tangent).

REMARK 3.6. Given aninteger n > 1 and a holomorphic A 2. A, consider the curve

={y"=g(x)} C AXA. Let m(g) denote the minimum of the orders of the zeros
of g. Clearly ||C|| = « if and only if m(g) < n. Assume that m(g) > n. Then ||C|| <1,
and the Schwarz-Pick lemma implies, for all z € A,

171/n Z/n

-lg(@)]
IZI2

nlg2)]

lg'(2)] < 3.2)

It is amusing to see this directly, as follows. Rewrite the inequality as (1—-|z|2)|g’(z)|
<1g(2)|-un(lg(2)]), with (0,1] =2 (0, 0), U, (t) = n(t~1/" —t1/n) Using the confor-
mal invariance of the quantity (1—|z|?)|g’ (z)|, we may assume that z = 0 and g(0) #
0. We need to show that |g'/g|(0) < u,(|g(0)|). Note two properties of u,:

(1) Un(s)+un(t) <u,(st) fors, tin (0,1];
(i) Un N U, With U (t) = —21log(t).

Write g = Bh, where B(z) = ]_[j((z —z;)/(1-Zjz))" is the Blaschke product asso-
ciated to g, nj = n. Note that A e A is nonvanishing, hence, by the classical Schwarz
lemma, |h'/h|(0) < u(|h(0)]). Also,

’ B
B

(0) = ZJ ’“1' = S (s |™)
J

aj|

Szun(|aj|nj)ﬁun<n’aj|”j> (3.3)

J J
:un(|B(0)|),

that is,

(3.4)
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Therefore,

(0)
<un(|B(0)]) +uw(|h(0)])

‘ g
g

o=l

(3.5)
<un(|B(0)|)+un(|h(0)])

<un(|g(0)]),

and the inequality (3.2) is shown.

Let U, V be planar domains, and C c U XV a curve, with projections C .U and
C L. V. Assume that p is proper. If K is compact in U, then p~!(K) is compact in C,
hence q(p~'(K)) is compact in V. We have therefore a map ¥y e, Hy, Hc(K) =
a(p~1(K)).

COROLLARY 3.7. Let U, V be hyperbolic planar domains. If C C U XV is a proper
curve, then Lip(H¢) < 1.

PROOF. Given K, H in ¥y, fix yo € H(K), xo € K with (x0,»0) € C, and ug € H
with sy (x0,u0) = sy (xo,H). It suffices to find vo € K¢ (1g) with sy (1o, Vo) < sy (xo,Uo)-
To show that such v exists, we use an analytic continuation argument.

Any local branch of C at (xg,Y0) has a normalization of form t — (x,y) = (xo +
t"™ @ (t)). Fix a local section Dy Jo, V of C that extends continuously to a section
Do - v, with x, € 3D, and fo(x0) = V0.

Let B(p) C U denote the discrete set of branch points of C . U. Choose x €
Do\B(p) and u € U\ B(p). Let v = fo(x). Let D Cc U\ B(p) be a simply connected
domain with {x,u} c D. The section-germ (fj,x) can be analytically extended to a

section D LR U. If we put v = s(u), we have sy (y,v) = sy (f(x),f(u)) < sy(x,u).

Now, let Do\ B(p) 2 x,, — xp and U\ B(p) > uy, — uo. Let D,, C U\ B(p) be a simply
connected domain with {x,,u,} € Dy, and let D,, L U be the analytic extension of
the section-germ ( fo,xy). Then

Yn = ful(xn) = fo(xn) = fo(xn) = fo(x0) = fo(xo0) = ¥o. (3.6)

Let v, = fu(uy). Since p is proper, we may assume (extracting a subsequence), that
vy — Vo, for some vy € V. Then (ug,vo) € C, that is, vy € H ¢ (ug). Therefore,

sv(y0,v0) < sv (Y0, Yn) +5v(Vn, Un) +5v(Vn, Vo)

(3.7)
< sv (0, ¥n) +Su (Xn, Un) + sv(Vn, Vo) — su(xo,Uo).

The proof is complete. a

4. Attractor associated to a contractive curve

. . 9 . .
4.1. Contractive curves. Given V c U, let ¥y — ¥y denote the inclusion map.

Given a proper curve C C U XV, Hy e, %y denotes the self-map F¢ = % %c.

DEFINITION 4.1. A contractive curve is a proper curve C C U XV, where U is a
hyperbolic planar domain and V is a Stolz subdomain of U.
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REMARK 4.2. The proof of Corollary 3.7 shows that contractive curves have the
following coherence property: there is a constant k = k(U,V) > 1 such that, for all
((x,y),u) € CxU, there exists v € V with (u,v) € C and ksy (y,v) < sy(x,u).

THEOREM 4.3. If C C U XV is a contractive curve, then ¥ (U,sy) e, HU,sy) is
a strict contraction. Consequently, %¢ has a unique fixed point Ac. For all K € ¥y,
lim, . K (K) = Ac in % (U, sy).

PROOF. Indeed, Lip(fffc) < Lip(H;) Lip(H¢) < Lip(H;) < 1. Since H(U,sy) is com-
plete, Banach’s principle finishes the proof. O

The hyperbolic metric is locally equivalent to the Euclidean metric dey = |dz|, hence
limyﬂoﬁ{g (K) =Acin ¥ (U,ey), for all K € Hy. We call Ac the attractor associated to
the contractive curve C.

4.2. Orbits and limit sets. Let U be a planar domain, V C U a subdomain, C C U xV
acurvewith C - U proper. A point x € U is fixed if and only if (x,x) € C. The point x
is periodic if and only if x € ff(g(x) for some » > 1. We denote by Fix(C) the set of
fixed points of C, and by Per(C) the set of periodic points of C.

A weak orbit of a point x € U is a sequence of points x, € i’T{z(x), v = 0. An orbit
of x is a sequence of points x,, € U, ¥ > 0, with x¢ = x and (xy,x,+1) € C forall v > 0.
A (weak) suborbit of x is a subsequence of a (weak) orbit.

The limit set AW°(x) is the set of points u € U such that some weak orbit of x con-
verges to u; AS°(x) is the set of points u € U such that some suborbit of x converges
to u. Similarly, define the limit sets A¥S°(x) and A°(x).

The total orbit X* of X C U is the union of orbits of the points of X.

COROLLARY 4.4. If C C U XV is a contractive curve, then, for all points x € U,
AV (x) = AV%(x) = A%°(x) = Ac, A°(x) = Fix(C). 4.1)

PROOF. Given arbitrary points x € U and a € Ac, lim, ¥, (fffz(x),AC) =0, hence
lim, sy (H7(x),a) = 0. We get a sequence x, € %L (x) with lim, x, = a, so that a €
AW°(x). Therefore, Ac € AW°(x). Fix u € AY%°(x), and let (xyj)j be a weak suborbit
of x that converges to u. Since lim; ¥, (57{2’ (x),Ac) =0, we get lim; sU(xrj,AC) =0,
and then sy (u,Ac¢) = 0. Since A¢ is compact, u € Ac. Therefore, A¥S°(x) C Ac.

Clearly, A%°(x) Cc AV$°(x), and we obtain Ac = AY°(x) = AVS°(x).

Let (€j); be a sequence that decreases to 0. Since a € AY°(x), there exists x; €
K (x) with sy (a,x1) < €. Since a € AV (x1), there exists x, € # (x1) with sy (a,x?)
< €». Repeating this procedure, we get a suborbit x; of x with sy(a,x;) < €;, hence
limjx; = a. It follows that Ac C A%°(x). Since A%°(x) C AWS°(x) = Ac, we get A°(x) =
Ac.

Fix an orbit (x;,), of x that converges to u. Since C is closed, (x;,x,+1) € C, and
lim, (x;,xy+1) = (u,u), we get (u,u) € C. Therefore, A°(x) C Fix(C).

Fix u € Fix(C). Since (u,u) € C, there exists x; € U with (x,x1) € C and sy (u,x1)
(1/k)sy(u,x). Since (u,u) € C, there exists x, € U with (x;1,x2) € C and sy (u,x»)
(1/k)sy(u,x1). Repeating the procedure, we get an orbit x, of x with sy (u,x;)
(1/k)"sy(u,x), hence lim, x,, = u. Therefore, Fix(C) Cc A°(x).

O IAIA A
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4.3. Discrete points. Let K* denote the set of isolated points of a topological
space K. Given a curve CCcUxV,letL:={v eV :Ux{v} cC}.

COROLLARY 4.5. A} C Per(C) C Ac for all contractive curves C C U x V. When Ac
is infinite, A- C L™ C Ac. When L = &, Ac is either finite, or perfect.

PROOF. Clearly, L C Fix(C) c Per(C) C Ac.

Fix u € Ac and v € Af. There is a weak orbit (u, ), of u that converges to v. Since
He(Ac) = Ac, uy € Ac. Since v € Al, uy = v for all ¥ = ry. Therefore, every u € Ac is
pre-periodic to any v € A¢. In particular, A: C Per(C).

If (u,v) e C, ue Ac\A¢, and v € Af, then v € L. Indeed, choose in A¢ distinct
points u, with lim, u, = u. Construct v, € A¢ with (u,,v,) € C and sy (v,,v) <
sy (uyn,u). Thenlim, v, = v.Since v € A%, vy, = v for all n > ng. Therefore, (u,,v) e C
for all n > ny. Since C is closed in U xV, Cn (U x {v}) is analytic in this line. Since
limy, (uy,v) = (u,v) and U is connected, we get v € L.

Assume that v € AF\L*. If (u,v) € C and u € Ac, then u € AZ\L*. Since every
u € Ac is pre-periodic to v, we get Ac C A, hence A¢ = A Since Ac is compact, it
is finite. a

4.4. Periodic points. We prove the density in A¢ of the periodic points of a con-
tractive curve C without singular branches.

COROLLARY 4.6. If a contractive curve C C U XV has no singular branches, then
Ac =Per(C).

PROOF. Clearly, Per(C) Cc Ac. To prove the other inclusion, note that, under the
assumption that C has no singular branches, every local branch B of C has a section
defined in a hyperbolic disk Ay (p(c),e€), for some € > 0. Let €(B) be the supremum
of such €. The function € 3 B — €(B) € (0,] is lower semicontinuous. Let €¢ :=
min{e(B) : B € v lp~1Ac} > 0. Then, for all x € Ac and all branches B of C at x, B
has a section defined on Ay (x,€c). In particular, for all x € A¢c and all y € Fe(x),
there exists a section Ay (x,€c) L V of C with f(x) = y.

Fix x € Ac. Let O = (x = x0,X1,...,Xr-1,Xy = u) be a finite orbit. Since x;_; € A¢c
and (xj_1,x;) € C for all 1 < j < r, there is a section Ay (x,¢€c) i» V of C with
fi(xj-1) = x;. Since Lip(f;) < 1/k < 1, fj(Ay(xj-1,€c)) C Ay(xj,€c), so that f =
frofr_10---of is well defined, Ay (x,€ec) 2. v, with f(x) =u and Lip(f) < 1/k".

Fix 0 < € < €c. Since x € AY°(x), we can choose the orbit O so that » > 1 and
sy(u,x) <e((k—1)/2k). Then

f(Ay(x,€)) Cc Ay (u%) C AU(x,e<% +%)) Cc Ay (x,e%). (4.2)

Therefore, f(Ay(x,€)) C Ay(x,€), and f must have a fixed point z € Ay (x,€). Then
z e % (2), so that z € Per(C). O

4.5. Continuity. Let V L U be a Stolz subdomain of a hyperbolic domain U c C,
k(U,V) =1/Lip(i) > 1. Define on U x V the distance

s((x,»), (u,v)) =max (sy(x,u),sy(y,v)). (4.3)
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COROLLARY 4.7. Let (6(U,V),%;s) be the space of contractive curves in U XV, and
denote by

(€(U,V), %) -2 % (U, sy) (4.4)

the map C — Ac. Then Lip(#A) <2/(k(U,V)—-1).

PROOF. Fix C,D € 6(U,V), with 6 := H;(C,D). Given (x,y) € C and u € U, there
exists v € V with (u,v) € D and sy(y,v) < 28/k + sy(x,u)/k. Indeed, there exists
(a,b) € D with sy(x,a) < 6 and sy (y,b) < sy(y,b)/k < §/k. Also, there exists v €
Ky (u) with sy (b,v) < sy(a,u)/k. We get

6 1
su(y,v) < su(y,b) +su(b,v) < E+w

6, sulx,a)+sy(x,u) 26  su(x,u)

=x7 K =% K

(4.5)

Fix xo € U. Since lim, #%(xo) = Ac and lim, %}, (xo) = Ap, it suffices to show that
Ky (KL (x0), % (x0)) < 25/ (k—1). Given ¥ € HL(xo), we have to find v € F},(xo)
with sy (yv,v) <28/(k-1). Fix a C-orbit (xy,...,Xx, = ). Recursively, construct a D-
orbit (xo = uo,...,ur =: v) so that, for all 0 < j <7, sy(xj,u;) < ZdZ{ZI(l/ki). In
particular, sy (y,v) <2d/(k—1). O

4.6. Balanced measure of Barnsley-Demko. Sym®(U) denotes the quotient of U%
by the action of the symmetric group S,. In other words, Sym®(U) is the space of ef-
fective divisors on U of degree a. Define a complete distance § on Sym*(U) as follows.
Given A = 37_,(x;) and B = X7, (u;), 6(A,B) := (1/a) minges, (3_; Su (X}, Uo(j)))-
Clearly, the map (U, sy) L (Sym*(U),8), where I(x) = a(x), is an isometric embed-
ding. Let Sym(U) := &, Sym*(U).

Let V & U be a Stolz subdomain of a hyperbolic planar domain. Recall that k =
1/Lip(i) > 1. Let C ¢ U XV be a contractive curve, with projections C 2. U and
C L. V. Let d be the topological degree of p. Define Sym?(U) —— Sym? (U), $(D) :=
i+q+«p*D, and Sym*(U) - [0, ), y(D) := 8(dD,¥D).

LEMMA 4.8. With the notations above, Lip(¥) < 1/k. Consequently, y(¥) < (1/k)y.

PROOF. Fix A,B € Sym®(U). Choose a simply connected domain W c U with oW >

supp(A) usupp(B) D B(p) nW, and such that all the sections W /N VofC,1<l<d,
extend continuously to W. We have §(A,B) = (1/a) 3%_; sy (x;j,u;), with

:x..

a a da a
A=>(x;), B=> (uy), 5"A=Zz fixj),  FB=> > (fiu;). (4.6)

Jj=1 Jj= I=1 j=11=1

—_
~
I
—
—

Then

1 a d 1 a d
5(FA,9B) < EE? v(fixj, fruj) < 1= > ZISU Xj,uj) 6(A,B). (4.7)

j=1
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Consequently,

Y(FA) = 6(dTA,FFA) = 6(S(dA),FFA) < %5(&1A,9’A) = %y(A). (4.8)
O

LEMMA 4.9. Given a continuous function ¢ € 6(U), let Sym*(U) 2 C, ®(D) :=
(1/a) > xep P (x).ThenLip(®) = Lip(¢p) and |®(F) - ®| < Lip(¢)y.

PROOF. Fix two divisors in Sym® (U), A=Y7_, (x;) and B= 37, (u;), with 6 (A, B)
(1/a) Z?:ISU(XJ',MJ'). We have

|dA—DdB| = é > b(x;)—p(u)| < LipTw’) > su(xj,uj) =Lip(¢p)S(A,B). (4.9)
i=1 i=1

Since ®1I = ¢, Lip(¢p) = Lip(P). Also,

|B(FA)—DA| = |®(FA) —D(dA) | <Lip(®)5(FA,dA) =Lip(p)y(A).  (4.10)
O

For a compact K, || - ||k denotes the L*-norm on 6(K).

COROLLARY 4.10. Given ¢ € €(U) and D € Sym(U), pg = limy_ ®(F"D) exists
in C and does not depend on D. The linear functional ‘€(U) > ¢ — ug € C is real and
nonnegative, with py = 1. Also, |ug| < l|plla- for all p € €(U).

PROOF. Assume that Lip(¢) < . Then

|99"*1D - 09" D | <Lip(d)y(¥"D) < W' (4.11)
so the limit exists in C. For A € Sym*(U) and B € Symh(U),
|®S"A— DS B| = | @S (bA) —DS" (aB) | < Lip (PS")S5(bA,aB)
_Lin(¢)s(bA,aB) (4.12)

kv

so the limit is independent of the divisor.

Let K = U, %% (supp(D)). Then K is compact in U, and % ¢ (K) C K. Given ¢; and ¢»
in 6(K), &, (¥"D) and ®,(¥" D) are well defined. Moreover, for all ¥ > 0, |®;(¥"D) —
P> (S"D)| < ||[¢p1 — P2llk. The subspace of €(K) formed by the functions that admit
a Lipschitz extension to U is dense in 6 (K). It follows that, for arbitrary ¢ € €(U),
lim, ®(¥7"D) exists in C. To see that this limit is independent of the divisor, take A,B €
Sym(U), putK =, 57{2 (supp(A + B)), and approximate ¢ in % (K) with functions that
admit Lipschitz extensions to U.

By definition, pg € R when ¢ is real, puy = 0 when ¢ = 0, and py = 1. Choosing D
with supp(D) C Ac, we get |ug| < [|Pllac. O

We can reformulate this corollary as follows.
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PROPOSITION 4.11. There exists a (unique) probability measure pc on Ac with
limy . ®(9"D) = [, pduc for all € €(U) and all D € Sym(U).

By definition, the measure pc describes the frequency with which Borel sets are
visited by the total orbit of any point.

REMARK 4.12. The operator 6(Ac) I ©(Ac), (Tep)(x) = ¢(F(x)) is linear and
continuous, with ||T|| = 1. With g := T¢, we get ¥(¥"(x)) = ®(S"*1(x)), hence
Hy = M. In other words, pc satisfies the functional equation T* uc = pc, where T*
denotes the dual of T.

REMARK 4.13. Corollary 4.4 and Remark 4.12 imply that supp(uc) = Ac.

5. Examples

5.1. Mixed iteration. Let V be Stolz in a hyperbolic planar domain U. Given finitely
many holomorphic functions U oy, 1 < j < n, the union C(fi,...,fn) of their
graphs is a contractive curve in U x V. Let A(f1,...,fn) denote the associated attractor.
For a word w = (wy,...,w;) € {1,...,n}" of length »(w) = r, let U e, V, fw =
Suwy o+ o fuw,- Since Lip(fy) < (1/k)!™), with k = k(U,V) > 1, f,, has a unique fixed
point x,, € U. We get A(f1,...,fn) = Up {xw}.

REMARK 5.1. Itis important that U be connected: let f(x) = x2(x —2)%2 = g(x)/2,
and A = {0,1,2}. We have f(A)Ug(A) = A, f/4 =0 =g/, and f(U)ug(U) C U,
where U is the union of the three disjoint disks of radius 0.1 and centers 0, 1, 2. Thus,
A can be viewed as the attractor associated to the mixed iteration of f and g on U.
But the point 2 is not periodic. Of course, no domain containing the points 0 and 1
can be f-invariant.

REMARK 5.2. Let C C U XV be a contractive curve, and assume that (V) =V,
where B(x +iy) = x—iy. Let B(C) := {(u,B(v)) : (u,v) € C}. If Uy R V is a section
of C, then Uy IR V is a section of B(C), and all sections of S(C) are obtained in this
way. (V,dsy) LN (V,dsy) is an isometry, hence Lip(Bf) = Lip(f). Therefore, given
two contractive curves C and D in U xV, with §(V) =V, the previous results still hold
for the “mixed curve” CU B (D).

EXAMPLE 5.3. Given finitely many a; € C, let m = min(|a;|) and M = max(|a;|).
If m? —m > M, then U;(y* = x —a;) is contractive in A(0,m) x A0, (m + M)'/?).
The “cross” in Figure 5.1a is the associated attractor, with a; = 2.01 = —a». The color
intensity indicates the density of the Barnsley-Demko measure.

EXAMPLE 5.4. Given k, a in A, the Mobius map kM, (z) = k((z—a)/(1 —az)) con-
tracts the Poincaré metric. Fix ki, ko, k, a in A, and consider the mixed iteration in A
of k1 My, koMy, and kM,. The point (0,0) is a node of the corresponding curve, and
0 € A(kyMy,koMy,kM,). Figure 5.2 shows the associated attractor when a = 0.9 = k
and k; = 0.9exp(i(1t/7)) = —k2, with ¥ = 4 (Figure 5.2a), and v = 9 (Figure 5.2b).

5.2. Contractive Blaschke maps. Given an effective divisor « = >.d;(a;) in A, let
My (2):=T1;((z—a;)/ (1 —a;z))%.
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() (b)

FIGURE 5.1. Mixed Julia set (a), and Ochs’ example (b).

(@) (b)

FIGURE 5.2. Mixed iteration of contractive Mobius maps.

k3

(a) (b)

FIGURE 5.3. Mixed iteration of contractive Blaschke maps.

237



238 A. BONIFANT AND M. DABIJA

EXAMPLE 5.5. If [k| <1 and e <min(d;), the curve (¢ = kMx(x)) is contractive
in AxA(0, |k|1/¢). Figure 5.3 shows the associated attractor, with parameters e = 2,
o = 3(0.7i), k = 0.73 (Figure 5.3a), and e = 2, « = 2(0.9) + 3(0.3 +1i0.5), k = 0.75
(Figure 5.3b).

5.3. An example by Ochs. The following example is taken from [5]. Consider the
curve C = (y° = k[[4, (x —a;)), with e > d; max(|a;|) = 1; and |k| > e¢/d (e —d)° 4.
Then C is contractive in a suitable product of annuli centered at 0. Figure 5.1b shows
the corresponding attractor, for C = (y° = 29i(x —1)2).
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