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Abstract. We consider abstract differential equations of the form u′(t) = Au(t)+f(t)
or u′′(t)=Au(t)+f(t) in Banach spaces X, where f(·), R→X is almost-periodic, while A
is a linear operator, �(A)⊂X →X. If the solution u(·) is likewise almost-periodic, R→X,
we establish connections between their Bohr-transforms, û(λ) and f̂ (λ).
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1. Introduction. If u(·), R → X (a Banach space) is an ultraweak almost-periodic

solution of the differential equation

u′(t)=Au(t)+f(t), t ∈R (first order) (1.1)

or

u′′(t)=Au(t)+f(t), t ∈R (second order) (1.2)

with linear—not necessarily continuous—operator A, �(A)⊂X →X, and with almost-

periodic “forcing” term f(·), R→X, then the Bohr transforms

f̂ (λ)= lim
T→∞

1
T

∫ T
0
e−iλtf (t)dt, û(λ)= lim

T→∞
1
T

∫ T
0
e−iλtu(t)dt, (1.3)

will both exist, for all reals λ.

It appears that it is possible to establish a typical relationship between û(λ) and

f̂ (λ) which implies also connections between the (countable) sets

Λu =
{
λ∈R, û(λ) �= θ}, Λf =

{
λ∈R, f̂ (λ) �= θ}, (1.4)

(the elements of Λu, Λf are the Fourier “exponents” of u(·), f(·), resp.).

Some “historical” notes:

(i) In [7] we have (1.2) in a Hilbert space, with A ≥ Θ, and the solution is in the

usual sense. One obtains the equality

(
λ2+Ã)û(λ)=−f̂ (λ), ∀λ∈R, (1.5)

where Ã is a selfadjoint extension of A.

(ii) In [6] the equation is (1.1) and f is continuous almost-periodic in Stepanoff

SP -sense; the operator A is closed in X. One gets the equality

(iλ−A)û(λ)= f̂ (λ). (1.6)
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(iii) In [2, page 92] and [8, page 95] one has again (1.1) in the special case when

A∈�(X).
In (i), (ii), and (iii) the solutions are regular solutions.

(iv) In [4, 5] one discusses (1.1) with A being generator of a C0-semigroup in the

Banach space X. Now u(·) is a so-called “mild” solution over R. It appears that û(λ)∈
�(A) (even if u(·) does not!) and (1.6) holds again. For a detailed proof (see [11]).

The aim of the present paper is to establish similar results to those mentioned

above for both (1.1) and (1.2) and for solutions taken in the “ultraweak” sense.

2. Continuous ultraweak solutions

2.1. We consider here the first-order equation u′ = Au+f in the Banach space X.

We refer to [10, Chapter XII] for definitions and some results.

Thus, X is a B-space, X∗ and X∗∗ its dual and second dual space. Let A be a linear

closed operator with dense domain in X, �(A). Assume that its dual operator A∗, is

also defined on a dense domain �(A∗) in X∗. Then, the second dual operator A∗∗ is

well defined on the “total” set �(A∗∗) in X∗∗.

Consider now two continuous functions u(·), f(·), R→X which are related by the

“ultraweak” equation

∫
R

〈
ϕ̇∗(t)+(A∗ϕ∗)(t),u(t)〉dt =−

∫
R

〈
ϕ∗(t),f (t)

〉
dt (2.1)

which must hold

∀ϕ∗(·)∈KA∗(R)=
{
ϕ∗(·)∈ C1

0

(
R;X∗

)
, ϕ∗(t)∈�

(
A∗
)

∀t ∈R, (A∗ϕ∗)(·)∈ C(R;X∗
)}
.

(2.2)

The dot · means (d/dt)-strong derivative in X∗.

Next, we need the “mollification” result: (see [10, pages 79–80]). Let α(·) ∈ C1
0 (R).

Consider the convolutions u∗α, f ∗α defined by equalities

(u∗α)(t)=
∫
R
u(s)α(t−s)ds, (f ∗α)(t)=

∫
R
f(s)α(t−s)ds. (2.3)

It is obvious that (u∗α)(·) ∈ C1(R;X) and (f ∗α)(·) ∈ C1(R;X) too. Furthermore,

from [10, Theorem 3.1, page 80] we obtain, under our present assumptions, that

�(u∗α)(t)∈�
(
A∗∗

) ∀t ∈R, (2.4)

and the equality

d
dt

�(u∗α)(t)=A∗∗�(u∗α)(t)+�(f ∗α)(t) (2.5)

holds, in ordinary sense, for all t ∈R. (The operator, “canonical mapping” �, from X
into X∗∗, is defined by the equality (�x)(x∗)= x∗(x), for all x∗ ∈X∗, for all x ∈X.)

Consider now the “almost-periodic situation”: both u(·) and f(·) are Bohr-Bochner

almost-periodic, R→X.
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Then, as well known (cf. [1, page 72]), the convolutions (u∗α)(·), (f ∗α)(·) are

also almost-periodic, R→X, and, as � is isometric X →X∗∗, we get that the functions

�(u∗α)(·) and �(f ∗α)(·) are almost-periodic, R→ X∗∗. Now multiplying (2.5) by

e−iλt , where λ∈R, we get the equality

e−iλt
d
dt
(
�(u∗α)(t))= e−iλtA∗∗�(u∗α)(t)+e−iλt�(f ∗α)(t), ∀t ∈R. (2.6)

After integration between 0 and T one obtains the equality

I =
∫ T

0
e−iλt

d
dt
(
�(u∗α)(t))dt

=
∫ T

0
e−iλtA∗∗�(u∗α)(t)dt+

∫ T
0
e−iλt�(f ∗α)(t)dt.

(2.7)

In the integral defining I we apply integration by parts, to get

I = e−iλT�(u∗α)(T)−�(u∗α)(0)+iλ
∫ T

0
e−iλt�(u∗α)(t)dt. (2.8)

In the right-hand side of (2.7) we note the following: the second dual operator A∗∗ is

a closed operator; from (2.5) we derive the equality

A∗∗�(u∗α)(t)= d
dt

�(u∗α)(t)−�(f ∗α)(t), ∀t ∈R, (2.9)

so that A∗∗�(u∗α)(t)∈ C(R;X∗∗).
We then apply the well-known result (cf. [11, Proposition 3.1, page 162]) and obtain

that ∫ T
0
e−iλt�(u∗α)(t)dt ∈�

(
A∗∗

)
,

A∗∗
∫ T

0
e−iλt�(u∗α)(t)dt =

∫ T
0
e−iλtA∗∗�(u∗α)(t)dt.

(2.10)

Then we turn back to (2.7) and (2.8) to derive the equality

1
T
[
e−iλT�(u∗α)(T)−�(u∗α)(0)]+iλ 1

T

∫ T
0
e−iλt�(u∗α)(t)dt

=A∗∗ 1
T

∫ T
0
e−iλt�(u∗α)(t)dt+ 1

T

∫ T
0
e−iλt�(f ∗α)(t)dt.

(2.11)

Next, we consider limits, as T →∞, in the right- and left-hand sides of (2.11): as the

almost-periodic function T → �(u∗α)(T) is bounded, R→X∗∗, we first have

lim
T→∞

1
T
[
e−iλT�(u∗α)(T)−�(u∗α)(0)]= θ. (2.12)

Next, note that

lim
T→∞

1
T

∫ T
0
e−iλt�(u∗α)(t)dt exists and = [�(u∗α)]Λ(λ),

lim
T→∞

1
T

∫ T
0
e−iλt�(f ∗α)(t)dt exists and = [�(f ∗α)]Λ(λ).

(2.13)
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We now use (2.11) and the property “A∗∗ is a closed operator in X∗∗” to obtain

[
�(u∗α)]Λ(λ)∈�(A∗∗),

iλ
[
�(u∗α)]Λ(λ)=A∗∗[�(u∗α)]Λ(λ)+[�(f ∗α)]Λ(λ). (2.14)

Note also, as � is a continuous operator, X →X∗∗, the equalities

[
�(u∗α)]Λ(λ)= �

[
(u∗α)]Λ(λ), [

�(f ∗α)]Λ(λ)= �[f ∗α]Λ(λ). (2.15)

Also, we use [1, Lemma, page 72] to derive the equalities

(u∗α)Λ(λ)= û(λ)
∫
R
e−iλσα(σ)dσ, (f ∗α)Λ(λ)= f̂ (λ)

∫
R
e−iλσα(σ)dσ. (2.16)

Thus, equality (2.14) becomes (in view of (2.15) and (2.16))

iλ�û(λ)
∫
R
e−iλσα(σ)dσ

=A∗∗�û(λ)
∫
R
e−iλσα(σ)dσ +�f̂ (λ)

∫
R
e−iλσα(σ)dσ.

(2.17)

Next we consider a sequence {αp(·)} in C1
0 (R), where αp(t)= 0 for |t| ≥ 1/p, αp(t)=

pα(pt), for all t ∈R, p ∈N, α(·) being a C1
0 (R) function which is 0 for |t| ≥ 1, is ≥ 0

for all t ∈R, and has
∫
Rα(t)dt = 1. We note that

∫
R
e−iλσαp(σ)dσ =

∫
R
e−iλ(s/p)α(s)ds, (2.18)

so that

lim
p→∞

∫
R
e−iλσαp(σ)dσ =

∫
R
α(s)ds = 1. (2.19)

Consider now equality (2.17) applied to αp(σ). We have, for all p ∈N
[∫

�
e−iλσαp(σ)dσ

]
iλ�û(λ)

=A∗∗�û(λ)
∫
R
e−iλσαp(σ)dσ +�f̂ (λ)

∫
R
e−iλσαp(σ)dσ.

(2.20)

Again we use “closedness” of operatorA∗∗ and obtain that, asp→∞, �û(λ)∈�(A∗∗)
and A∗∗�û(λ)= iλ�û(λ)−�f̂ (λ) for all λ∈R, which can be written as

(
iλ−A∗∗)�û(λ)= �f̂ (λ), ∀λ∈R. (2.21)

We can summarize all of above in the following statement.

Theorem 2.1. In the Banach space X consider a linear closed operator A with dense

domain �(A), and assume that its dual operator A∗ is also densely defined in X∗. Next

consider two continuous almost-periodic functions,u(·) and f(·), fromR intoX, related

by (2.1). Then, if û(λ) and f̂ (λ) are the Bohr transforms (1.3) and � is the canonical

immersion of X into X∗∗, it follows that

�û(λ)∈�
(
A∗∗

)
and (2.21) holds true, ∀λ∈R. (2.22)
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Next, we are making some comments and deriving some consequences of Theorem

2.1.

(a) In (2.21), we note that if û(λ)= θ, then f̂ (λ)= θ (as � is isometric). Accordingly,

if f̂ (λ) �= θ then û(λ) �= θ which, in view of (1.4) means that

Λf ⊂Λu. (2.23)

(b) Assume that iλ0 ∉ σp(A∗∗) (the point spectrum of operator A∗∗). Use again

(2.21); if f̂ (λ0) = θ then (iλ0 −A∗∗)�û(λ0) = θ and accordingly �û(λ0) = θ too.

Thus, if û(λ0) �= θ then f̂ (λ0) �= θ. We can say that

λ0 ∈R, iλ0 ∉ σp
(
A∗∗

)
, λ0 ∈Λu �⇒ λ0 ∈Λf (2.24)

and also that, using also (2.23),

Λu∩
{
λ∈R, iλ ∉ σp

(
A∗∗

)}⊂Λf ⊂Λu. (2.25)

In the special case when iλ ∉ σp(A∗∗) for all λ∈R, we obtain from (2.25) that

Λu ⊂Λf ⊂Λu, hence Λu =Λf . (2.26)

(c) Assume that the space X is reflexive (�(X)=X∗∗). From (2.21), which is also

�
(
iλû(λ)

)−A∗∗�û(λ)= �f̂ (λ), ∀λ∈R, (2.27)

applying �−1, we obtain the equality

iλû(λ)−�−1A∗∗�û(λ)= f̂ (λ), ∀λ∈R. (2.28)

We know the equality �−1A∗∗�=A (cf. [11, page 159]), hence we derive the relation,

û(λ)∈�(A) and

(iλ−A)û(λ)= f̂ (λ), ∀λ∈R. (2.29)

Then we may reason as in (a) and (b) above, with A replacing A∗∗, and obtain, in

particular, that if (iλ−A)−1 exists for all λ∈R, then Λu =Λf .

2.2. In this section, we again consider ultraweak continuous In almost-periodic so-

lutions of (1.1) and establish a certain connection between the Bohr transforms û(λ),
f̂ (λ), under somewhat different assumptions on the operator A; the relation between

û(λ) and f̂ (λ) is now different form (2.21). We will state (and then prove) the following

theorem.

Theorem 2.2. Let u(·), f(·) be continuous almost-periodic functions, R → X and

assume thatu′−Au= f in ultraweak sense. Assume also that for some complex number

λ0, the operator (λ0I−A)−1 exists and belongs to �(X). Then, if û(λ), f̂ (λ) are the Bohr

transforms of u(·), f(·), the equality

(iλI−A)(λ0I−A
)−1û(λ)= (λ0I−A

)−1f̂ (λ), ∀λ∈R, (2.30)

holds true.
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The proof here is based on the so-called “resolvent regularization” of ultraweak

solutions (cf. [9, page 149]). We need in fact a slight extension of [9, Theorem, page

149], which will apply to equations u′−Au= f with f not identical to zero. Thus, let

us state the following.

Lemma 2.3. In the Banach spaceX, consider the linear operatorAwith dense domain

�(A), �(A) ⊂ X → X, and assume equality (2.1). Suppose furthermore that, for some

λ0 ∈ C, we have λ0 ∈ ρ(A) (resolvent set of A). Let v(t) = (λ0I−A)−1u(t), t ∈ R→ X.

Then
v(·)∈ C1(R;X), v(t)∈�(A) ∀t ∈R,
v′(t)−Av(t)= (λ0I−A

)−1f(t), t ∈R.
(2.31)

Proof. We first show that the above defined-continuous function v(·) is ultraweak

solution of (2.31).

Take any test-function ϕ∗(·)∈KA∗(R). We obviously have the equality

∫
R

〈
d
dt
ϕ∗+A∗ϕ∗,v

�
dt =

∫
R

〈
d
dt
ϕ∗+A∗ϕ∗,

(
λ0−A

)−1u
�
dt, (2.32)

where 〈 , 〉 means the duality between X and X∗ (dual space to X). We next use the

well-known result (cf. [3, (4.10), page 14]) to get λ0 ∈ ρ(A∗) (resolvent set of operator

A∗) and [(λ0−A)−1]∗ = (λ0−A∗)−1. Equality (2.32) now becomes

∫
R

〈
d
dt
ϕ∗+A∗ϕ∗,v

�
dt =

∫
R

〈(
λ0−A∗

)−1
(
d
dt
ϕ∗+A∗ϕ∗

)
,u
�
dt

=
∫
R

〈
d
dt
(
λ0−A∗

)−1ϕ∗+A∗(λ0−A∗
)−1ϕ∗,u

�
dt

=
∫
R

〈
d
dt
ψ∗+A∗ψ∗,u

�
dt,

(2.33)

where ψ∗ = (λ0−A∗)−1ϕ∗ belongs (obviously) to KA∗(R). Next, because of (2.1), we

see that
∫
R

〈
d
dt
ψ∗+A∗ψ∗,u

�
dt =−

∫
R

〈
ψ∗,f

〉
dt

=−
∫
R

〈(
λ0−A∗

)−1ϕ∗,f
〉
dt

=−
∫
R

〈
ϕ∗,

(
λ0−A

)−1f
〉
dt.

(2.34)

Thus, from (2.32) and (2.34) we derive the relation

∫
R

〈
d
dt
ϕ∗+A∗ϕ∗,v

�
dt =−

∫
R

〈
ϕ∗,

(
λ0−A

)−1f
〉
dt, ∀ϕ∗ ∈KA∗(R) (2.35)

which means precisely that (2.31) holds in the ultraweak sense.

Next, note the simple [9, Lemma 2, page 150]: v(t) ∈ �(A) for all t ∈ R, and

(Av)(·)∈ C(R;X); then apply [10, Proposition 2.1, page 79] to the functions v(·) and

(λ0−A)−1f . (Note that, because λ0 ∈ ρ(A) it results that A is closed.) One obtains

that v(·)∈ C1(R;X) and (2.31) holds true on the real line.
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We are now ready for the complete proof of Theorem 2.2.

Consider (2.31) and note that, from almost-periodicity of u(·) and f(·) the almost-

periodicity of v(·) and (λ0−A)−1f follows. Then multiply (2.31) by e−iλt , λ ∈ R, to

get the equality

e−iλtv′(t)−e−iλtAv(t)= e−iλt(λ0−A
)−1f(t), t ∈R. (2.36)

Then integrate between 0 and T :
∫ T
0 e−iλtv′(t)dt = e−iλTv(T)−v(0)+

∫ T
0 iλe−iλtv(t)dt

so that one gets from (2.36)

e−iλTv(T)−v(0)+iλ
∫ T

0
e−iλtv(t)dt−

∫ T
0
A
(
e−iλtv(t)

)
dt

=
∫ T

0
e−iλt

(
λ0−A

)−1f(t)dt.
(2.37)

Also, as usual (A is a closed operator) one obtains

∫ T
0
e−iλtv(t)dt ∈�(A), A

∫ T
0
e−iλtv(t)dt =

∫ T
0
A
(
e−iλtv(t)

)
dt. (2.38)

Thus, from (2.37) one gets now the equality

1
T
[
e−iλTv(T)−v(0)]+iλ 1

T

∫ T
0
e−iλtv(t)dt−A 1

T

∫ T
0
e−iλtv(t)dt

= 1
T

∫ T
0
e−iλt

(
λ0−A

)−1f(t)dt.
(2.39)

As T →∞ one obtains as in (2.12), (2.13), the equality

iλv̂(λ)−Av̂(λ)= ((λ0−A
)−1f

)Λ(λ). (2.40)

On the other hand, it is immediate that v̂(λ)= (λ0−A)−1û(λ), and ((λ0−A)−1f)Λ(λ)
= (λ0−A)−1f̂ (λ). Hence (2.40) is also

(iλ)
(
λ0−A

)−1û(λ)−A(λ0−A
)−1û(λ)= (λ0−A

)−1f̂ (λ) (2.41)

which is exactly (2.30).

Next, as in Section 2.2, we derive some simple consequences of (2.30).

(a) Assume û(λ)= θ; then (λ0I−A)−1f̂ (λ)= θ and hence, f̂ (λ)= θ too. This means

again that

Λf ⊂Λu. (2.42)

(b) Assume that, for some λ̄ ∈ R, iλ̄ ∉ σp(A). If f̂ (λ̄) = θ then (iλ̄ − A)
(λ0 −A)−1û(λ̄) = θ, hence (λ0 −A)−1û(λ̄) = θ which implies that û(λ̄) = θ. Thus,

if û(λ̄) �= θ and iλ̄ ∉ σp(A), then f̂ (λ) �= θ. This can be expressed as

Λu∩
{
λ∈R, iλ ∉ σp(A)

}⊂Λf ⊂Λu. (2.43)

Finally, in the special case when iλ ∉ σp(A) for all λ∈R, one obtains

Λu =Λf . (2.44)
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3. The second-order equation. In this section, we study similar problems for the

second-order equation (1.2) in both ordinary and ultraweak setting.

First, we state the result for regular solutions.

Theorem 3.1. Let X be a B-space, and A, �(A) ⊂ X → X a linear closable op-

erator. Let u(·) and f(·) be continuous almost-periodic functions, R → X, let also

u(·)∈ C2(R;X), u(t)∈�(A) for all t ∈R, and (1.2) holds true.

Finally, assume that u′(·) is a bounded function, R→X. It follows that

û(λ)∈�
(
Ã
)
, ∀λ∈R, (

λ2I+Ã)û(λ)=−f̂ (λ), ∀λ∈R, (3.1)

hold true.

(Here Ã is a closed extension of A.)

Proof. We start with the equality u′′(t)=Au(t)+f(t), t ∈R. As A⊂ Ã, we have

also u′′(t)= Ãu(t)+f(t), t ∈R. Take λ∈R; we obtain immediately the equality (for

all T > 0)

∫ T
0
e−iλtu′′(t)dt =

∫ T
0
e−iλtÃu(t)dt+

∫ T
0
e−iλtf (t)dt, ∀λ∈R. (3.2)

Using partial integration we get

1
T

∫ T
0
e−iλtu′′(t)dt = 1

T
e−iλTu′(T)− u

′(0)
T

+ iλe
−iλTu(T)
T

− iλu(0)
T

−λ2 1
T

∫ T
0
e−iλtu(t)dt.

(3.3)

As T →∞ the right-hand side in (3.3) is convergent to −λ2û(λ), for all λ∈ R. On the

other hand, (3.2) writes itself as

1
T

∫ T
0
e−iλtÃu(t)dt = 1

T
e−iλtu′′(t)dt− 1

T

∫ T
0
e−iλtf (t)dt. (3.4)

As Ã is closed, u(t)∈�(Ã) for all t ∈R, Ãu(t)=u′′(t)−f(t)∈ C(R;X), it follows as

usual that

1
T

∫ T
0
e−iλtu(t)dt ∈�(Ã),

Ã
1
T

∫ T
0
e−iλtu(t)dt = 1

T

∫ T
0
e−iλtu′′(t)dt− 1

T

∫ T
0
e−iλtf (t)dt.

(3.5)

As T →∞, the right-hand side of (3.5) is convergent to−λ2û(λ)−f̂ (λ), for all λ∈R.

Also, (1/T)
∫ T
0 e−iλtu(t)dt→ û(λ), for all λ∈R.

Again we use the property, “Ã is closed” and infer that û(λ) ∈ �(Ã) for all λ ∈ R,

Ãû(λ)=−λ2û(λ)− f̂ (λ), for all λ∈R, that is, (3.1).

Remark 3.2. Theorem 3.1 extends the statement of [7, Theorem]; the proof is the

same too.
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We next derive corollaries of (3.1), connecting the sets Λu and Λf .

(a) If û(λ)= θ then f̂ (λ)= θ; therefore

Λf ⊂Λu. (3.6)

(b) Assume that λ0 ∈ R is such that λ2
0 is not an eigenvalue of operator −Ã. Then,

from (3.1) again, it follows that f̂ (λ0)= θ⇒ û(λ0)= θ, or û(λ0) �= θ⇒ f̂ (λ0) �= θ. We

can say that

Λu∩
{
λ∈R, λ2 ∉ σp

(−Ã)}⊂Λf ⊂Λu. (3.7)

Next we will handle—for a similar result—the class of “ultraweak solutions.” There-

fore, let again X be a B-space, and A, �(A) ⊂ X → X be a linear operator with dense

domain �(A). Then (cf. [11, pages 72–73]) its dual operator A∗ is a linear closed op-

erator with domain �(A∗)⊂X∗—the dual space of X.

Denote with K2
A∗(R) the (linear) set of functionsϕ∗(·)∈ C2

0 (R;X∗),ϕ∗(t)∈�(A∗)
for all t ∈R, (A∗ϕ∗)(·)∈ C(R;X∗).

Next, consider two continuous functions u(·) and f(·), R→X, related by the ultra-

weak equation
∫
R

〈
ϕ̈∗−A∗ϕ∗(t),u(t)

〉
dt =

∫
R

〈
ϕ∗(t),f (t)

〉
dt, ∀ϕ∗(·)∈K2

A∗(R). (3.8)

Assume furthermore that

A is a closed operator; the domain �(A∗) is dense in X∗. (3.9)

We effectuate “mollification” of u(·)—in a similar way to [10, pages 79–80].

Consider a scalar-valued function αε(·) ∈ C2
0 (R), such that αε(t) = 0 for |t| ≥ ε,

and then the convolution

(
u∗αε

)
(t)=

∫
R
u(τ)αε(t−τ)dτ =

∫ t+ε
t−ε

u(τ)αε(t−τ)dτ. (3.10)

We see that (u∗αε)(·)∈ C2(R;X) and that the equality

(
u∗αε

)′′(t)=
∫
R
u(τ)α′′ε (t−τ)dτ, ∀t ∈R, (3.11)

holds true. We prove now the following lemma.

Lemma 3.3. Under the above assumptions, �(u∗αε)(t)∈�(A∗∗) for all t ∈R and

the equality

d2

dt2
�
(
u∗αε

)
(t)=A∗∗�

(
u∗αε

)
(t)+�

(
f ∗αε

)
(t), ∀t ∈R, (3.12)

holds true (� is the canonical mapping, X →X∗∗).

Proof. For any t ∈ R, consider the functions ϕ∗
t,ε(τ) = αε(t−τ)φ∗, where φ∗ ∈

�(A∗) (they all belong to K2
A∗(R)—as readily seen).

We introduce these functions in (3.8); note that (d2/dτ2)ϕ∗
t,ε(τ)=α′′ε (t−τ)φ∗ and

obtain accordingly the relation
∫
R

〈
α′′ε (t−τ)φ∗−αε(t−τ)A∗φ∗,u(τ)

〉
dτ =

∫
R

〈
αε(t−τ)φ∗,f (τ)

〉
dτ (3.13)
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or also〈
A∗φ∗,

∫
R
αε(t−τ)u(τ)dτ

�
=−

〈
φ∗,

∫
R
αε(t−τ)f(τ)dτ

�

+
〈
φ∗,

∫
R
α′′ε (t−τ)u(τ)dτ

�
∀φ∗ ∈�

(
A∗
)
.

(3.14)

This equality can also be written as follows (using the imbedding X �
�����→X∗∗)

〈
�
(
u∗αε

)
(t),A∗φ∗

〉= 〈�[(u∗αε)′′(t)−(f ∗αε)(t)],φ∗〉 ∀φ∗ ∈�
(
A∗
)

(3.15)

which in turn implies �(u∗αε)(t)∈�(A∗∗) and then

A∗∗
(
�
(
u∗αε

)
(t)
)= �

[(
u∗αε

)′′(t)−(f ∗αε)(t)] ∀t ∈R. (3.16)

Finally, �(u∗αε)′′(t)= (d2/dt2)�(u∗αε)(t); hence from (3.16) we derive

d2

dt2
�
(
u∗αε

)
(t)=A∗∗(�(u∗αε)(t))+�

(
f ∗αε

)
(t) ∀t ∈R. (3.17)

Which proves Lemma 3.3.

We are now ready for consideration of an “extension” of Theorem 3.1 to the case

of ultraweak solutions. We can state in fact the following theorem.

Theorem 3.4. In the Banach space X consider a linear closed operator A with dense

domain �(A) and assume that its dual operator A∗ is also densely defined in X∗. Then

consider two continuous almost-periodic functions, R → X, denoted with u(·), f(·),
related by (3.8). Then, if û(λ), f̂ (λ) are the Bohr transforms of u(·), f(·), it follows

that �û(λ)∈�(A∗∗) and the equality
(
λ2I+A∗∗)�û(λ)=−�f̂ (λ) ∀λ∈R (3.18)

is satisfied.

The proof goes on similar lines to the proof of Theorem 2.1.

Note first that the functions: �(u∗αε)(·), �(f ∗αε)(·), are almost-periodic, R →
X∗∗. Next we multiply (3.17) by e−iλt and integrate over [0,T ], T > 0. We obtain

∫ T
0
e−iλt

d2

dt2

(
�
(
u∗αε

)
(t)
)
dt

=
∫ T

0
e−iλtA∗∗�

(
u∗αε

)
(t)dt+

∫ T
0
e−iλt�

(
f ∗αε

)
(t)dt.

(3.19)

As previously, the left-hand side here is e−iλT�(u∗αε)′(T)−�(u∗αε)′(0)+iλ�(u∗
αε)(0)−λ2

∫ T
0 e−iλt�(u∗αε)(t)dt.

If we divide this left-hand side by T we obtain

1
T

∫ T
0
e−iλt

d2

dt2

(
�
(
u∗αε

)
(t)
)
dt

= e−iλt �
(
u∗αε

)′(T)
T

− 1
T

�
(
u∗αε

)′(0)

+iλ�
(
u∗αε

)
(0)

T
−λ2 1

T

∫ T
0
e−iλt�

(
u∗αε

)
(t)dt.

(3.20)
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In order to proceed further we now need the following proposition.

Proposition 3.5. The function �(u∗αε)′(·) is bounded over R.

We have in fact (from (3.10)) �(u∗αε)′(t)=
∫
R(�u)(τ)α′ε(t−τ)dτ , hence

∥∥�
(
u∗αε

)′(t)∥∥≤ sup
R

∥∥(�u)(τ)∥∥
∫
R

∣∣α′ε(t−τ)∣∣dτ

= c
∫
R

∣∣α′ε(s)∣∣ds = c1,ε ∀t ∈R.
(3.21)

Thus, from (3.20) we get, letting T →∞, the relation

lim
T→∞

1
T

∫ T
0
e−iλt

d2

dt2

(
�
(
u∗αε

)
(t)
)
dt =−λ2(�(u∗αε))Λ(λ). (3.22)

Next, we divide by T the right-hand side of (3.19). We obtain accordingly the equality

1
T

∫ T
0
e−iλtA∗∗�

(
u∗αε

)
(t)dt+ 1

T

∫ T
0
e−iλt�

(
f ∗αε

)
(t)dt

= 1
T

∫ T
0
e−iλt

d2

dt2
�
(
u∗αε

)
(t)dt,

(3.23)

hence

lim
T→∞

1
T

∫ T
0
e−iλtA∗∗�

(
u∗αε

)
(t)dt =−�

(
f ∗αε

)Λ(λ)−λ2�
(
u∗αε

)Λ(λ). (3.24)

In the left-hand side note thatA∗∗ is closed,A∗∗�(u∗αε)(t)= (d2/dt2)�(u∗αε)(t)−
�(f ∗αε)(t)—from (3.17)—hence A∗∗�(u∗αε)(t) is continuous function (belongs to

C(R;X∗∗)). Thus, as usual, we infer that

∫ T
0
e−iλt�

(
u∗αε

)
(t)dt ∈�

(
A∗∗

)
,

A∗∗
∫ T

0
e−iλt�

(
u∗αε

)
(t)dt =

∫ T
0
e−iλtA∗∗�

(
u∗αε

)
(t)dt.

(3.25)

Again, from (3.24) it then follows that

lim
T→∞

A∗∗
1
T

∫ T
0
e−iλt�

(
u∗αε

)
(t)dt exists and =−�

(
f ∗αε

)Λ(λ)−λ2�
(
u∗αε

)Λ(λ).
(3.26)

Now, from (3.24) and (3.26), as A∗∗ is closed, we obtain

�
(
u∗αε

)Λ(λ)∈�
(
A∗∗

)
(∀λ∈R),

A∗∗�
(
u∗αε

)Λ(λ)=−�
(
f ∗αε

)Λ(λ)−λ2�
(
u∗αε

)Λ(λ). (3.27)

we use [1, Lemma, page 72] to derive equalities

�
(
u∗αε

)Λ(λ)= �û(λ)
∫
R
e−iλσαε(σ)dσ,

�
(
f ∗αε

)Λ(λ)= �f̂ (λ)
∫
R
e−iλσαε(σ)dσ,

(3.28)
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and accordingly one gets

A∗∗�û(λ)
∫
R
e−iλσαε(σ)dσ

=−�f̂ (λ)
∫
R
e−iλσαε(σ)dσ −λ2�û(λ)

∫
R
e−iλσαε(σ)dσ ∀λ∈R.

(3.29)

Consider at this point a sequence {αp(·)} in C2
0 (R), where αp(t) = pα(pt) for all

p ∈N, α(·) is a function in C2
0 (R) which is 0 for |t| ≥ 1, is greater than or equal to 0

for all t ∈R, has integral over R= 1. Note therefore that
∫
R
e−iλσαp(σ)dσ =

∫
R
e−iλσpα(pσ)dσ

=
∫
R
e−iλ(s/p)α(s)ds which �→ 1 as p �→∞.

(3.30)

Consider now (3.29) for αε(σ)=αp(σ), p ∈N. As p→∞, we have

�û(λ)
∫
R
e−iλσαp(σ)dσ �→ �û(λ),

A∗∗�û(λ)
∫
R
e−iλσαp(σ)dσ �→−�f̂ (λ)−λ2�û(λ) ∀λ∈R.

(3.31)

This entails (again!), that �û(λ)∈�(A∗∗) and

A∗∗�û(λ)=−�f̂ (λ)−λ2�û(λ) ∀λ∈R (3.32)

which is precisely (3.18).

Remark 3.6. The convolution method which has been used in the proof of Theorem

3.4 can be used to get an extension of Theorem 3.1. Precisely, we can eliminate the

assumption

u′(·) is a bounded function,R �→X. (3.33)

The details are given below.

We start with the equality

u′′(t)= Ãu(t)+f(t), t ∈R. (3.34)

Take αε(·)∈ C2
0 (R), αε(t)= 0 for |t| ≥ ε, and let

uε(t)=
(
u∗αε

)
(t)=

∫
R
u(τ)αε(t−τ)dτ =

∫
R
u(t−s)αε(s)ds. (3.35)

We have obviously, u′′ε (t)=
∫
Ru′′(t−s)αε(s)ds.

Also u(t−s) ∈ �(Ã) and Ãu(t−s) = u′′(t−s)−f(t−s) is a continuous function

of t ∈R. As Ã is closed operator, one obtains that

uε(t)=
∫
R
u(t−s)αε(s)ds ∈�

(
Ã
)
,

Ã
∫
R
u(t−s)αε(s)ds =

∫
R

(
Ãu
)
(t−s)αε(s)ds.

(3.36)
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Now we have

u′′ε (t)=
∫
R
u′′(t−s)αε(s)ds =

∫
R

[(
Ãu
)
(t−s)+f(t−s)]αε(s)ds, (3.37)

that is also

u′′ε (t)=
∫
R

(
Ãu
)
(t−s)αε(s)ds+

∫
R
f(t−s)αε(s)ds

= Ãuε(t)+fε(t), ∀t ∈R.
(3.38)

On the other hand, we see that the first derivative u′ε(t) is given by

u′ε(t)=
∫
R
u(τ)α′ε(t−τ)dτ, (3.39)

so that we estimate u′ε(·) over R, to get

∥∥u′ε(t)∥∥≤ sup
R

∥∥u(·)∥∥
∫
R

∣∣α′ε(σ)∣∣dσ = cε sup
R

∥∥u(·)∥∥, ∀t ∈R. (3.40)

Thus, for all ε > 0, u′ε(t) is bounded over R.

As in (3.2), (3.3), and (3.5)—applied to uε(·)—one obtains that

ûε(λ)∈�
(
Ã
)
, ∀λ∈R, (

λ2+Ã)ûε(λ)=−f̂ε(λ), ∀λ∈R. (3.41)

Now, using [1, Lemma, page 72], one infers that

ûε(λ)= û(λ)
∫
R
e−iλσαε(σ)dσ, f̂ε(λ)= f̂ (λ)

∫
R
e−iλσαε(σ)dσ, (3.42)

so that

λ2û(λ)
∫
R
e−iλσαε(σ)dσ +Ã

[∫
R
e−iλσαε(σ)dσ

]
û(λ)

=−f̂ (λ)
∫
R
e−iλσαε(σ)dσ, ∀λ∈R.

(3.43)

Now consider a sequence αp(·) in C2
0 (R), αp(t) = pα(pt), for all p ∈ N, α(·) ∈

C2
0 (R), = 0 for |t| ≥ 1, ≥ 0 for all t ∈R,

∫
Rα(·)dσ = 1. Consider (3.43) for αp(σ), and

note that
∫
R e−iλσαp(σ)dσ → 1 as p→∞, for all λ∈R. We also have

û(λ)
∫
R
e−iλσαp(σ)dσ �→ û(λ), ∀λ∈R,

Ã
[
û(λ)

∫
R
e−iλσαp(σ)dσ

]
�→−f̂ (λ)−λ2û(λ), ∀λ∈R.

(3.44)

This shows that û(λ)∈�(Ã) and Ãû(λ)=−f̂ (λ)−λ2û(λ), for all λ∈R.
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